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ABSTRACT 

Although much is known about some aspects of lung development, the mechanisms that 

regulate the spatiotemporal control of this process are not well defined. The identification of a 

segmentation clock that ensures the correct spatiotemporal periodicity of somite generation, during 

chick somitogenesis, provided the first molecular evidence of how embryonic cells count time. The 

underlying mechanisms of this process involve the oscillation of ―clock-genes‖ like hairy1 and hairy2 

(members of hairy-enhancer-of-split –HES- family of transcriptional repressors), which are intimately 

related to the Notch signaling pathway. More recently, hairy2 expression unveiled a molecular clock 

operating during limb development. 

Lung development share some similarities with somitogenesis and limb development, namely: 

they all occur along the rostro-caudal axis, the signaling pathways implicated are the same, the 

formation of consecutive repetitive structures along the anterior-posterior axis is observed, and they 

occur with exact chronological precision. Considering this parallelism, the characterization of hairy1 

and hairy2 during lung branching morphogenesis of Gallus gallus became relevant, since their 

expression might indicate a possible role in the development of this tissue, although their functions 

are not yet clarified. Moreover, taking into consideration that FGF and Notch signaling pathways are 

involved in the molecular clock mechanisms, the link between hairy1 and hairy2, these pathways 

and branching morphogenesis was assessed by lung explant culture system. 

The present work characterizes, for the first time, hairy1 and hairy2 expression pattern in early 

stages of chick lung development, by in situ hybridization. hairy1 expression was evident mainly in 

the pulmonary epithelium of the respiratory tract, but also in the mesenchyme. hairy2 expression 

was evident mainly in the chick pulmonary mesenchyme surrounding the trachea and the trachea 

bifurcation, and the most distal region of the main bronchus. hairy1 and hairy2 expression was not 

affected by FGF signaling inhibition; however, treated explants showed atypical lung branching when 

compared with control ones, which is consistent with the role of FGF signaling in branching 

morphogenesis. These results indicate that these genes are not downstream targets of FGF 

signaling pathway in the chick lung. Notch inhibition did not affect hairy1 expression but, on the other 

hand, hairy2 expression was dramatically reduced when compared with control explants. Moreover, 

treated explants showed not only an increased number of secondary branches but also an 

anomalous lung structure in the distal tip of the main bronchus. Notch signaling inhibition appears to 

affect only hairy2 expression in the lung and seems to interfere with the correct process of lung 

development. 
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RESUMO 

Hoje em dia muito se sabe sobre desenvolvimento pulmonar. No entanto, os mecanismos que 

regulam o controlo espacial e temporal deste processo não estão bem definidos. A identificação de 

um relógio molecular da segmentação responsável pela correcta periodicidade espacial e temporal 

da formação dos sómitos no modelo da galinha, forneceu a primeira evidência molecular de como 

de como é feita a contagem do tempo pelas células embrionárias. Os mecanismos subjacentes a 

este processo envolvem a oscilação de genes como hairy1 e hairy2 (membros da família de 

repressores de transcrição hairy-enhancer-of-split, HES), que estão intimamente relacionados com 

a via de sinalização Notch. Mais recentemente, foi descrita a existência de um relógio molecular no 

desenvolvimento do membro. 

O desenvolvimento pulmonar partilha algumas semelhanças com a somitogénese e o 

desenvolvimento do membro, nomeadamente: ocorre ao longo de um eixo rostro-caudal, as vias de 

sinalização implicadas são as mesmas, observa-se a formação consecutiva de estruturas repetitivas 

ao longo de um eixo anterior-posterior, e ocorre com precisão cronológica. Considerando este 

paralelismo, tornou-se relevante caracterizar o padrão de expressão de hairy1 e hairy2 durante a 

ramificação pulmonar de Gallus gallus, uma vez que a sua expressão pode indicar um possível 

papel no desenvolvimento deste tecido. Além disso, tendo em conta que as vias de sinalização 

Notch e FGF estão envolvidas nos mecanismos do relógio molecular, estas vias conjuntamente com 

a relação entre hairy1 e hairy2 e a ramificação pulmonar foram avaliadas. 

O presente trabalho caracteriza, pela primeira vez, o padrão de expressão de hairy1 e hairy2 

em estadios iniciais do desenvolvimento pulmonar de galinha, por hibridização in situ. A expressão 

de hairy1 foi observada principalmente no epitélio pulmonar do tracto respiratório, mas também no 

mesênquima. hairy2 é expresso sobretudo no mesênquima pulmonar de galinha que rodeia a 

traqueia e a bifurcação da traqueia, e na região mais distal do brônquio principal. A expressão 

destes genes não foi afectada pela inibição da via FGF, indicando que estes genes não são alvos 

desta via de sinalização neste órgão. No entanto, estes explantes apresentaram uma ramificação 

pulmonar atípica, o que está de acordo com o papel da via FGF na ramificação pulmonar. A inibição 

da via Notch não afectou a expressão de hairy1 mas, a expressão de hairy2 foi dramaticamente 

reduzida. Além disso, os explantes tratados com DAPT apresentaram não só um aumento no 

número de ramificações secundárias mas também uma estrutura pulmonar anómala. A inibição da 

via Notch parece afectar a expressão de hairy2 em regiões concretas do pulmão e parece interferir 

no correcto processo de desenvolvimento pulmonar. 
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1.1. CHICKEN EMBRYOLOGY 

Avian and mammalian embryos are very similar both in its morphological complexity and in the 

general course of early embryonic development, despite the considerable differences in the adult 

stage. Avian embryos, however, are easier to obtain and observe: embryo observation and 

manipulation can be carried out simply by removing the egg‘s shell and embryos can be cultured in 

an in vitro system. The chicken is now one of the most versatile experimental systems available 

because of the advances in new technologies, including in vivo electroporation, isolation of 

embryonic stem cells, and sequencing of the chick genome (Wallis et al., 2004). 

1.1.1. EVENTS IN EMBRYONIC DEVELOPMENT 

The large yolky egg is fertilized and begins to divide while still in the hen‘s oviduct. Initially, 

division is confined to a small patch of cytoplasm that contains the nucleus and lies on top of the 

yolk, leading to the formation of the blastoderm. A layer of cells, called the hypoblast, develops over 

the yolk to form the floor of the cavity and eventually gives rise to extra-embryonic structures. The 

embryo is formed from the remaining blastoderm, known as the epiblast. During the 20-hour 

passage down the oviduct, the egg becomes surrounded by albumen, the shell membranes and the 

shell. When the egg is laid, some embryonic development has already occurred and usually stops 

until proper cell environmental conditions are established for incubation to resume. At first all the 

cells are alike but, as the embryo develops, cell differentiation occurs. 

Soon after incubation begins, gastrulation initiates in the epiblast and is marked by the 

development of a pointed thickened layer of cells visible in the caudal end of the embryo called the 

primitive streak. This structure is the forerunner of the main body axis of the embryo. Furthermore, a 

precursor of the digestive tract forms, blood islands appear and somites start to emerge at the 

anterior end of the embryo. 

On the second day of incubation, the blood islands begin linking and form a vascular system, 

while the heart is being formed elsewhere. Flexion and arching of the embryo begins bringing the 

two heart rudiments together to form one organ lying ventral to the gut; the heart and vascular 

systems join and the heart begins to beat. At this stage, ears and lens begin to form. 

At the end of the third day of incubation, the head is well developed, the heart is formed, blood 

vessels are forming and the limbs begin to develop. Blood vessels and blood islands, where blood 

cells are being formed, have developed in the extra-embryonic tissues. The vessels connect up with 
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those of the embryo to provide a circulation with a beating heart. At this stage the embryo lies down 

with its left side on the yolk, the head is strongly flexed so the embryo forms a "C" shape. The 

embryo gets its nourishment from the yolk through extra-embryonic membranes, which also provide 

protection. The amnion forms a fluid-filled amniotic sac that provides mechanical protection. A 

chorion surrounds the whole embryo and lies just beneath the shell, an allantois receives excretory 

products, and provides the site of oxygen and carbon dioxide exchange, and a yolk sac surrounds 

the yolk. 

Torsion and flexion continue through the fourth day. The digestive and respiratory system 

develop and the heart continues to enlarge even though it has not been enclosed within the body. It 

is seen beating if the egg is opened carefully. By the end of the fourth day of incubation, the embryo 

has all organs needed to sustain life after hatching, and most of the embryo's parts can be identified. 

