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Abstract 
 
This paper presents a maximum likelihood (ML) 

approach, relative to the background model estimation, in 
noisy acoustic non-stationary environments. The external 
noise source is characterised by a time constant 
convolutional and a time varying additive components, 
which is consistent with the telephone channel. The HMM 
composition technique, provides a mechanism for 
integrating parametric models of acoustic background 
with the signal model, so that noise compensation is tightly 
coupled with the background model estimation. However, 
the existing continuous adaptation algorithms usually do 
not take advantage of this approach, being essentially 
based on the MLLR algorithm. Consequently, a model for 
environmental mismatch is not available and, even under 
constrained conditions a significant number of model 
parameters have to be updated. From a theoretical point 
of view only the noise model parameters need to be 
updated, being the clean speech ones unchanged by the 
environment. So, it can be advantageous to have a model 
for environmental mismatch. This approach was followed 
in the development of the algorithm proposed in this 
paper.  

One drawback sometimes attributed to the continuous 
adaptation approach is that recognition failures originate 
poor background estimates. This paper also proposes a 
MAP-like method to deal with this situation.  
 

1. Introduction 
 
ne of the biggest obstacles to operate speech processing 

equipments in useful applications is the presence of 
background acoustic noise and channel distortion.  

As speech recognition of broadcast news has received a 
great deal of attention, the adaptation requirement of the 
existing recognition systems to non-stationary noisy 
conditions increases. In general, the existing recognition 
systems are not adequate to deal with non-stationary 
conditions due, for example, to the presence of music in the 
background [1]. Actual telephone data have shown that the 
convolutional distortions observed on the telephone line are 
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ost constant for a given call and vary between calls [2]. 
refore, one can conclude that the telephone channel can be 
hly characterised by a non-stationary additive noise and a 

ionary convolutional noise, for the same call.  
he mismatch between the training and testing conditions 
n automatic speech recogniser can be efficiently reduced 
adapting the parameters of the recogniser to the testing 
ditions. Recently, a family of online or incremental 
ptation algorithms for continuous density hidden Markov 
els (HMM) based speech recognisers have appeared that 
based on constrained re-estimation of the distribution 
meters [3][4]. These algorithms can be used in 

upervised adaptation mode and can adapt to new 
ditions automatically, based on the recogniser’s 
othesis. However, while these algorithms are designed to 
rate in non-stationary environmental conditions, they are 
d on the assumption that the environmental mismatch can 
modelled by an affine transform on the means and 
ances of the clean speech distributions, even when the 
kground is modelled by an HMM [5]. This assumption 

s not to make much sense since it is considered that the 
n speech is not frequently changed by the environment, 
ead is the environment that changes continuously. 
itionally, non-stationary environments can be more 
rately modelled by an HMM. This means that the noisy 
ch HMMs are an expanded version in the number of both 

es and mixture components, of the clean speech HMMs. 
ce, it would make much more sense to have a model of 
ironmental mismatch, where environmental adaptation 
ld be done by updating the environmental model 
meters keeping up the clean speech distribution model 
meters unchanged. Consequently fewer parameters have 
e updated since only the environmental model needs to be 
pted, while a broad range of environmental conditions 

 stationary to non-stationary can be handled. This 
roach was followed in the development of the algorithm 
osed in this paper. An environmental model, which 

udes a channel filtering vector and a Markov chain to 
el the additive noise, is updated after each sentence.  
he algorithm was not tested yet on real contaminated data. 
as only tested on artificially contaminated data in the 

ated word recognition paradigm. 



 

2. Speech and Noise Joint 
 Modelling 

This section introduces the integrated model of signal and 
background assuming convolutional and additive distortions. 
The telephone channel can be roughly characterised by a non-
stationary additive noise and a stationary convolutional noise 
for the same call, whereas in the spectral domain the speech is 
degraded by a multiplicative time constant vector and by an 
additive time dependent stochastic process. A stochastic 
model compatible with the non-stationary property of the 
noise process is the Hidden Markov Model (HMM). HMM 
composition approach allows recognising concurrent signals 
simultaneously, assuming that both are HMM modelled and 
combined by an a priori known function. Pairs clean speech 
states and noise models form each state of the noisy speech 
model.  

