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Solving systems of nonlinear equations is a very important task since the problems emerge
mostly through the mathematical modeling of real problems that arise naturally in many
branches of engineering and in the physical sciences. The problem can be naturally reformu-
lated as a global optimization problem. In this paper, we show that a self-adaptive combination
of a metaheuristic with a classical local search method is able to converge to some difficult
problems that are not solved by Newton-type methods.
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1. Introduction

In this paper, we consider solving the nonlinear system of equations

F (x) = 0, F (x) = (f1(x), f2(x), . . . , fn(x))
T (1)

where F : Ω ⊂ R
n → R

n, Ω ≡ [l, u] = {x : li ≤ xi ≤ ui, i = 1, . . . , n} and the
functions fi(x), i = 1, 2, . . . , n are continuously differentiable, using a combination
of a metaheuristic with a classical local search method. Some problems in engi-
neering, chemistry, physics, medicine and even economic areas, aim at determining
the roots of a system of equations. In general, these problems are nonlinear and
difficult to solve. The most famous techniques to solve nonlinear equations are
based on the Newton’s method [6, 10, 14, 18, 38, 45]. They require analytical or
numerical first derivative information. Newton’s method is the most widely used
algorithm for solving nonlinear systems of equations. It is computationally expen-
sive, in particular if n is large, since the Jacobian matrix and the solution of a
system of linear equations are required at each iteration. The Quasi-Newton meth-
ods use less expensive iterations than Newton, but their convergence properties
are not very different. In general, Quasi-Newton methods avoid either the neces-
sity of computing derivatives, or the necessity of solving a full linear system per
iteration or both tasks [39]. In [19], a new technique for solving systems of non-
linear equations reshaping the system as a multiobjective optimization problem in
proposed. The authors applied a technique of evolutionary computation to solve
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the problem obtained after the change. In [20], the authors propose techniques for
computing all the multiple solutions in nonlinear systems. Another technique to
solve systems of nonlinear equations is presented in [25], where a heuristic contin-
uous global optimization GRASP is applied. A genetic algorithm is proposed in
[8]. Filled functions that guarantee convergence to global solutions are available in
the literature to solve systems like (1), see for example [51] and some references
therein cited. The problem of solving a nonlinear system of equations can be nat-
urally formulated as a global optimization problem. Problem (1) is equivalent, in
the sense that it has the same solution, to finding the globally smallest value of
the l2-norm error function, usually known as merit function, related to solving the
system of equations (1), defined by

minimize
x∈Ω⊂Rn

M(x) ≡ ∥F (x)∥2. (2)

Here, the global minimum, and not just a local minimum, of the objective function
M(x), in the set Ω, is to be found. We denote the global minimum by x∗. Classical
local search methods, like Newton-type methods, have some disadvantages, when
compared to global search methods. In particular

• the final solution is heavily dependent on the the initial approximation of the
iterative process;

• they can be trapped in local minima;

• they require differentiable properties of all the equations of the nonlinear system.

We use the Example 1.1 below to show this local trap behavior.

Example 1.1 Consider the following system of nonlinear equations{
f1(x1, x2) ≡ x1 − sin(2x1 + 3x2)− cos(3x1 − 5x2) = 0
f2(x1, x2) ≡ x2 − sin(x1 − 2x2) + cos(x1 + 3x2) = 0

(3)

and Figure 1 that shows the graphical representation of the l2-norm error function
M(x). The multi-modal nature of M makes the process of detecting a global min-
imum a difficult one. We solve Example 1.1 by fsolve from MATLABTM, using
nine different initial approximations. In this MATLAB solver, the default trust-
region dogleg algorithm with no analytical Jacobian is used [44]. The solver is able
to converge to the solution only twice, although all the nine initial points are in the
neighborhood of the solution. Table 1 shows the results obtained from MATLAB.
The first column in the table presents the tested initial approximations and the
second column lists the value of the output parameter ‘exitflag’ of MATLAB. The
value ‘1’ means that the method converged to a root where the first-order optimal-
ity measure is less than a pre-specified tolerance, and ‘-2’ means that it converged
to a point which is not a root and the sum-of-squares of the function values is
greater than or equal to a pre-specified tolerance.

Thus, to be able to converge to a global solution, a global search strategy is
required. The most important global search techniques invoke exploration and ex-
ploitation search procedures aiming at:

i) diversifying the search in all the search space;
ii) intensifying the search in promising areas of the search space.

Local optimization techniques guarantee globality only under certain convexity
assumptions. Nonconvex problems exhibit multiple global and local (nonglobal) so-
lutions and are more efficiently solved by global optimization methods. Preventing
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Figure 1. Graphical representation of M(x), from Example 1.1

Table 1. Solutions obtained by fsolve from MATLAB for different initial approximations, for Example 1.1.