The chick embryo cannot, however, be distinguished from that of mammals. In the remaining time 

before hatching the embryo grows in size, the internal organs develop, wings, legs and beak are 

formed, and down feathers grow on the wings and body. The chick hatches 21 days after the egg is 

laid (Wolpert et al., 2007; Gilbert, 2006). 

1.1.2. STAGES IN CHICK EMBRYO DEVELOPMENT 

The sequence of chick development has been described as an illustrated series of 

developmental stages by Eyal-Giladi and Kochav (1975) for the first seven hours of development 

and by Hamburger and Hamilton (1951) for development up to 20 days, allowing standardization 

between researchers working on chick development. Furthermore the detailed description of the 

developing anatomy of the chick embryo in ‗The Atlas of Chick Development‘ (Bellairs & Osmond, 

2003), which builds on the Hamburger and Hamilton description of chick development, has allowed 

reliable reporting of manipulated chick embryonic anatomy. 

The Hamburger-Hamilton stages (HH) are a series of 46 chronological stages in chick 

development, starting from laying of the egg and ending with a newly hatched chick. Chick embryos 

can be staged according to different morphological landmarks. Although most organ systems have a 

stereotypical appearance at each stage, there are a few which particularly lend themselves to use in 

staging chick development. 

In the very early embryo, the primitive streak is the only visible landmark, and its shape and size 

is used to stage HH1-6 embryos. Stages 5-8 may be defined by the formation of a head fold, the 

neural folds, and their fusion to form the neural tube. The expansion of anterior neural tube to form 

http://en.wikipedia.org/wiki/Chicken
http://en.wikipedia.org/wiki/Egg_(biology)
http://en.wikipedia.org/wiki/Primitive_streak
http://en.wikipedia.org/w/index.php?title=Head_fold&action=edit&redlink=1
http://en.wikipedia.org/wiki/Neural_folds
http://en.wikipedia.org/wiki/Neural_tube
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the brain may also be used to identify later stages. Somitogenesis, the progressive segmentation of 

the paraxial mesoderm, provides a convenient method for staging embryos between stage 7 and 14. 

Somites form with surprising regularity every 90 minutes. Stage 10 embryos have 10 somites, and 

as a rule of thumb, the embryo gains 3 somites during each stage. However, beyond stage 14 

(HH14, 22 somites) it becomes increasingly difficult to determine the number of somites accurately. 

This is due in part to the dispersal of the mesoderm of the anterior most somites, and, in later 

stages, to the curvature of the tail. Total somite-counts given for the following stages are typical, but 

sufficiently variable so as not to be diagnostic. For these reasons, other markers (limb-buds, visceral 

arches) and other externally visible structures are used as identifying criteria from stage 15 onward. 

Formation of the brachial arches, which will give rise to the structures of the jaw, pharynx and larynx, 

begins at HH14 and is used as a marker throughout development. The morphology of the limbs, 

starting with the appearance of wing bud at stage 16, is a useful landmark for staging chick embryos 

until hatching. Between stages 15 and 35, the appearance of specific structures within the limbs 

(such as joints and digits), and at later stages the length of the toes are used. The formation and 

development of the eyelids, primordial feathers and beak are used in a similar way to stage later 

development (Hamburger & Hamilton, 1951; Bellairs & Osmond, 2003; Gilbert, 2006). 

1.1.3. CHICK MODEL 

The chick embryo, including its extra-embryonic membranes, has long been used as a 

developmental model due to its accessibility for surgical manipulations and abundance of data 

elucidating cellular signaling and interactions during embryonic development (Coleman, 2008). It 

provides an excellent model system for studying the development of higher vertebrates wherein 

growth accompanies morphogenesis. This model has several advantages over mammalian systems 

for in vivo studies, as it is cost-effective, easily manipulated, easily accessible from early stages and 

throughout organogenesis, and can be used for transgenesis in conjunction with viral vectors or 

electroporation (Brown et al., 2003). Furthermore, a large database exists on the descriptive aspects 

of normal and abnormal development of the early avian embryo, and a detailed fate map that shows 

the locations of progenitor cells prior to gastrulation as well as at later stages, when many different 

organ rudiments are forming, is available (Darnell & Schoenwolf, 2000). 

Chicken eggs can be easily obtained from commercial sources. If eggs are acquired and used 

within a week, unincubated eggs can be stored in any cool place (16ºC), obviating the need for a 

special storage facility. At the time the egg is laid, the avian embryo consists of a flat, two-layered 

blastoderm that lies on the surface of the yolk and, therefore, is readily accessible. Subsequent 

http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Somite
http://en.wikipedia.org/wiki/Mesoderm
http://en.wikipedia.org/wiki/Branchial_arches
http://en.wikipedia.org/wiki/Jaw
http://en.wikipedia.org/wiki/Pharynx
http://en.wikipedia.org/wiki/Larynx
http://en.wikipedia.org/wiki/Limb_(anatomy)
http://en.wikipedia.org/wiki/Limb_bud
http://en.wikipedia.org/wiki/Joints
http://en.wikipedia.org/wiki/Digits
http://en.wikipedia.org/wiki/Eyelids
http://en.wikipedia.org/wiki/Feather
http://en.wikipedia.org/wiki/Beak
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development occurs with incubation at 38°C and is rapid. During this period of early development, 

chick embryos can be easily removed from the shell for culture, or they can be cultured in ovo and 

follow subsequent development for up to several days. Embryos are semitransparent, allowing the 

visualization of internal tissues possible under the microscope, and they are big enough to make 

several types of micromanipulation practical at these early stages (Darnell & Schoenwolf, 2000). 

Chick embryology studies have demonstrated that it is possible to cleanly separate epithelial and 

mesenchymal tissues, recombine the two tissues in different orientations or tissues from embryos at 

different stages of development, and then graft the recombined tissues back into the embryo (Davey 

& Tickle, 2007). 

In the last few years, the classical approaches have been enormously enriched by three major 

technical advances: the introduction of new methods for gain- and loss-of-function and promoter 

analysis, the isolation of embryonic stem cells and development of new methods for transgenesis, 

and the sequencing of the chicken genome and establishment of numerous new electronic 

resources (Stern, 2005). The recent completion of the sequencing and assembly of the chicken 

genome represents a major leap forward in avian functional genomics research (Cogburn et al., 

2007). Its compact genome and its unique evolutionary position with respect to mammals have 

greatly facilitated the identification of putative regulatory gene regions, which show high sequence 

conservation to their mammalian counterparts (Groef et al., 2008). 

The special characteristic of chick embryos is that it is possible to bring together well-established 

embryological manipulations — the classical ‗cut-and-paste‘ experiments, fate mapping and the 

application of biologically active molecules (by inserting small beads, which act as controlled release 

carriers, pre-loaded with growth factors, inhibitors, etc) — with more recently developed genetic 

manipulations, such as mis- and overexpression of genes and increasingly, gene inactivation. 

Importantly, such genetic manipulation can be precisely targeted in time and in space (Brown et al., 

2003). 

1.2. SEGMENTATION CLOCK 

Somitogenesis, the periodic formation of the vertebrae precursors, is a striking example of a 

dynamic embryonic process that relies on precise spatial and temporal control of gene expression 

(Aulehla & Pourquié, 2008). This process comprises the generation and translation of a temporal 

periodicity into the metameric pattern of somites (Leimeister et al., 2000). Somites constitute the 

basis of the segmental pattern of the body and give rise to the axial skeleton, the dermis of the back, 



Introduction 

7 

and all striated muscles of the adult body. Individual pairs of somites, located symmetrically on either 

side of the neural tube, emerge from the rostral end of the presomitic mesoderm (PSM), while new 

mesenchymal cells enter the caudal paraxial mesoderm as a consequence of gastrulation. In the 

chick embryo, a somite pair is laid down every 90 min in a rostro-caudal progression, and a total of 

50 somite pairs are formed during embryogenesis (Palmeirim et al., 1997). 

In 1997, Palmeirim and collaborators disclosed a molecular clock underlying vertebrate embryo 

somitogenesis when analyzing the expression pattern of the hairy1 gene, an avian homolog of the 

Drosophila hairy segmentation gene, in chick embryos. They demonstrated that hairy1 mRNA is 

expressed in a highly dynamic manner in the chick PSM appearing as a caudo-rostral wave, which is 

reiterated during the formation of every somite. The domain of hairy1 expression has the 

appearance of a wavefront beginning in the broad, caudal PSM, progressing anteriorly and 

intensifying into the narrow anterior PSM. Finally, in each cycle, expression decays sharply 

throughout the PSM except for a thin stripe corresponding to the posterior part of the forming somite. 