Assuming that the observed stochastic process xt (clean 
speech) has independent and identically distributed random 
variables (Gaussian), the auxiliary function is given by [6] 
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where γt(n,m) is the joint probability of the observation vector 
xt, the state n and the mixture component m, D is the observed 

vector dimensionality, a and c refer respectively to the 
transition state probability and mixture coefficient. If the 
clean speech is corrupted by a stationary channel, whose 
frequency response in the Power Spectrum Density is given 
by a time constant vector (w), and by an additive process then 

the noisy speech ttt ywxz +=   (2) 

where the product of vectors represents an element by 
element product. 
If the noise process yt is also modelled by an HMM, assuming 
the noise is statistically independent of the signal, the 
probability density function for the noisy speech can be 
obtained from the composition of the two Markov models. 

In our experiments we have considered that the speech 
variability is greater than that of noise. Therefore, only non-
stationary environments with much less variability than the 
speech signal itself can be handled. For non-stationary 
environments with stationarity comparable to the one of the 
speech, noise models with more than one state are required. In 
our experiment the additive noise model has only one state.  

Future developments of the algorithm will hold noises with 
variability similar to speech. For simplicity we have only used 
Gaussian noise, therefore the additive noise model has only 
one component in the mixture. The extension for more 
complex noise models with more states and more mixtures is 
straightforward. Under these circumstances the distribution 
parameters of the noise becomes only dependent on the 
variable i (component of the observation vector), which 
means that the mean and noise variance are state and mixture 
independent. Therefore, the auxiliary function (1) regarding to 
the model that integrates the speech, the convolutional and 
additive distortions becomes 
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3. Background Models 
Estimation 

aximising the Q function (equation (3)) in order to the 
el parameters does not result in a closed form expression 
some of these parameters. This happens in the estimation 
the channel vector and it could be remedied using the 
ed alternate Q function [7]. The alternate Q function is a 
 auxiliary function that can be defined, as a function of 
integral over the observation spaces X and Y. This 

roach has been taken to derive general expressions for the 
meters estimates of the original speech model given noisy 

ervations in [7], where both the speech and distortions 
e modelled by a mixture of Gaussians. The problem 
ressed in this section is the reverse problem of finding the 
meters of the distortions model given the distorted 
ch. 
 Channel Estimation: Adapting the alternate Q function to 

case of additive and convolutional distortions by 
ming that all the components of the vector w are not null, 
lution for each component of w exists and is given by 
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he above equation is only valid if the channel distortion is 
e and mixture independent, with all frequency components 

null. Otherwise, the maximisation of the alternate Q 
ction does not result in a closed form expression for the 
nnel estimate. Since the channel frequency response is by 
re positive because it is the square of the modulus of the 
uency response, then we are only interested in the positive 
 of equation (4). It can be easily shown [9] that this 
ation always has a positive and a negative real root.  
 Additive Noise Model Estimation: Given the constant 

tor channel distortion and the distorted speech, the 
itive noise model parameters can be estimated by 
imising the Q function in order to these parameters, as 

al. However, maximising function (3) in order to 
(µy,σy

2) does not result in a closed-form expression for the 
e variance. In an experiment where the goal was to 
pensate for the channel distortions in the cepstral domain 
n a relatively small amount of adaptation (distorted) 
ch, Sankar [6] used the alternate Q function and the 
vations of Rose [7] to get the re-estimation formulas. 
ever, Sankar noted that if the noise variance is small, 
 the convergence of the EM algorithm is slow. In the 
t, when the noise variance is null the estimate will not 
nge at all. This was found to be the case in the Sankar’s 
eriment, where the variance in the mismatch due to the 
erent transducers and transmission channels was small. 
n in our case, where the additive noise has relatively 
er variances, but still smaller than the speech variance, 
higher SNR, the convergence of the EM algorithm 

omes very slow. However, in our case, due to the on-line 



parameters estimation, the speed of convergence is more 
critical than the Sankar’s one because it retards the 
recognition. In the Sankar’s case, the speed of convergence 
only retards the adaptation time, which is the time that the 
system needs to train on the adaptation speech. 