Initial approximation ‘exitflag’ (f1, f2) at solution n. of iterations n. function evaluations

(0, 0) 1 (-4.1e-13, -2.4e-13) 5 18
(1, 1) 1 (3.6e-9, 2.3e-9) 6 21
(0, 1) -2 (-3.0e-2, 9.4e-1) 27 60
(2, 2) -2 (1.1e-1, 8.8e-1) 31 70
(-1, 1) -2 (-5.5e-1, 6.5e-1) 55 130
(1, -1) -2 (1.0e-2, -4.0e-2) 24 57
(-1, -1) -2 (-5.2e-1, 1.0e-1) 31 74
(2, -2) -2 (-1.6e-1, -5.7e-1) 32 71
(-2, -2) -2 (-1.7e-1, -1.5e00) 34 77

premature convergence to a local solution, while trying to locate a global opti-
mum, is an important property of global solution methods. Research concerning
the problem of finding the global optimum of a continuous objective function over
a compact convex set started in the early 1970’s. A well-established classification
of solution methods for global optimization defines two classes: the exact methods
and the approximate ones. The reader is referred to papers with reviews on ad-
vances in global optimization [1, 13, 46]. Exact methods for global optimization are
guaranteed to find an optimal solution within a problem dependent run time. Thus,
they are able to solve a problem with a required accuracy in a finite number of
steps. A theoretical analysis of convergence to a global optimum may be provided.
On the other hand, approximate methods are not guaranteed to find an optimal
solution although they are often able to find very good solutions in a reasonable
time. Most approximate methods are stochastic. Exact methods are often known
as deterministic. Unlike the stochastic methods, the outcome of a deterministic
algorithm does not depend on pseudo random variables. The design of a determin-
istic method relies on the mathematical attributes of the optimization problem,
therefore the performance depends heavily on the structure of the problem and the
complexity grows very fast with problem’s dimension [23, 37]. Popular determin-
istic approaches have been proposed within the Branch-and-Bound framework to
solve certain types of nonconvex problems, see for example [3]. Other deterministic
methods use concepts of DIviding RECTangle [29] and Interval Analysis. In the
interval-based methods, the interval arithmetic is used to update variable bounds
and compute bounds for the involved function values [23].
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Another interesting idea which has been under discussion in the global optimiza-
tion area, since the 1980’s, uses auxiliary functions, namely Tunneling and Filled
functions. The objective function is transformed into an auxiliary function using
previously located local minimizers. To escape from local minimizers, gradient-
based methods can then be used to descend from the local to a global one [54].
Stochastic methods rely on probabilistic elements, either in the problem data

or in the algorithm itself, or in both. Compared with deterministic methods, the
implementation of stochastic algorithms is often easier. In general, stochastic meth-
ods require no structural information about the problem at hand. For a challenging
class of global optimization problems, the so-called black-box optimization prob-
lems, no structure is known and used when targeting the global solution. The
convergence proofs for this type of methods involve the use of probability theory.
Stochastic algorithms are at most able to provide a probabilistic convergence guar-
antee, for instance, convergence in mean square [28, 48], convergence in probability,
or convergence with probability one [27]. In practice, there is no guarantee that
the obtained solution is actually the global one, or by how far the algorithm has
failed to locate the true global solution.
A stochastic method is based on random searches that use selected heuristics to

promote the search over the feasible set and guide the choice of the most promis-
ing candidate solutions. The general consensus about the word heuristic is that
this is a procedure based on commonsense rules aiming at increasing the proba-
bility of solving a specific problem and providing an approximate solution with no
guarantee that it is close to the optimal solution. Although heuristics are closely
associated with random search techniques, there are also deterministic heuristic
methods. A selected sequence of well-known stochastic methods, in chronological
order, follows: Evolution Strategy (1965), Genetic Algorithm (1975), Scatter Search
(1977), Simulated Annealing (1983), Tabu Search (1986), Ant Colony Optimiza-
tion (1992), Particle Swarm Optimization (1995), Differential Evolution (1997),
Harmony Search (2001), Electromagnetism-like Mechanism (2003), Artificial Bee
Colony (2005), Artificial Fish Swarm Optimization (2005). They are mainly in-
spired by nature or by evolutionary and swarm intelligence theories. A survey on
stochastic methods is presented in the textbook [53].
Recent hybrid algorithms aim at combining a heuristic algorithm with a local