This wavefront is not due to cell movements within the PSM, nor to the periodic production of an 

anterior-to-posterior diffusing signal, but is an autonomous property of the cells in this tissue: cells 

within the segmental plate cycle autonomously between hairy1 ―on‖ or ―off‖ expression states until 

they segment and then sustain hairy1 expression in the posterior somite half (Palmeirim et al., 1997; 

Leimeister et al., 2000). 

Analysis of the hairy1 sequence suggests that it belongs to the hairy-enhancer-of-split (Hairy E 

(Spl)/ HES) family of transcriptional repressor proteins. All HES members share conserved functional 

motifs: the basic domain (b) required for DNA-binding, a helix-loop-helix dimerization domain (HLH), 

an orange domain (OR) which confers specificity among family members and the C-terminal WRPW 

tetrapeptide required for co-factor binding. The evidence to date suggests that HES proteins can be 

involved in an array of repression mechanisms via the recruitment of different protein partners, 

forming complexes with different specificities, and regulate a wide variety of developmental 

processes such as negative control of differentiation, anterior-posterior segmentation in both 

invertebrates and vertebrates (probably by distinct mechanisms), and sex determination in flies. In 

many, but not all of these processes, HES proteins function as effectors of the Notch signaling 

pathway (Kageyama et al., 2007). 

Latter, a second chicken hairy-related gene, hairy2, has been identified and was shown to cycle 

in synchrony with hairy1 across the PSM (Leimeister et al., 2000). Like hairy1, hairy2 is expressed 

as a wavefront, which sweeps across the PSM during the formation of each somite. Moreover, the 
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propagation of the hairy2 wavefront is similar to that of hairy1. It does not rely on cell movement or 

on a propagatory signal traveling through the PSM, suggesting that this dynamic regulation of hairy2 

expression constitutes an intrinsic property of the PSM (Jouve et al., 2000). When Jouve and 

collaborators compared the expression profiles of hairy1 and hairy2, they realized that both genes 

exhibit similar anterior expression borders in the PSM but become expressed in complementary 

compartments in the rostral-most PSM. Furthermore, hairy1 and hairy2 expressions cycle together in 

the PSM, they share the same expression domain, except that hairy2 extends more caudally in the 

PSM. At the end of one cycle, the expression domains diverge in the rostral PSM, where hairy2 is 

located in the anterior part of the prospective somite, whereas hairy1 is found in the posterior part 

(Jouve et al., 2000). 

The discovery of oscillating expression of hairy1 in the PSM of chick embryos provided the first 

molecular evidence for the existence of a segmentation clock that ensures the correct 

spatiotemporal periodicity of somite generation. Meanwhile, several other genes have also been 

reported to have a dynamic expression at the level of the PSM in a caudal to rostral direction, such 

as hairy2 in the chick, lunatic fringe (Lfng), in the chick and mouse, her1 and her7 in zebrafish, Hes1 

and Hes7 in mouse, Hey2 both in chick and mouse, esr9 and esr10 in Xenopus and her7 in medaka 

(Andrade et al., 2007). Furthermore, Aulehla and colleagues (2003) have shown that a repressor of 

the Wnt signaling pathway, axin2, is also cycling in the mouse PSM (Aulehla et al., 2003). 

All studies concerning embryonic cyclic gene expression during development have focused 

exclusively on the somitogenesis process. However, time control is present during all embryonic 

processes, suggesting that the molecular clock may not be an exclusive property of the PSM cells 

but could also be operating in other developing tissues (Andrade et al., 2005). Hirata and coworkers 

(2002) showed that serum treatment of a variety cultured cell lines induces cyclic expression of both 

mRNA and protein of Hes1 (mouse hairy2 homologue), with 2-hour periodicity. Recently, hairy2 

expression was studied during chick limb bud development and it was observed that this gene is 

expressed from limb bud initiation until digit formation. This study provided for the first time evidence 

of a molecular clock working during chick forelimb autopod outgrowth and patterning. Pascoal et al. 

(2007) showed that the somitogenesis clock gene hairy2 is expressed cyclically in the distal 

mesenchyme of chick embryo forelimbs, with a 6-hr periodicity and that this periodicity is correlated 

with the formation time of an autopod limb element. The results of this work support the hypothesis 

that the molecular clock is not an exclusive property of PSM tissue rather a more general way to 

count time during vertebrate development, providing positional information to different types of cells 

(Pascoal et al., 2007). 
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Although the nature of the clock is still unknown, its existence is revealed by genes expressed 

in a cyclic fashion within the PSM and the majority of them is intimately related to the Notch signaling 

pathway (Aulehla et al., 2003; Andrade et al., 2005). These cyclic genes, as well as other 

components of the Notch signaling pathway, were shown to be required for the proper somite 

segmentation in mice and zebrafish by mutant analysis or morpholino oligo (MO)-mediated gene-

knockdown experiments (Kawamura et al., 2005). Somitogenesis is defective in animals in which this 

pathway is disrupted by either activating or inactivating mutations. Notch is linked to the 

segmentation clock although the exact nature of this relationship is not yet understood. Several 

observations suggest that Notch signaling is a central component of the oscillatory mechanism: (1) 

the cycling expression of mouse Hes1 depends on the Notch ligand Delta1 (Dll1); (2) the activity of 

the Notch-dependent factors Her1, Her7, Hes1 and Hes7 is required for their own cyclic expression; 

(3) the oscillatory expression pattern of lunatic fringe, required for somite segmentation, is under the 

direct transcriptional control of Notch signaling and is lost in embryos lacking Dll1 or Hes7 (Pasini et 

al., 2003). Alternatively, it has been proposed that the main function of Notch signaling is to maintain 

the synchronization of cyclic gene expression in the PSM (Jiang et al., 2000, Aulehla & Pourquié, 

2008). 

The FGF signaling pathway has also been implicated in the somitogenesis clock mechanism. 

Kawamura et al. (2005) focused on a zebrafish hairy/Esp1 gene, her13.2 (Hes6-related 

hairy/Enhancer of split-related gene), which is expressed in the posterior PSM. They provided 

evidence that her13.2 links FGF signaling to the Notch-regulated oscillation machinery in zebrafish. 

Expression of her13.2 is induced by FGF-soaked beads and decreased by an FGF signaling 

inhibitor. her13.2 is required for periodic repression of the Notch-regulated genes her1 and her7, and 

for proper somite segmentation. Furthermore, Her13.2 augments autorepression of her1 in 

association with Her1 protein. Therefore, FGF signaling appears to maintain the oscillation 

machinery by supplying a binding partner, Her13.2, for Her1. It is likely that FGF signaling is 

transmitted through several different molecular pathways in the posterior PSM, and that Her13.2 

mediates specifically one of the roles of FGF signaling, the regulation of the cyclic genes. 
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1.2.1. NOTCH SIGNALING PATHWAY 

Animal development involves many types of cell communication processes and the molecular 

bases of some of these processes have been unraveled in recent years. Curiously the same 

molecular pathways, such as Notch signaling pathway, are used to convey messages between cells 

in vertebrate and invertebrate animals (Bishop et al., 1999). Notch signaling defines a conserved, 

pleiotropic cell-interaction pathway that controls cell fate and consequently differentiation, 

proliferation and apoptotic events throughout embryonic development and homeostasis of adult self-

renewing organs (Lake et al., 2009; Borggrefe & Oswald, 2009). The central element of this pathway 

is the transmembrane Notch receptor, which triggers signaling through interaction with membrane-

bound ligands expressed on adjacent cells (Lake et al., 2009). 