Sankar remedied this situation by using equation (5) to 
estimate the noise mean. Equation (5) is derived by 
maximising equation (3) in order to the noise mean, once that 
the noise variance does not have a closed form solution. 
Equation (5) is derived in [6] and is given by 
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However, this procedure only solves the slowness of the 

convergence on the mean, but leaving the convergence of the 
variance slow. This can be verified examining the equations 
derived by Sankar, and is confirmed by our experimentation.  

Equation (6) although not being an exact solution for the 
maximisation of equation (3) in order to the noise variances, 
which is only a reasonable approximation for high SNR, has 
shown very useful especially relative to the above described 
limitations of the Sankar’s procedure. Equation (6) can be 
derived similarly to the derivation of equation (5) assuming 
however, that the speech variance is much larger than the 
noise variance [9]. 
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4. Weight Update of the 
Background Models 

The update of the additive noise model (equations (5) and 
(6)) and the channel frequency response (equation (4)) can be 
really effective in supervised mode. However, most 
interesting applications require unsupervised adaptation, 
where the algorithm can adapt to new conditions 
automatically, based on the recogniser’s hypothesis. In the 
continuous speech recognition paradigm, if the hypothesis is 
incorrect, however, the benefit may come from the fact that 
only a part of the hypothesis is incorrect. Hence, convergence 
of the environmental model could be very dependent on the 
initial word error rate. However, this could not always be the 
case in continuous speech recognition applications and will 
never be the case in isolated word recognition applications. 
Therefore, a procedure for environmental update that takes 
into consideration the recogniser’s certainty, which is 
proportional to the score differences among the various 
hypothesis, can constitute a better solution than assuming 
always correct hypothesis. This MAP-like environmental 
estimation based on the N-best hypothesis when applied to the 
isolated word recognition case involves simultaneous 
calculations in more than one HMM. For the case where one 
predict, for example, that the correct hypothesis is in the three 
more probable ones, the function to be maximised is 
P(Z/λ1∨λ2∨λ3) instead of P(Z/λ) where λ is the set of 
parameters of the model that represents the recognised class 
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 can be easily shown that the solution of equation (7) in 
context of Markov models, in regards to the channel is as 
equation (4), the positive root of a second grade equation. 
ever, in this case the calculations are simultaneously 
e on the three most probable models [9]. 
 regards to the additive noise model the solution of 

ation (7) is also very similar to equations (5) and (6), 
ming also the noise variance is much smaller than the 
ch one. Otherwise a closed form solution to the noise 
ance does not exist. The solutions are also made by 
ultaneously performing calculations in the three most 
able Markov models [9]. 
 

5. Experimental Results 

he proposed algorithm was tested in an Isolated Word 
ognition system where continuous speech recognition was 
ulated by recognising continuously isolated words.  The 
l of this work is to evaluate the approach of using the 
gnising speech to obtain more accurate models of the 

kground. It is well known that the use of the cepstrum 
nique with additive and convolutional noises carries out 
e difficulties, namely, in respect to the increase of the 
lihood in successive steps when using the EM algorithm 
 Since an approximation is already used due to problems 
peed of convergence in the variance of the additive noise, 
decided to use simpler features to avoid the creation of 
ral uncontrollable error sources. The used 
meterisation is obtained by grouping 16 contiguous 
tral components (Power Spectral Density components) 
ing 16 bands for a 512 points FFT. This kind of features 

nusual nowadays since cepstrum based features are really 
e effective on speech modelling than spectral based 
ures. However, avoiding the compression caused by the 
rithm function, one avoids also some mathematical 
roximations to facilitate both the development of the 
rithm and its integration in an on-line adaptation 
gniser. Future developments of the algorithm will be 

ed on cepstral features but under the same approach, which 
sees changes in the structure of the clean speech models in 
noisy speech modelling. 
he used speech was acquired under controlled 