search operator, either a deterministic or a random search, to enhance its ex-
ploitation ability [5, 21, 22, 47, 49]. A Multistart method is a hybrid, where local
searches are performed starting from randomly generated points. The idea of clus-
tering paired with multistart that appeared in the 1970’s with great success aims
at avoiding to perform a local search from another point that is closely associated
with a found optimum solution [50]. In recent years, another type of hybrid strategy
adds a second heuristic to the basic heuristic’s design, for example, the Ant Colony
System and the Tabu Search [30], the Harmony Search cooperating with Differen-
tial Evolution [36] or the integration of Scatter Search and Tabu Search [12].
A well-known class of global search techniques, the metaheuristics, use random

procedures that invoke artificial intelligence tools and simulate nature behaviors.
The word ‘metaheuristics’ is used to describe all approximate methods that com-
bine basic heuristic methods into higher level frameworks to explore the search
space in an efficient and effective manner. In the last three decades, these heuris-
tics have proven to be computationally successful in solving combinatorial problems
as well as continuous global optimization problems. Thus, the practical advantages
of metaheuristics are their effectiveness and general applicability. Due to their ran-
dom features, metaheuristics have, in general, slow convergence since they may fail
to detect promising search directions in the neighborhood of a global minimum.
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There are two classes of metaheuristics. A population-based heuristic that defines
and maintains throughout the iterative process a set of solutions. The most known
population-based heuristic is the Genetic Algorithm [17]. A point-to-point heuristic
defines just one solution at the end of each iteration which will be used to start the
next iteration. Simulated Annealing [21] and Tabu Search [15] are two examples of
point-to-point methods. The Tabu Search (TS) is a metaheuristic developed pri-
mary for solving combinatorial problems [15, 16]. The TS introduced by Cvijović
and Klinowski [9] for continuous optimization guides the local search out of local
optima and has the ability to explore new regions. It is an iterative procedure that
maintains a list of the movements most recently made, avoiding in subsequent it-
erations the execution of movements that lead to solutions already known to have
been visited. Usually, the slow convergence of TS is overcame by incorporating a
classical local search strategy into the main algorithm. In general, this type of hy-
bridization occurs in the final stage of the iterative process when the solution is in
the vicinity of the global solution. An example of such method is presented in [22].
The therein proposed method, called Directed Tabu Search (DTS), uses strategies,
like the Nelder-Mead method [43] and the Adaptive Pattern Search [21], to direct
a tabu search.
This paper aims at assessing the performance of the metaheuristic tabu search

when solving a system of nonlinear equations (1), using the function M(x) as a
measure of the progress of the algorithm towards the solution. According to the
formulation (2), this means that the fitness of each trial solution x is assessed
by evaluating the merit function M at x. And, a solution x is better than y if
M(x) < M(y). In this paper, and due to the reported success when solving global
optimization problems of the form (2), the DTS variant of the tabu search is
extended to be able to solve nonlinear systems of equations. In particular, we aim
at analyzing the behavior of tabu search type methods when solving some difficult
problems that are not solved by Newton-type methods.
Furthermore, we propose a new algorithm that combines DTS and a local search

method in order to accelerate convergence to the solution. The issue related with
the condition that defines the choice between the exploration and exploitation
phases of the algorithm is also addressed with new self-adaptive weight factors.
The numerical results show the goodness of the proposed self-adaptive strategies.
The organization of the paper is the following. Section 2 briefly describes the Di-

rected Tabu Search method, Section 3 overviews the classical local search method,
known as Hooke and Jeeves (HJ), and Section 4 presents the proposed combined
DTS and HJ searches algorithm, and the new self-adaptive strategies to choose
between the exploration and exploitation phases. The numerical results and their
discussion are included in Section 5.

2. The metaheuristic tabu search

2.1 Basic tabu search

TS is an iterative process which operates in the following way. The algorithm starts
with a randomly generated initial solution, x, and by applying pre-defined moves
in its neighborhood, it generates a set Y of solutions. The objective function to be
minimized is evaluated at all solutions in Y, and the best of all, ybest, becomes the
current solution, x ← ybest (even if it is worse than x). Accepting uphill moves,
the algorithm avoids to get trapped in a local minimum. The previous procedure
is repeated until a given stopping condition is reached. Further, the algorithm also
stops when the solution does not improve for a specified number of iterations. To
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avoid cycling, since a point already visited may be generated again, a set of points
already visited are stored in a list, called Tabu List (TL). The solutions in Y that
belong to the TL are eliminated. This TS structure is known as short-term memory
TS. The use of this type of flexible memory turns out to be advantageous, since
the method is able to keep diversity, like population-based methods, in contrast
to the rigid structures, like those used in Branch-and-Bound methods, or the lack
of memory present in the Simulated Annealing method [7]. To improve perfor-
mance, long-term memory TS structures have been proposed to record important
attributes like the elite and the frequently visited solutions. The Directed Tabu
Search [22] implemented in this paper for solving nonlinear systems of equations
contains long-term memory structures.