The Notch gene was first identified in Drosophila melanogaster and encodes a large 

transmembrane protein that acts as a signaling receptor that is required throughout development to 

regulate the spatial patterning, timing and outcomes of many different cell fate decisions in both 

vertebrate and invertebrate species (Baron, 2003; Brennan & Gardner, 2002). In mammals, there 

are four Notch receptors (Notch1–4) and five transmembrane ligands from the Delta (Delta-like1, 

Dll1, Delta-like3, Dll3 and Delta-like4, Dll4) and Jagged families (Jag1, 2) (Benedito & Duarte, 2005; 

Borggrefe & Oswald, 2009). Avian have two Delta-like genes, Dll1 and Dll4, and two Jagged genes, 

called Serrate1 and Serrate2 in chicken. Both Notch and its ligands are integral membrane proteins 

and generally transmit signals only between cells in direct contact. Moreover, Notch activation has a 

direct and immediate effect on gene expression, mediated by the detached intracellular domain of 

Notch itself, acting as a transcriptional regulator in the nucleus (Borggrefe & Oswald, 2009). Thus 

Notch signaling can readily throw genetic switches that determine choices of cell fate. Furthermore, 

activation of Notch in a given cell frequently regulates the production of Notch ligands by that cell. 

Because the level of Notch activation in the cell depends on the level of ligand expression in its 

neighbors, and vice-versa, this gives rise to feedback loops that correlate the fates of adjacent cells 

and control spatial pattern of differentiation (Lewis, 1998). 

1.2.1.1. Notch Structure 

A prototypical Notch gene encodes a single transmembrane receptor composed in its 

extracellular region of a conserved array of up to 36 EGF-like repeats, mediating direct contact 

between ligand and receptor involved in interaction; three juxtamembrane repeats, known as Lin-12-

Notch (LN) repeats, which modulate interactions between the extracellular and the membrane-
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tethered intracellular domains. The intracellular region of Notch includes seven ankyrin repeats 

flanked by nuclear localization signals, a proline, glutamine, serine, threonine-rich (PEST) domain 

and a transactivation domain (figure 1.1) (Fiúza & Arias, 2007). 

1.2.1.2. The Notch Cascade 

The Notch signaling cascade appears remarkably simple with apparently no second messengers 

involved, although its role and the activation of downstream genes in a given tissue remain often 

complex and unpredictable (Borggrefe & Oswald, 2009). Notch signaling is activated upon cell-to-cell 

contact as a result of interactions between Notch receptors and their ligands (Delta or Jagged). 

Multiple studies focusing on both Drosophila and mammalian Notch receptors have led to a model 

for Notch signaling that involves a series of cleavages that eventually leads to the release of the 

intracellular domain, which carries nuclear localization signals, from the cell surface followed by its 

translocation to the nucleus where it participates directly in transcriptional events (Lake et al., 2009). 

A most important feature of Notch is that it acts, at the same time as a transmembrane receptor 

and as a transcription factor. At the cell surface, extracellular domain of Notch can interact with the 

extracellular region of Delta and Jagged homologues expressed in a neighboring cell (Arias et al., 

2002). This interaction results in the exposure of an extracellular metalloprotease site (S2 site) which 

thus becomes susceptible to cleavage by transmembrane proteases of the ADAM family (Mumm et 

al. 2000). Subsequently, two further intramembranous cleavages occur, named S3/S4, by -

secretase activity of a membrane protein complex containing members of the Presenilin family and 

Figure 1.1. Structure of Notch and its ligands. Notch 

ligands, Delta and Jagged/Serrate, are composed of a 

cysteine-rich region, called DSL, responsible for the 

interaction with the Notch receptor and several EGF 

repeats. Jagged/Serrate also contains an extracellular 

cystein-rich region. Notch is composed by up to 36 EGF-

like repeats. Notch also contains a cysteine-rich region 

known as Lin-12 repeats in close proximity with 

heterodimerization domains that bind non-covalently 

extracellular Notch with membrane-tethered intracellular 

Notch. In its intracellular part, Notch has a region called 

RAM followed by repeated structural motifs named Ankyrin 

repeats (mediate the interaction between Notch and 

CBF1/Su(H)), a transactivation domain (TAD) and a PEST 

domain. The PEST domain is involved in the degradation of 

Notch. PM, plasma membrane. (Adapted from Fiúza & 

Arias, 2007) 
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Nicastrin as catalytic components (figure 1.2). -secretase activity can be inhibited with small cell-

permeant molecules such as DAPT, leading to a blockade of Notch signaling (Daudet et al., 2007). 

The intracellular domain of Notch (NICD) is thus finally released and translocates into the nucleus 

where it interacts with members of the RBP-J (also called CSL, CBF1, Su(H), Lag-1) family of 

transcription factors, regulating gene expression by acting as a transcriptional co-activator. NICD 

cannot bind directly to DNA but heterodimerizes with the DNA binding protein RBP-J and activates 

transcription of genes containing RBP-J binding sites. NICD binding to RBP-J is crucial for the switch 

from repressed to activated state. NICD first displaces corepressors from RBP-J, resulting in 

derepression of promoters containing RBP-J binding sites and subsequently recruits a coactivator 

complex to activate transcription of Notch target genes (Borggrefe & Oswald, 2009). 

Although signals mediated through Notch receptors have diverse outcomes, only a fairly limited 

set of Notch target genes have been identified in various cellular and developmental contexts. Hes is 

a highly conserved protein family that is regulated by Notch in multiple cell types. In mammals, the 

best-described Notch target genes are indeed the transcription factors Hes1, Hes5 and Hey1. Hes 

and Hey proteins are bHLH transcription factors that function as transcriptional repressors. Genetic 

studies in mice have shown that inactivation of many components of the Notch pathway results in 

dramatic segmentation defects and a severe impairment of the periodic expression of the cyclic 

genes (Dubrulle & Pourquié, 2002). 

Figure 1.2. Notch signaling 

pathway. Notch binding to ligand 

elicits several steps of cleavage. 

The first one at the S2 site is 

mediated by the proteases 

ADAM10 or by TACE. This 

catalyzes the processing of 

Notch in the intramembranous 

S2 and S3 sites by the -

secretase complex. Thus, Notch 

intracellular domain (NICD) is 

released and translocates into 

the nucleus where it dislodges 

repressors (co-R) associated 

with the DNA-binding CSL 

transcription factor. (Adapted 

from Fiúza & Arias, 2007) 
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1.2.2. FGF SIGNALING PATHWAY 

Fibroblast growth factors (FGF) and their specific cell surface receptors (FGFR) make up a 

large and complex family of signaling molecules that have been shown to play an important role in a 

variety of processes of embryonic development and tissue homeostasis (Dailey et al., 2005). The 

FGF family of ligands consists of 23 members in humans and mice, and 13 in chicken. These 

molecules signal by activating a smaller family of cell surface receptors encoded in four distinct 

genes (FGFR1-4) that, through alternative splicing in the extracellular immunoglobulin (Ig)-like 

domain adjacent to the membrane, can produce numerous FGFR isoforms. As the variable region 

involves the ligand-binding site, the FGFR isoforms differ in their binding affinity toward the FGF 

ligands. Experimental studies analyzing receptor specificity of the entire FGF family demonstrate a 

significant redundancy in FGF-FGFR interactions, with all the major FGFR variants being activated 

by at least five ligands. For instance, the prevalent isoform of FGFR3 (FGFR3c) appears to be 

strongly activated by FGF1, 2, 4, 8, 9, and 17-20 in vitro. However, its redundancy appears, in 

contrast, limited in vivo (Krejci et al., 2009). 

FGFRs are single-pass transmembrane proteins with tyrosine kinase activity. Ligand binding to 

the extracellular domain of the receptor initiates a signal transduction cascade (Ras-MAP kinase, PI3 

kinase/Akt), that ultimately results in modification of gene expression (Dailey et al., 2005; Thisse & 

Thisse, 2005). The FGF-FGFR interaction requires the intervention of heparin or HSPG that bind 

both the ligand and the receptor at specific domains and stabilize the formation of a receptor dimmer 

bound to the FGF molecules (figure 1.3). FGF signaling can be blocked by chemical inhibitors such 

as SU5402, an FGF receptor antagonist, that inhibit the tyrosine kinase activity of all four FGFRs by 

interacting with the catalytic domain (Firnberg & Neubuser et al., 2002). 

Figure 1.3. FGF receptors and FGF sinal 

transduction. FGFRs are modular proteins 

comprising 3 immunoglobulin domains (IgI, 

IgII and IgIII). FGF ligands linked to heparin 

sulfate proteoglycan (HSPG) bind to IgII and 

IgIII of FGFR. This results in the dimerization 

and the subsequent transactivation by 

phosphorylation of specific tyrosine residues. 