ironmental conditions band-pass filtered from 100 to 3200 
 sampled at a 6.67 kHz and analysed in segments of 45 ms 
tion at a frame rate of 66.67 windows/sec.  
he recognising speech was computationally contaminated 
 a constant multiplicative distortion in the frequency 
ain (convolutional noise) and a time varying additive 

ortion. The multiplicative distortion and a rough 
roximation used to evaluate the recovery of the algorithm 
 poor initial channel estimates are shown in figure 1.  
itive distortions were generated for an SNR of 10 and 5 
considering the power of the first recognising digit. The 
gnising digits were contaminated alternately in such away 
 20 contiguous digits have the same noise level, and 
tiguous groups of 20 digits were alternatively 
taminated by the two levels of generated noise. This type 
non-stationarity was chosen because it hinders the 



recogniser task by allowing abrupt variations in the noise 
level. Additionally noise level variations occurs jointly with 
the change of the recognising digit and also with the change 
of the speaker, which constitute more one difficulty for the 
recogniser given that the channel adaptation means also 
speaker adaptation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Wrong initial noise estimates were 105 times greater and 

105 times smaller than the true values. No differences in 
performance were obtained for this two initial noise estimates. 
Table 1 shows the recognition results obtained for some of the 
combinations between the additive and convolutional noises. 
 

Table 1. Recognition performance adapting on-line the 
Environmental parameters 

Case Failures in 400 

Training on noisy speech (SNR=10dB) 21 

True initial channel, (1) 153 

True init. channel, on-line noise adaptation 32 

Wrong init. estimates, full adapt. on S. M. 21 

Wrong init. estimates, full adapt. on U. M. 36 

Using weight update suggested in sect. 4 25 

True init. models and weight update 23 

1) Constant noise power for the case of an SNR of 10 dB. 
S. M. and U. M. means respectively adaptation in 
supervised and unsupervised mode. 

 
The results show that the recogniser can adapts 

automatically to varying environmental conditions even when 
the current environmental estimates are poor. In supervised 
adaptation mode and using very poor environmental estimates 
the recogniser reaches the theoretical best possible 
performance, just that obtained by training on stationary noisy 
speech (fourth entry of table 1). Adapting both the additive 
noise and the channel is superior to adapt the additive noise 
and using the true channel distortion. This occurrence can be 
related with the speaker characteristics, which are also 
roughly modelled by a multiplicative distortion in the PSD 
domain. 

Finally, the proposed weight update of the environmental 
model improves the performance of the algorithm by 3.75% 
for very poor initial estimates, however, as expected degrades 
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Figure 1. Upper: true  (line) and initial channel estimate. 
Lower:  first (line) and second channel estimates. The initial noise 
estimate was 105 times the true value for mean and variance.  

Sub-band 
performance (0.5 %) relatively to the supervised 
ptation case. 

6. Discussion 
 continuous adaptation algorithm where a distinct model 
the environment exists has been presented. This approach 
s to make more sense than its MLLR counterpart in the 

owing aspects: 
) Given the non-stationary nature of the most distortions 
d in practical applications it makes some sense that this 

-stationarity is modelled by the noisy speech model. 
ce, the structure of the clean speech model has to be 

nged (increasing the number of states) in order to 
mmodate non-stationary environmental distortions. 

) Since the algorithm can adapt automatically to new 
ironmental conditions, only the model of the environment 
ds to be updated, which is important in on-line 
lications reducing the number of parameters to estimate 
 improving the accuracy of the estimates. 
) When isolated noise samples are available, typically 
ected in the beginning of the speech segment, the 
gniser can be instantaneously adapted decreasing the 
al word error rate, which is important when using 
upervised adaptation. 
) Distinguishing between speaker mismatch and 
ironment mismatch could be useful to provide a speaker 
pted system that was independent of the acoustic 
ironment. Although only a small amount of work has been 
e to explicitly separate environmental adaptation effects 
 speaker effects it can be advantageous to have a separate 
el for the convolutional distortion. 
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