2.2 Directed tabu search

The Directed Tabu Search method of Hedar and Fukushima [22] uses direct search
methods in order to stabilize the search especially in the vicinity of a local mini-
mum. Two variants of the DTS are therein proposed: one is based on the Nelder-
Mead (NM) method, as a local search, inside the exploration step of the algorithm,
and the other uses the Adaptive Pattern Search (APS) strategy in the exploration
step. Furthermore, the Kelley’s modification of the NM method [31] is still used in
the therein called intensification search, in the final stage of the process. We note
that the DTS method can be classified as a multi-start method. The multi-start
methods are powerful search procedures to guide both global exploration and local
search. The DTS method is based on three main procedures: exploration, diver-
sification and intensification search. The structure of the DTS is shown below in
Algorithm 2.1. (See details in [22].)

Algorithm 2.1 DTS algorithm

Require: randomly generated x0

1: while the stopping criteria are not reached do
2: Exploration search procedure
3: Neighborhood search
4: Local search
5: Solution update
6: Diversification search procedure
7: end while
8: Intensification search procedure

The main loop (outer cycle) of the DTS method, consisting of the exploration
and diversification search procedures, begins with an initial randomly generated
solution, but other initial approximation may be provided.

2.2.1 Exploration search

The exploration search aims to explore the search space Ω. It uses direct search
methods as neighborhood search and local search strategies to generate trial points.
These may be based on either the simplex method of NM or on the APS strategy.
Here, we use the APS variant, as described in [21].
The cycling procedure is prevented not only with the standard Tabu List but

also with the inclusion of two novel concepts of tabu regions. The DTS method im-
plements four TS memory elements: The multi-ranked Tabu List, the Tabu Region,
the Semi-Tabu Region and the Visited Region List. They are long-term memory
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structures and are very important since they allow the method in the diversifica-
tion search and intensification search procedures to behave as an intelligent search
technique.

2.2.2 Diversification search

A diversification procedure aims to generate a new initial trial point outside the
visited regions. The information stored in the Visited Region List (VRL) is used
to direct the search towards new regions. This VRL serves as a diversification tool,
with the aim of diversifying the search for areas that have not been visited in the
search space.

2.2.3 Intensification search

When one of the best obtained trial solutions is sufficiently close to a global
minimum, or its value has not been changed for a specified number of iterations,
then the intensification search procedure is applied, at the final stage of the algo-
rithm, to refine the best solution visited so far. In this case, DTS uses the Kelley’s
modification of the Nelder-Mead method [31] and [32]. A solution still closer to the
global minimum is then obtained.

3. Hooke and Jeeves local search method

The derivative-free method, known as Hooke and Jeeves method, is a determin-
istic local pattern search method that performs, at each iteration j, a series of
exploratory moves along the coordinate axes around a current approximation, xj ,
in order to find a new approximation xj+1 = xj+∆jsj , with a lower merit function
value while maintaining the approximation inside the set Ω. Here, the index j is
used for the iteration counter of this inner iterative process. The scalar ∆j repre-
sents the step length and the vector sj determines the direction of the step. The
step length is reduced whenever the previous iteration is unsuccessful, i.e., when
no improvement in M is obtained, and it is maintained otherwise. The HJ method
also performs a pattern move whenever a successful iteration is encountered. The
vector xj+1 − xj defines a promising direction and a pattern move is then imple-
mented, which means that the exploratory move is carried out around the trial
point xj+1 + (xj+1 − xj), rather than around the current point xj+1. Then, if the
coordinate search is successful, the returned point is accepted as the new point;
otherwise, the pattern move is rejected and the method reduces to a coordinate
search around xj+1. The reader is referred to [26] for the details concerning this
classical local search method.

4. Combining global tabu search and local search

The herein proposed hybridization defines an algorithm that is able to combine
two types of cycles: a global and a local one. The general idea is borrowed from
the algorithm presented in [14] where a classical gradient-based Quasi-Newton
nonmonotone strategy is used to solve nonlinear systems of equations. The global
search cycle is carried out by a modified version of DTS method, where the HJ
local search method is used, instead of the NM method, as the intensification search
procedure of the DTS algorithm (see Step 8 of Algorithm 2.1). On the other hand,
the local search cycle uses the HJ pattern search method alone [26] (see Section 3).
The most important issue here is to decide when to carry out a global explo-

ration of the search space, or a local exploitation in the neighborhood of a good
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approximation to the solution.