The main two transduction pathways involve 

the phospholipase C-g (PLCg) and the 

Ras/MAP kinase. (Adapted from Thisse & 

Thisse, 2005) 
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1.3. LUNG DEVELOPMENT 

Lung development is a highly regulated and orchestrated process directed by mesenchymal-

epithelial interactions that control and coordinate the temporal and spatial expression of multiple 

regulatory factors required for proper lung formation. It is now known that the molecular mechanisms 

involved in patterning, development and differentiation of the lung are orchestrated by finely 

integrated and mutually regulated networks of transcriptional factors, growth factors, matrix 

components and physical forces (Shi et al., 2007). 

1.3.1. BRANCHING MORPHOGENESIS 

Early during mammalian embryonic life, the foregut endoderm is specified into domains that will 

give rise to organs, such as the thyroid, lung, liver, and pancreas. Once respiratory cell fate has 

been established, the tracheal and lung primordia form, and the lung subsequently develops into a 

tree-like system of epithelial tubules and vascular structures that ultimately becomes the airways and 

the alveoli (Cardoso & Whitsett, 2008; Muratore et al., 2009). The foregut endoderm differentiates 

into various epithelial cell types, which line the inner surface of the developing lung and trachea. The 

lung mesenchyme originates from the lateral plate mesoderm and gives rise to multiple components 

of the lung, including its connective tissue, endothelial cell precursors, the smooth muscle that 

surrounds airways and blood vessels, the cartilage of the trachea, the lymphatics, and the 

mesothelial cells that cover the outer surface of the lung, the pleura (Cardoso & Lu, 2006). 

Normal growth, morphogenetic patterning and cellular differentiation in the developing lung 

depend on interactive signaling between the endodermal epithelium and mesenchyme. For instance, 

distal mesenchyme induces ectopic budding and branching when grafted adjacent to the tracheal 

endoderm denuded of mesenchyme (Alescio & Cassini, 1962); conversely, tracheal mesenchyme 

inhibits branching when grafted next to distal epithelium (Wessels, 1970), showing that crosstalk 

between the epithelium and the mesenchyme drive the branching process. These intimate 

interactions are mandatory for formation and completion of lung development and ultimately reflect 

activation of local gene networks along the proximal-distal axis of the respiratory tract, which 

coordinates the temporal- spatial appearance of buds and clefts, resulting in the bronchial tree 

(Lebeche et al., 1999). The presence of extracellular matrix molecules, including collagen, 

fibronectin, laminin, glycosaminoglycans, and proteoglycans, as well as cell membrane-bound 

integrins, play an important role in directing lung development by influencing the rates of cellular 

proliferation and differentiation (Shannon & Deterding, 1997). Mechanical distention exerted on the 
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lung as well as on specific cell types can also significantly affect gene expression and, ultimately, 

lung growth and development (Pinkerton & Joad, 2000). A myriad of diffusible factors such as FGF, 

TGF-, BMP-4, retinoic acid, SHH, HGF hepatocyte growth factor and EGF, with their cognate 

receptors and intracellular signaling molecules modulate cellular proliferation/differentiation and 

branching (Muraoka et al., 2000). Expression of each molecule occurs in a temporally, spatially, and 

cell type-specific manner. Also, the role of each molecule should be deemed not in terms of its 

isolated function in specific cells but, rather, in the context of epithelial-mesenchymal interactions, a 

process that is central to lung morphogenesis (Demayo et al., 2002). 

1.3.1.1. Notch signaling 

Notch has been implicated in several aspects of lung biology, including a role in epithelial 

growth and differentiation. During development, Notch receptors and ligands have been identified in 

both epithelial and mesenchymal compartments of the lung, and there is in vitro evidence that Notch 

may act on epithelial differentiation and branching morphogenesis (Tsao et al., 2008). 

Aberrant Notch function is associated with several developmental disorders, neurodegenerative 

disease and cancers (Baron, 2003). Notch pathway activity in normal fetal lung development has 

been assessed primarily by Hes1 mRNA and immunohistochemistry. Hes1 mRNA has been 

detected in early pseudoglandular stage mouse lung starting at E12. In the mouse, Hes1 mRNA 

expression progressively rises until birth and then remains detectable in adult lung as well. Hes1 

immunoreactivity is readily detectable in fetal mouse lung in non-endocrine airway epithelial cells 

that express Notch1 and Notch3. Very limited data are available for other Notch effectors in lung 

development. Hes5 has not been detected in whole fetal lung RT-PCR (Ito et al., 2000). HeyL is 

apparently expressed in lung vasculature (Leimeister et al., 2000a). Hey1 mRNA is prominently 

expressed in adult lung, Hey2 at lower levels (Steidl et al., 2000). Early lethality of mice with 

homozygous deletions for Notch1, Notch2, Dll1, and Jagged1 limits the assessment of these genetic 

alterations in lung development (Collins et al., 2004). 

Quantitative expression studies from the developing mouse lung demonstrate a progressive 

increase in Notch1–Notch4, Dll1, and Jagged1 mRNAs from E11.5 into adulthood. In situ 

hybridization studies and immunohistochemistry suggest that Notch1 is expressed in the distal lung 

endoderm at least as early as E11.5 and persists through fetal development (Ito et al., 2000). Notch1 

expression in pseudoglandular lung clearly overlaps with areas of the epithelium undergoing active 

growth and branching morphogenesis. Notch1 is not expressed at high levels in fetal lung 
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mesenchyme that surrounds the primitive epithelium (Post et al., 2000). In contrast to Notch1, 

Notch2 and Notch3 are both expressed in lung mesenchyme. Notch2 appears to be lacking in 

epithelial cells by in situ hybridization, whereas Notch3 mRNA and immunoreactivity can be detected 

in epithelial cells as well as mesenchyme (Post et al., 2000; Ito et al., 2000). 

1.3.1.2. FGF signaling 

In the embryonic lung, FGF signaling is an essential component of the regulatory networks 

between epithelium and mesenchyme and is fundamental at several stages of mammalian lung 

development (Del Moral et al., 2006). A restricted number of FGF family ligands and all FGFRs are 

present in the embryonic lung, and their expression is regulated in time and space. Perturbation of 

the FGF signaling pathway during lung development results in dramatic abnormalities of epithelial 

branching and differentiation (Warburton et al., 1999). 

FGF10 and its receptor, Fgfr2b, are required for epithelial branching. Targeted deletion of either 

genes prevents branching, causing the trachea to terminate as a blind sac (Colvin et al., 2001). At 

early stages, FGF10 is expressed at high levels in the distal lung mesenchyme in a pattern that 

appears to correlate with sites of prospective bud formation, acting as a chemo-attractant of lung 

epithelium, being able to direct bud outgrowths to proper positions in lung organ cultures (Miura et 

al., 2009; Lebeche et al., 1999). FGF7 can be detected in the early embryonic lung and, together 

with other factors, plays a role in epithelial branching in vitro, acting as a proliferative factor for the 

lung epithelium (Lebeche et al., 1999). FGF9 is expressed in the outermost layer of the lung, the 

mesothelium, and in the epithelium of the developing bronchi (Colvin et al., 1999; Yin et al., 2008). It 

has been identified as a key factor that signals to mesenchyme to regulate proliferation, 

differentiation and the expression of other factors that in turn regulate epithelial development. 

Classical inactivation of FGF9 leads to a reduction in proliferation of the lung mesenchyme resulting 

in severely reduced branching of the lung epithelium (Colvin et al., 2001). 

1.3.2. AVIAN LUNG DEVELOPMENT 

Among the air-breathing vertebrates, the avian respiratory apparatus, the lung-air sac system, 

is the most structurally complex and functionally efficient. After intricate morphogenesis, elaborate 

pulmonary vascular and airway (bronchial) architectures are formed (Maina et al., 2006). 

Although the anatomy of the avian lung differs from that of the mammalian lung, both develop 

similarly and have anatomical functional equivalents. The avian lung forms by a series of closed 
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circular buds arising from the main airway branches, which differs from the dichotomous branching 

morphogenesis in mammalian lung development. In contrast to the mammalian lung, which 

terminates in alveoli, the avian lung forms a looping anastomotic network of air-vascular surfaces 

(parabronchi) that end in terminal air buds and air capillaries (Loscertales et al., 2008). 