4.1 Merit function sufficient reduction

Our first proposal concerned with the condition that decides which cycle should
be carried out, at each iteration k, depends on a sufficient reduction obtained in
the merit function, when compared with the merit function value of the previous
iteration. If a pre-specified sufficient reduction is verified, a local exploitation cycle
is to be required, since a fast downhill progress has been detected. Thus a promising
region seems to be found by the algorithm. Otherwise, the region does not look
promising yet and an exploration cycle is more appropriate where a diversifying
search is to be carried out looking for a promising region with a global minimum.
Figure 2 shows the general iterative structure of the combined Global Tabu Search
and Local Search (GTSLS) method. Details of the procedures are discussed below.
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Figure 2. General flowchart of GTSLS method

In both global and local cycles of the algorithm, only an ηk-approximation xk+1

to the optimal solution is required, i.e., each search terminates when, at iteration
k, the value of the merit function at the best solution found so far is less than ηk.
The sequence of ηk values should decrease and approach zero, as k increases. The
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argument is that, when the iterative process begins far from the solution of problem
(1), there is no point in spending too much resources computing an approxima-
tion with high accuracy. However, as the process approaches the solution, highly
accurate approximations are important to speed the overall process. Algorithm 4.1
summarizes the main steps of the proposed GTSLS algorithm.

Algorithm 4.1 GTSLS algorithm

Require: x0, 0 < γ1, γ2 < 1, 0 < η∗ ≪ 1, kmax > 0; set k = 0, η0 = 1, flag=0;
1: while M(xk) > η∗ and k ≤ kmax do
2: if flag=1 then
3: use local HJ search to compute an ηk-approximation xk+1

4: else
5: use global DTS search to compute an ηk-approximation xk+1

6: end if
7: if M(xk+1) ≤ γ1M(xk) then
8: set flag=1
9: else

10: set flag=0
11: end if
12: set k = k + 1, set ηk = max{η∗, γ2ηk−1}
13: end while

Condition M(xk+1) ≤ γ1M(xk) in the algorithm defines the sufficient reduction
that we aim to observe in the merit function. The closer γ1 is to one, the smaller
is the required reduction. In order to guarantee that the progress has been along
a downhill step and a promising region has been located, we define γ1 = 0.5. The
other parameters in the algorithm are set as follows: η∗ = 10−6 (accuracy of the
solution) and kmax = 10n. A successful run is registered when the algorithm stops
due to the condition M(xk) ≤ η∗. Two values of γ2 were tested, 0.1 and 0.5, see
Section 5. Each iterative process, either in the local or in the global cycle of the
algorithm, is called inner cycle, in contrast to the process indexed by k, called outer
cycle.

4.2 Self-adaptive weight factors

Another approach is attempted to improve the efficiency of the GTSLS algorithm
using a self-adaptive weight factor to check when the global exploration of the
search space, or the local exploitation, is needed. At each iteration k, the weight
factor is evaluated based on an ‘index’, Ik, defined by

Ik =
M(x0)

M(xk)
− 1 (4)

that clearly shows the proximity of xk to x∗. This ‘index’ changes according to
the rate of the observed improvement on the merit function value. In the first
iteration (k = 0), I0 is zero but as xk converges to x∗, Ik approaches infinity, since
the required global optimum is 0. Since the self-adaptive weight factor wk aims
at checking which type of search is required, at iteration k, we use the idea of a
transfer function [41]

wk =
1

1 + exp
(
− 1

αIk

) , (5)
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where 0 < α ≤ 1 is a constant, to define adequate weight values that vary as follows:
0.5 ≤ wk < 1. A large weight factor, which emerges with a small Ik, means that
M(xk) is very far from the merit function optimal value, and a global exploration
search is required. On the other hand, a small wk emerging from a large value of Ik
means that a local exploitation search is needed since xk is already near the optimal
solution. The parameter α gives the speed of reduction in w. Figure 3 shows how
wk varies with α. Five values of α were used. The bigger the α is, the faster is the
convergence to the lower bound of w. Preliminary experiments have shown that a
moderate speed of reduction in w favors the efficiency of the algorithm. Another
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Figure 3. Weight factor w from (5) vs ‘index’ for five different values of α

issue is related with a reference value wR, of the weight factor w, below which
the exploration of the space is no longer necessary and the exploitation around
the neighborhood of the best solution found so far is crucial for a highly accurate
solution. From the numerical experiments done so far, the value 0.75 is a good
choice. We remark that in this self-adaptive weight factor context, the condition on
M in Step 7 of the Algorithm 4.1 is replaced by the following condition: wk+1 ≤ wR.
To overcome the need to define the parameter α in the formula for the weight

factor (5), another idea borrowed from the work presented in [2] defines a weight
factor ranging from 0.5 to 1 as follows:

wk = 0.5

(
1 + tanh

(
M(xk)