In the embryo of the domestic fowl, Gallus gallus variant domesticus, the development of the 

respiratory tract proceeds through three stages: the formation of the respiratory rudiments (between 

2 and 4 days of incubation, fig. 1.4.A), the bronchial branching (5 days of incubation, fig. 1.4.B) and 

the formation of the air sacs (6 days of incubation, fig. 1.4.C and D) (Sakiyama et al., 2000). 

The lung buds become evident on day 3.5 of embryogenesis, i.e. about stage 23 of 

development (Hamburger and Hamilton, 1951). They appear as paired protuberances on the 

lateroventral aspect of the foregut (primitive pharynx) of the developing embryo. On day 5, after 

fusing on the ventral midline, the single bud divides into left and right primordial lungs that 

progressively elongate caudally while separating and shifting towards the dorsolateral aspects of the 

coelomic cavity. 

On day 8, the lungs reach their definitive topographical locations in the coelomic cavity. As 

they develop and increase in size, they grossly changed from a saccular – to a wedge-shaped form. 

Figure 1.4. Chick lung development. (A) Drawing of the lung buds and surrounding organs after 3.5 days 

of incubation. Lateral view of the developing lung at day 5 (B), day 6 (C) and day 8 (D) of incubation. 

(Adapted from Sakiyama et al., 2000). 
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After rotating through an angle of about 180º along the longitudinal axis, the lungs progressively 

insert and become firmly affixed to the ribs (Maina et al., 2003; Maina et al., 2006). Starting as a 

solid cord of epithelial cells that runs in a craniocaudal direction of the developing lung, 

progressively, the intrapulmonary primary bronchus begins to form. In a craniocaudal sequence, 

secondary bronchi sprout from the lumen of the intrapulmonary primary bronchus, radiating and 

extending outwards. On reaching the periphery of the lung, parabronchi (tertiary bronchi) bud from 

the secondary bronchi and project into the surrounding mesenchymal cell mass. The parabronchi 

proliferate, anastomose and connect the secondary bronchi. The parabronchial lung is capable of 

gas exchange by the end of the incubation period. On hatching no new structures appear, rather 

refinement of the existing structures occurs (Maina et al., 2003a). 

1.3.2.1. Molecular aspects of avian lung development 

Although the morphogenesis of the mammalian lung is now well understood, there is a glaring 

dearth of data on the avian lung. To elucidate the molecular mechanism for regulating the region-

specific morphogenesis of the chicken respiratory tract, Sakiyama and colleagues analyzed the 

spatiotemporal expression patterns of the Hoxb genes, Bmp-2, Bmp-4, Wnt-5a, and Wnt-11 in the 

developing respiratory tract and found region-specific expression of these genes in the 

mesenchymal layer. By tissue recombination experiments, they found that the dorsal and the ventral 

pulmonary mesenchyme have different inductive capacities toward the tracheal epithelium. These 

observations suggested the possibility that Hoxb genes are involved in the system specifying 

regional differences in morphogenesis and cytodifferentiation of respiratory tract. In addition, they 

argue that it is possible that BMPs and WNTs mediate region-specific epithelial-mesenchymal 

interaction in this system (Sakiyama et al., 2000). 

Muraoka et al. (2000) suggested that nuclear transcription factor kB (NF-kB) may be required to 

mediate epithelial-mesenchymal interactions in the embryonic chick lung since NF-kB activity in the 

lung mesenchyme inhibits branching of underlying epithelium (Muraoka et al., 2000). More recently 

Sakiyama et al. (2003) investigated the role of the Tbx4–Fgf10 system on the separation of the lung 

bud from the oesophagus in the chicken embryo showing that Tbx4 governs initial endodermal bud 

formation, respiratory endoderm formation, and septation of the respiratory tract and the esophagus. 

Moreover, the presence of a feedback loop between Tbx4 and Fgf10 in the regulation of lung 

development was demonstrated. In the mammalian developing lung, fgf10 expression in the distal 

mesenchyme at sites where prospective epithelial buds will appear, and its ability to induce epithelial 

expansion and budding in organ cultures have led to the hypothesis that FGF10 governs the 
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directional outgrowth of lung buds during branching morphogenesis (Bellusci et al., 1997). 

In the chick lung, the branched structure is formed dorsally while the cyst structure (air sac) is 

formed ventrally during development. Sakiyama et al. (2000) carried out tissue recombination 

experiments, which showed that the cyst-branch difference in this system is caused by region-

specific mesenchymal properties. The results of Miura and coworkers (2009) suggested that the 

regional cystic-branched difference within the developing chick lung results from a difference in the 

rate of diffusion of morphogen between the ventral and dorsal regions due to differential levels of 

HSPG and a different mesenchymal structure (Miura et al., 2009). 
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1.4. AIMS 

It is well known that hairy1 and hairy2 are involved in segmentation events that require tight 

spatial and temporal regulation, such as somitogenesis and limb development. These processes 

share some similarities with lung development, namely: they all occur along the rostro-caudal axis, 

the signaling pathways implicated are the same (FGF, Wnt, Notch), the formation of consecutive 

repetitive structures along the anterior-posterior axis is observed (somites, limb elements and 

secondary bronchi in somitogenesis, limb and lung development, respectively), and they occur with 

exact chronological precision. Considering this parallelism, the characterization of hairy1 and hairy2 

during lung branching morphogenesis became relevant, since their expression might indicate a 

possible role in the development of this tissue, although their functions are not yet clarified. 

The purpose of this work was to study the role of hairy1 and hairy2 during embryonic lung 

development of Gallus gallus. 

Thus, the specific aims of this work were: 

1. To characterize the expression pattern of hairy1 and hairy2 throughout different 

stages of lung development by in situ hybridization. 

2. To evaluate the effect of Notch and FGF signaling pathway inhibition with DAPT and 

SU5402, respectively, using in vitro explant culture system: 

 In hairy1 and hairy2 expression pattern, assessed by in situ hybridization; 

 In lung branching morphology. 
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2.1. EMBRYO DISSECTION 

Fertilized chick (Gallus gallus) eggs, obtained from commercial sources, were incubated for 4-6 

days in a humidified atmosphere at 37ºC. After incubation period, eggs shells were cracked open, 

and embryos removed and immersed in phosphate-buffered saline (PBS). The embryos were then 

transferred to dissection dishes immersed in PBS and staged according to the developmental table 

of Hamburger and Hamilton (1951).The attached yolk sac was cut and the embryos killed by 

decapitation. Embryonic chick lungs were carefully dissected under a dissection microscope 

(Olympus SZX16, Japan) and were then classified in b1, b2, b3, and so on, taking into account the 

number of secondary buds formed, 1, 2 or 3 respectively. Lungs were then processed either for ISH 

or for in vitro culture. 

o PBS: 137mM NaCl, 10mM Phosphate, 2.7mM KCl, pH 7.4. 

2.2. IN SITU HYBRIDIZATION 

In order to understand how gene expression is guiding development, it is essential to know 

exactly where and when particular genes are active. Genes are switched on and off during 

development and gene expression patterns are continuously changing (Wolpert et al., 2007). One of 

the techniques that show where a gene is being expressed both within whole intact embryos and in 

sections is ISH. 

In situ hybridization, as the name suggests, is a method of localizing and detecting specific RNA 

or DNA sequences in morphologically preserved tissues or cells preparations by hybridizing the 

complementary strand of a nucleotide probe to the sequence of interest. This technique involves: 

generation of a nucleic acid probe, labeled to enable subsequent detection; preparation of fixated 

tissues; pre-treatment of tissues to increase accessibility of target nucleic acid; hybridization of 

labeled probe to tissues; washing under conditions that remove non-hybridized probe; detection of 

the labeled probe, revealing the location of the target cellular nucleic acid (Wilkinson, 1999). 

2.2.1. PROBES 

2.2.1.1. DNA Extraction 

DNA extraction was performed using the GenEluteTM Plasmid Miniprep kit (Sigma, USA). This kit 

offers a simple, rapid, and cost-effective method for isolating plasmid DNA from recombinant 

Escherichia coli cultures. Glycerol stocks of plasmids containing the coding sequence of Gallus 
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gallus hairy1 and hairy2 were kindly provided by Prof. Isabel Palmeirim, Life and Health Sciences 

Research Institute, School of Health Sciences, University of Minho. An overnight culture of 

recombinant E. coli containing hairy1 and hairy2 plasmid was harvested by centrifugation and 

subjected to a modified alkaline-SDS lysis procedure followed by adsorption of the DNA onto silica in 

the presence of high salts. Contaminants were then removed by a spin-wash step. Finally, the bound 

DNA was eluted in water and stored at -20ºC. 