M(x0)

))
. (6)

The speed of reduction in the weight (6), as a function of the ‘index’ (4), behaves
similarly to that of weight (5), when 0.5 ≤ α < 1. Figure 4 depicts these behaviors.
We now solve Example 1.1 to analyze the effect of parameter α in the performance
of the algorithm. We compare the results of the proposed GTSLS algorithm with
those of DTS and HJ used separately. The notation concerned with different ver-
sions of GTSLS is the following: GTSLS1 for the combined algorithm as presented
in Algorithm 4.1, GTSLS2 for the adaptive version that uses (5) and GTSLS3 for
the version using (6). See Table 2. Due to the stochastic nature of tabu search based
algorithms, the problem was run 30 times and the best of the 30 obtained solutions
is registered. In the table, ‘k’ represents the number of outer (or main) iterations,
‘kDTS+HJ ’ is the total number of inner iterations, ‘kHJ ’ is the total number of it-
erations required by HJ alone, ‘n.f.ev.’ represents the average number of function
evaluations, over the 30 runs, required to reach the presented solution, and ‘M ’ is
the value of the merit function at the obtained registered solution. The solutions
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Figure 4. Speed reduction comparison: weights w from (5) and (6)

reached by DTS and HJ do not have the required accuracy. We may conclude that
the self-adaptive versions of the combined tabu search and local search algorithm
- GTSLS2 and GTSLS3 - outperform GTSLS1.

Table 2. Results from GTSLS, DTS and HJ, for Example 1.1.

Algorithm k kDTS+HJ kHJ n.f.ev. M

GTSLS1 9 160 46 1186 5.0e-7
GTSLS2 (α = 0.25, wR = 0.75) 7 91 1 414 3.3e-7

(α = 0.50, wR = 0.75) 8 129 6 665 2.8e-7
(α = 0.75, wR = 0.75) 11 188 6 985 8.8e-7

GTSLS3 (wR = 0.75) 8 114 1 500 2.8e-7
(wR = 0.60) 8 122 6 645 8.2e-7

DTS 20 40 20 280 1.5e-3
HJ 20 99 2.1e-2

To further analyze the effect of both formulae (5) and (6) on the performance of
the algorithm GTSLS, a second example is used.

Example 4.1 Consider the following system of nonlinear equations{
f1(x1, x2) ≡ 4x31 + 4x1x2 + 2x22 − 42x1 − 14 = 0
f2(x1, x2) ≡ 4x32 + 4x1x2 + 2x21 − 26x2 − 22 = 0

(7)

where −5 ≤ x1, x2 ≤ 5 [51]. Figure 5 shows the graphical representation and the
contours of M(x) relative to this example. The merit function M has nine minima.
The solutions are reported on the contour plot.

We test both versions GTSLS2 and GTSLS3, with three initial approximations,
and compare with fsolve and the results in [51]. See Table 3. The information
reported in this table is similar to that of Table 2 with the additional information
concerned with the solution x∗. In the table, ‘-’ stands for unavailable information.
GTSLS3 always converges to the same solution whatever the initial approximation,
while GTSLS2 detects three solutions. The algorithm in [51] and the solver fsolve
converge to three different solutions depending on the provided initial approxima-
tion.
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(a) Plot of merit function M(x)

Solutions: (−3.7793,−3.2832), (−3.0730,−0.0814), (−2.8051,3.1313), (−0.2709,−0.9230),  
(−0.1280,−1.9537), (0.0867,2.8843), (3.0, 2.0), (3.3852,0.0739), (3.5844,−1.8481)
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4

5

(b) Contours of M(x)

Figure 5. Plot of M(x) and contours, from Example 4.1

Table 3. Results from self-adaptive GTSLS, fsolve and [51], for Example 4.1.

Algorithm k kDTS+HJ n.f.ev. x∗ M

initial approximation (−5,−3)
GTSLS2 6 68 380 (−0.1280,−1.9537) 7.3e-7
GTSLS3 8 116 566 (−0.2708,−0.9230) 9.5e-7
in [51] 3 - (−3.7793,−3.2832) 3.8e-7
fsolve 5 18 (−3.7793,−3.2832) 3.5e-10†

initial approximation (1, 3)
GTSLS2 7 84 449 (3.5844,−1.8481) 6.04e-7
GTSLS3 6 74 396 (−0.2708,−0.9230) 7.3e-7
in [51] 3 - (0.0867, 2.8843) 6.8e-7
fsolve 4 15 (0.0867, 2.8843) 7.1e-10†

initial approximation (2, 3)
GTSLS2 7 91 486 (−0.2708,−0.9230) 2.5e-7
GTSLS3 8 115 565 (−0.2708,−0.9230) 6.6e-7
in [51] 3 - (3.3852, 0.0739) 7.9e-7
fsolve 5 18 (3.0, 2.0) 5.8e-7†