DNA extraction was performed according to the protocol described below. 

1. An overnight culture grown in 5 ml of LB medium was harvested by centrifugation. Two ml of 

culture volume were transferred to a microcentrifuge tube, cells were centrifuged at 6000 

rpm for 1 minute and the supernatant was discarded. 

o LB medium: 1% w/v bacto-tryptone; 0.5% w/v bacto-yeast extract; 1% w/v NaCl 

2. The bacterial pellet was resuspended in 200 L of Resuspension Solution, and then 

vigorously vortexed. 

3. The resuspended cells were lysed by adding 200 L of Lysis Solution and the contents were 

immediately mixed by gentle inversion. 

4. Following cell lysis, the cell debris was precipitated with 350 L of Neutralization Solution. 

5. After gently inversion, the cell debris was centrifuged at 13000 rpm for 10 minutes. 

6. Meanwhile, a GenElute Miniprep Binding Column was inserted into a microcentrifuge tube 

and 750 L of Column Preparation Solution was added. After centrifugation at 13000rpm for 

1 minute flow-trough was discarded. 

7. The cleared lysate from step 6 was transferred to the prepared column and centrifuged for 1 

minute at 13000 rpm. 

8. Flow-through was discarded and 750 L of the Wash Solution was added to the column to 

remove residual salt and other contaminants. 

9. Column was centrifuged twice, 13000 rpm for 1 minute, to remove all the ethanol. 

10. Finally, the column was transferred to a fresh collection tube and the purified plasmid DNA 

was eluted by the addition of 50 L water and stored at –20ºC. 
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2.2.1.2. Plasmid Linearization 

hairy1 plasmid, containing an 850 bp fragment of the hairy1 coding sequence cloned in 

pBluescript KS-vector, was linearized using HindIII (Fermentas, Canada). hairy2 plasmid containing 

a 350 bp of the hairy2 cDNA cloned in pGEMT was linearized with NcoI (Fermentas) according to 

the manufacturer´s instructions. Both enzymes were selected to give a 5´overhang, since 

3´overhangs are reported to lead to synthesis of abnormal long transcripts. This linearization step 

was controlled by agarose gel electrophoresis, since circular molecules that are left in the digestion 

mixture affect the transcription efficiency. 

2.2.1.3. DNA Purification 

Purification of enzymatic digestion was performed by the QIAquick® PCR purification kit 

(Qiagen, USA). This system combines the convenience of spin-column technology with the selective 

binding properties of a uniquely designed silica membrane. DNA adsorbs to the silica membrane in 

the presence of high concentrations of salt while contaminants pass through the column. Impurities 

are efficiently washed away, and the pure DNA is eluted with water. The DNA was stored at -20ºC. 

DNA purification was performed according to the protocol described below. 

1. Five volumes of Buffer PBI were added to 1 volume of the digestion and mixed. 

2. The sample was applied to a QIAquick spin column, previously placed in a collection tube, 

and centrifuged for 1 minute at 13000 rpm. 

3. The flow-through was discarded and 750 L of Buffer PE was added, following a 

centrifugation (1 minute at 13000 rpm). 

4. An additional centrifugation step, 1 minute at 13000 rpm, was performed so as to remove 

any residual Buffer PE, which may interfere with subsequent enzymatic reactions. 

5. The QIAquick column was placed in a clean microcentrifuge tube and the DNA was eluted 

by the addition of 30 L water to the center of the QIAquick membrane. After column was 

centrifuged (1 min, 13000 rpm). The DNA was stored at -20ºC. 
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2.2.1.4. Probe Synthesis 

T7 RNA polymerase (Promega, USA) was used to synthesize the antisense digoxigenin-labeled 

hairy1 and hairy2. The in vitro transcription reaction was performed using DIG RNA Labeling Mix 

(Roche Applied Sciences, Germany) according to the manufacturer´s instructions. The DIG labeling 

method is based on a steroid isolated from plants, which are the only natural sources of this 

molecule. Digoxigenin is linked to uridine nucleotides that are incorporated into the RNA probe by 

RNA polymerase. Hybridized DIG-labeled probes are then detected with high affinity anti-digoxigenin 

antibody conjugated with alkaline phosphatase (AP), in a colorimetric reaction with two AP 

substrates: NBT and BCIP (see ISH detection). 

2.2.2. IN SITU HYBRIDIZATION 

In situ hybridization was performed according to procedure described by Henrique et al. (1995) 

with minor modifications: 

Pre-Hybridization 

Prior to hybridization, samples were subjected to a series of pre-treatments that increase the 

efficiency of hybridization and/or decrease non-specific background. 

1. After dissected, chick lungs were fixed overnight at 4ºC in 4% formaldehyde/2 mM EGTA, 

rinsed in PBS, dehydrated through a methanol series, and stored in 100% methanol at -

20ºC. 

2. After a step of rehydration, and in order to increase the accessibility of the target RNA, 

tissues were treated with proteinase K (Promega) to partially digest cellular proteins. 

Proteinase K is an endopeptidase which is non-specific and attacks all peptide bonds, is 

active over wide pH range and not easily inactivated. It is used to remove protein that 

surrounds the target sequence (Polak & McGee, 1998). Incubation has to be carefully 

monitored because if the digestion proceeds to far you could end up destroying most of the 

tissue or cell integrity; in this case, and considering the small size of the tissues proteinase K 

incubation was only for 2 minutes. 

o Proteinase K solution: 10g/ml; 0.1% Tween20; PBS 

3. This step is followed by a refixation step, to avoid disintegration of the sample, after washing 

with PBT. 
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o PBT solution: 0.1% Tween20, PBS 

o Post-fix solution: 4% formaldehyde in PBT, 0.1% gluteraldehyde 

4. Pre-hybridization involves incubating the tissue/section with a solution that is composed of 

all the elements of the hybridization solution, minus the probe, in order to block non-specific 

binding sites. The hybridization solution is constituted by: 

o Formamide (50%). Reduces the thermal stability of the bonds, allowing hybridization to be 

carried out at a lower temperature. 

o SSC (1.3x, pH 5). Decrease the electrostatic interaction between the two strands. 

o EDTA (5.0 mM, pH 8). Removes free divalent cations from the hybridization solution, which 

strongly stabilize duplex DNA. 

o Other components are added to decrease the chance of nonspecific binding of the probe 

and include: tRNA acts as a carrier RNA (50 μg/ml), heparin (100 μg/ml). 0.2% Tween20; 

0.5% CHAPS. 

Hybridization 

Following the pre-hybridization, hybridization was performed at 70ºC (the optimal conditions for 

the annealing of probe to the target nucleic acid in the sample). Hybridization depends on the ability 

of the probe to anneal to a complementary mRNA strand just below its melting point (Tm). The value 

of the Tm is the temperature at which half of the probe is present in a single stranded form (Polak & 

McGee, 1998). 

5. The chick lungs were incubated in hybridization solution containing the digoxigenin-labeled 

probe (1%). The hybridization was carried out overnight at 70ºC. For hairy1 probe, 167 lungs 

from b0 to b7 stages were hybridized; for hairy2 probe, 169 lungs from b0 to b7 stages were 

hybridized. 

Post Hybridization Washes 

Following hybridization, the material was washed with hybridization solution in order to remove 

unbound probe or probe which has loosely bound to imperfectly matched sequences. 

6. Washing should be carried out at or close to the stringency condition at which the 

hybridization takes place (70ºC) with a final low stringency wash (RT). 
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Antibody Incubation 

7. After clear the tissue with washing solution, tissues were incubated with blocking solution in 

order to decrease background in the detection of transcripts. 

o Washing solution (MABT): 0.1 M Maleic acid; 0.15 M NaCl; pH 7.5 

o Blocking solution: washing solution; 2% Goat Serum (Invitrogen, USA); 2% Blocking 

Reagent (Roche Applied Sciences) 

8. The chick lungs were then incubated with a high affinity anti-digoxigenin antibody conjugated 

(1/2000; Roche) with AP. This step was performed overnight with constant shaking (RT). 

Detection 

9. The samples were washed several times with washing solution at room temperature, with 

constant shaking, to remove all unbound enzyme conjugated antibody. 