† - first-order optimality measure

4.3 Escaping from local minima

To further check whether the proposed algorithm is able to escape from local min-
ima or from valleys that contain them, while searching for a global one, two small
nonconvex optimization problems are selected from the literature (Examples 4.2
and 4.3 below [23]).
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Example 4.2 This function is the well-known six-hump camelback function

f(x) = 4x21 − 2.1x41 +
1

3
x61 + x1x2 − 4x22 + 4x42 with Ω = [−2, 2]× [−2, 2]

which has six minimizers and the two global solutions are located at (-0.089842,
0.71266) and (0.089842, -0.71266) with a value of -1.0316.

Example 4.3 The bi-spherical function is nonsmooth and has one global minimizer
at (1, 0) with f = 0 and a local minimizer at (-1,0) with f = 0.1:

f(x) = min
{
(x1 − 1)2, (x1 + 1)2 + 0.1

}
+ x22 with Ω = [−2, 2]× [−1, 1].

By allowing uphill moves, the exploration nature of the DTS algorithm searches
beyond a local minimum. Furthermore, by preventing the algorithm from visiting
again the points previously evaluated, a better exploration of the problem space
can be enforced. We illustrate the behavior of the GTSLS3 algorithm on the two
multi-modal functions over convex closed feasible sets and compare with the solver
fmincon from MATLAB. Figure 6 contains the contours of both functions and
depicts the convergence behavior starting from four different initial approximations.
Figure 6(a) shows the convergence behavior of GTSLS3 on Example 4.2 starting

from the initial points, x0: (2, 2), (-2, 0), (-1.7036, 0.7961) and (1.2302, 0.1623).
These two last points are local minima. The algorithm is able to explore all the fea-
sible region, escape from the local minima and converge to global minima. Table 4
contains the results obtained by the GTSLS3 algorithm and fmincon from MAT-
LAB for comparison. We may observe that the solver fmincon could not escape
from the two local minima, converges just once to a global minimum and identifies
a saddle point.
When starting from the initial points (0, 0), (-1, 1), (-2, -1) and (-0.5, 0), the

GTSLS3 algorithm is able to converge to the global minimum of Example 4.3 in
all cases, while fmincon locates the local one in two cases. See Table 4 for details.
Figure 6(b) illustrates the iterated points obtained by GTSLS3.

Table 4. Convergence results for Examples 4.2 and 4.3.

GTSLS3 algorithm fmincon from MATLAB
Ex. x0 solution f k (n.f.ev.) solution f

4.2 (2, 2) (-0.0898, 0.7128) -1.03163 3 (60) (-0.1E-6, 0.01E-6)† 8E-14
(-2, 0) (-0.0899, 0.7127) -1.03163 4 (103) (-0.0898, 0.7127) -1.03163‡

(-1.7036, 0.7961) (-0.0899, 0.7128) -1.03163 4 (122) (-1.7036, 0.7961) -0.2155§

(1.2302, 0.1623) (0.0897, -0.7127) -1.03163 4 (101) (1.2302, 0.1623) 2.4963§

4.3 (0, 0) (0.9993, 0) 4E-7 2 (25) (1, 0) 7E-17‡

(-1, 1) (0.9996, -0.0003) 2E-7 4 (108) (-1, 0) 0.1§

(-2, -1) (0.9997, -0.0001) 9E-8 4 (93) (0.9999, -0.0001) 7E-9‡

(-0.5, 0) (0.9998, 0.0008) 6E-7 3 (77) (-1, 0) 0.1§

† - saddle point; ‡ - global minimum; § - local minimum.

5. Numerical results and discussion

To analyze the performance of the proposed combined Global Tabu Search and
Local Search algorithm, we selected, coded in MATLABTM, and solved by the ver-
sion GTSLS3, 99 test problems from the literature. For comparative purposes, the
problems were also solved by fsolve from MATLAB, Hooke and Jeeves method,
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Figure 6. Iterated points from different initial approximations

and the extended version of the Directed Tabu Search method presented in [22].
The problems in our database are referred to as P1, P2, . . ., P99. They represent
systems of nonlinear equations of different sizes and complexity. P99 and P49 are
Examples 1.1 and 4.1 respectively. The results of the numerical experiments were
obtained in a personal computer with an AMD Turion 2.20 GHz processor and 3
GB of memory.
Since the computational effort required in each outer/main iteration, by the

algorithms in comparison, is different, we choose to stop the algorithms when the
number of function evaluations exceeds 100n2. Meanwhile, if a solution is found
with a merit function value less or equal to η∗(= 10−6) (tolerance for M at the
best solution found so far) the algorithms stop. This way, we aim at analyzing and
comparing the accuracy of the obtained solutions.
To resume the main achievements of our numerical experiments, we show in

Table 5 the results of 22 problems (from the database of 99 problems) for which
fsolve was not able to converge to a solution with a specified tolerance within
10n iterations or 100n function evaluations (values defined by default). The output
parameter ‘exitflag’ is ‘-2’ for P44 and P72 and is ‘0’ for all the others. All problems
were solved with a specific initial approximation: the null vector for P50 and P52,
the vector of all ones for P56, P62, P63, P70, P77 and P84, and the initial vector
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provided in the literature for the remaining problems. Although the literature does
not provide the bounds [l, u] for most problems, we selected a specific range for
each problem, as shown in Table 6. The lower and upper limits are the same for
all the components of the vector x.
For the methods HJ, DTS, GTSLS3 with γ2 = 0.1 and GTSLS3 with γ2 = 0.5,

Table 5 shows the value of M (at the best solution found after 100n2 function eval-
uations) and the required number of outer/main iterations. When the parameter
γ2 is set to 0.1 in GTSLS3, the algorithm requires less iterations and attains in
general higher accuracy results than with γ2 = 0.5. This is expected since outer
iterations based on a larger tolerance reduction provide solutions with higher accu-
racy although computationally more expensive. Overall the accuracy of the results
are not yet as we expected. We then run GTSLS3 for a maximum of 10n outer
iterations and obtained the solutions reported in the 12th column of the table iden-
tified as ‘M(k≤10n)’. The results show some improvements but further research is
still needed.
To avoid the search along the coordinates during the Hooke and Jeeves local

exploitation search of the GTSLS algorithm, another local search procedure will
be used in the near future. Since a componentwise search requires large amounts of
function evaluations, the idea proposed in the random walk with direction exploita-
tion method, recently applied to the stochastic differential evolution algorithm [36],
will be considered.
In this paper, we show that nonlinear systems of equations can be effectively

solved by implementing a global optimization method to the merit function, which
represents the l2-norm error function related to the solving of the system of equa-
tions. The application of an extended version of the metaheuristic Directed Tabu
Search, proposed in [22], for solving complex and difficult nonlinear systems of
equations has been analyzed and tested. We also propose a novel tabu search-type
algorithm that combines the extended DTS, for a global exploration search, with
the local Hooke and Jeeves search algorithm, for the exploitation search procedure.
At each iteration, the choice between implementing a global search or a local search
relies on self-adaptive weight factors that depend on the rate of improvement on
the merit function value. The numerical results allow us to conclude that the herein
proposed self-adaptive GTSLS algorithm is able to converge to the solution of some
difficult problems that were not successfully solved by Newton-type methods and
outperforms both HJ local search and DTS algorithms.
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Table 6. Characteristics of the problems.

n [li, ui] reference Problem’s name in cited paper

P6 2 [-10,10] [42] P3-Powell badly scaled function
P9 2 [-10,15] [42] P2-Freudenstein and Roth function
P25 10 [10,50] [14] D6-Shifted and augmented trigonometric

function with an Euclidian sphere
P26 3 [-10,10] [14] D7-Diagonal of three variables premultiplied by a
P44 33 quasi-orthogonal matrix
P27 3 [-10,10] [14] D8-Diagonal of three variables premultiplied by an
P45 33 orthogonal matrix, combined with inverse

trigonometric function
P50 2 [-10,10] [25] pp. 2004
P52 5 [-20,20] [40] Combustion of propane chemical equilibrium equations
P53 6 [-3,3] [42] 14-Wood function
P55 6 [-10,10] [45] Semiconductor boundary condition
P56 8 [-10,30] [4] 2.3-The human heart dipole
P62 6 [0,60] [24] Problem 2
P63 6 [-10,10] [35] Example 2
P64 8 [-10,15] [11] Equation 3.1
P70 10 [-100,100] [52] Example 4.1-Nonlinear resistive circuit
P72 51 [-5,5] [14] D7-Diagonal of three variables premultiplied by a

quasi-orthogonal matrix
P77 2 [0,3.5] [8] Example 1
P80 3 [0,4] [42] 5-Beale function
P84 3 [0,1] [34] Example 6.2
P88 10 [-10,10] [33] Example 2-The Beam problem
P96 2 [-10,10] [18] pp. 498 (Problem N4)