10. Next, lungs were incubated with two AP substrates: NBT and BCIP. This colorimetric 

reaction will form a dark blue precipitate, representing the presence of the target mRNA. 

o Developing solution: 0.1 M NaCl; 0.1 M Tris.HCl, pH 9.5; 0.4 M MgCl2; 1% Tween20; 0.35 

mg/ml NBT; 0.175 mg/ml BCIP. 

Imaging 

11. Lungs were photographed in PBT solution using an Olympus U-LH100HG camera coupled 

to Olympus SZX16 stereo microscope and stored in PBT/0.1% azide. 

Slide Sections 

Hybridized chick lungs, with hairy1 and hairy2, were fixated in paraformaldehyed 4%, embedded 

in 2-hydroxyethyl methacrylate (Technovit 7100; Heraeus Kulzer, Germany) and processed for 

sectioning at 25 µm thickness using a rotary microtome (Leica RM 2155, Germany). Lung sections 

were photographed with an Olympus DP70 camera coupled to an Olympus BX61 microscope. 

2.3. CHICK LUNG EXPLANT CULTURE 

After dissection in DPBS (Lonza, Switzerland) lungs were transferred to Nucleopore membranes 

with an 8 m pore size (Whatman, USA) and incubated in a 24-well culture plates (Orange Scientific, 

Belgium). The membranes were presoaked in 400 L of Medium 199 (Sigma) for 1 h before the 

explants were placed on them. Floating cultures of the explants were incubated in 200 L Medium 
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199 supplemented with 5% heat inactivated fetal calf serum (Invitrogen), 10% chicken serum 

(Invitrogen), 1% L-glutamine (Invitrogen), 1% penicillin 5000 IU/mL, streptomycin 5000 IU/mL 

(Invitrogen) and 0.25 mg/mL ascorbic acid (Sigma). Chick lung explants were incubated in a 5% CO2 

incubator at 37°C for 24h or 48 h (in this case the medium was replaced at 24 h). The branching 

morphogenesis was monitored daily by photographing the explants. At d0 (D0: 0 h), d1 (D1: 24 h) 

and d2 (D2: 48h) of culture, the total number of peripheral airway buds (branching) in all lung 

explants was determined. The results of branching were expressed as D2/D0 ratio. 

2.3.1. IN VITRO INHIBITION STUDIES 

2.3.1.1. FGF inhibition 

In order to inhibit the FGF signaling pathway, lung explants (st b1 to b3) were cultured SU5402, 

an FGF receptor antagonist that has been shown to inhibit the tyrosine kinase activity of all four 

FGFRs by interacting with the catalytic domain. SU5402 (Calbiochem, UK) dissolved in DMSO was 

added to the medium to achieve a final concentration of 25 and 50 Mn=13 and n=12, 

respectively) and 0.1% DMSO. Control explants consisted of medium containing DMSO at a final 

concentration of 1 L/ mL (n= 13). After culture, lung explants were fixated overnight at 4ºC and 

processed for ISH. 

2.3.1.2. Notch inhibition 

In order to inhibit the Notch signaling pathway, lung explants (st b1 to b3) were cultured with 

DAPT, a -secretase inhibitor which prevents the release of the intracellular, active fragment of 

Notch and efficiently blocks the presenilin–-secretase complex and, as a consequence, efficiently 

prevents activation of the Notch response. DAPT (Calbiochem, UK) dissolved in DMSO was added 

to the medium to achieve a final concentration of 20 and 45 M (n=67 and n=88, respectively) and 

0.1% DMSO. Control explants consisted of medium containing DMSO at a final concentration of 1 

L/ mL (n=50). Additionally, lung explants were incubated with medium as culture and lung growth 

control. After culture, lung explants were fixated overnight at 4ºC and processed for ISH. 

2.3.2. STATISTICAL ANALYSIS 

The results were expressed as mean ± standard deviation. For statistical analysis SigmaStat 

3.5 (Systat Software Inc., USA), was used and applied the One-way ANOVA test. When the 
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differences were statistically significant, the Holm-Sidak test for multiple pairwise comparisons was 

used. Statistical significance was set as p <0.05. 
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3.1. CHARACTERIZATION OF HAIRY1 AND HAIRY2 EXPRESSION PATTERN DURING CHICK 

LUNG DEVELOPMENT 

In order to characterize the expression pattern of hairy1 and hairy2 during chick lung 

development, in situ hybridization was performed. For this purpose, embryos with 4 to 6 days of 

incubation were collected, staged according to HH developmental table and lungs were carefully 

dissected (n= 336). Since HH developmental stages are based mainly in different external 

morphological landmarks, it is more accurate to group lungs according to some morphological 

features characteristic of this organ, namely the number of secondary bronchi formed. Therefore, 

lungs were staged according to the number of secondary bronchi: b0 stage correspond to lungs with 

no secondary bronchi, prior to bronchial branching; at b1 stage, the lung presents one secondary 

bronchus, at b2 stage it presents two secondary bronchi, and so on. 

3.1.1. HAIRY1 EXPRESSION PATTERN 

The hairy1 expression was evident mainly in the pulmonary epithelium of the respiratory tract, 

throughout all the stages studied (figure 3.1). hairy1 is present not only in the epithelial region of the 

main bronchus (figure 3.1 B, E, green arrows) but also in the epithelial compartment of the 

secondary bronchi (figure 3.1 C, F, blue arrows). Moreover hairy1 is also present in the 

mesenchyme: it appears as a ―musky‖ expression pattern both in the medial region of the main 

bronchus (figure 3.1 B, C, purple arrows) and in the lateral region adjacent the secondary bronchi 

(Figure 3.1 C, D, black arrows). 

Even though the expression pattern of hairy1 remain constant throughout the different stages 

studied, it was possible to observe differences in lungs of the same stage both in the epithelial and 

the mesenchymal compartments. In some lungs hairy1 expression in the epithelial tip of the main 

bronchus was absent (figure 3.2 C, D, blue arrows) contrasting with some examples where it was 

strongly expressed (figure 3.2 A, B, blue arrows). On the other hand, medial and lateral 

mesenchymal regions also presented distinct expression patterns: some lungs showed weak or 

undetectable expression (figure 3.1 H, orange arrow; figure 3.2 C, D) while others a strong 

expression (figure 3.2 A, B, white arrows). 
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Figure 3.1. hairy1 expression pattern during chick lung development, visualized by ISH, under precisely 

the same conditions. Representative examples of hairy1 expression pattern of stage b0 (A), b1 (B), b1 

(C), b3 (D), b4 (E), b5 (F), b6 (G), b7 (H), b8 (I). Green arrows () - epithelium of the main bronchus; 

blue arrow () - epithelium of secondary bronchi; purple and orange arrows (;) - medial mesenchyme 

of the main bronchus; black arrows () - lateral mesenchyme of secondary bronchi. 

Figure 3.2. hairy1 expression 

pattern of st b2 lung. Positive (A, B) 

and negative (C, D) expression of 

hairy1 in the epithelial tip of the main 

bronchus. White and orange arrows 

– distal medial mesenchyme of the 

main bronchus; blue arrows () - 

distal epithelial bronchial tip; black 

arrows (), lateral mesenchyme. 
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Representative examples of lungs from different stages of development, hybridized with hairy1, 

where processed for histological slide sectioning. Undoubtedly hairy1 expression is observed not 

only in the epithelial compartment of the main bronchus (figure 3.3 A, black arrows) but also in the 

secondary bronchi (figure 3.3 A, C, blue arrow). On the other hand, medial mesenchymal expression 

is evident (figure 3.3 C, purple arrow); conversely hairy1 is not present in the most distal 

mesenchyme (figure 3.3 B, green arrow). 

3.1.2. HAIRY2 EXPRESSION PATTERN 

The hairy2 expression was evident mainly in the chick pulmonary mesenchyme, throughout all 

the stages studied (figure 3.4). hairy2 expression is present in the mesenchyme surrounding the 

trachea and the trachea bifurcation (figure 3.4 B, tr, trb), and tip of the main bronchus, in the most 

distal region (figure 3.4 D, E, green arrow) resembling a rostral-caudal wave; on the other hand in 

the proximal medial and lateral mesenchyme expression is absent (figure 3.4 D, blue arrow; figure 

3.4 F, yellow arrow). Moreover, hairy2 is also expressed in the distal epithelium of the primary and 

secondary bronchi (figure 3.4 E, purple arrow; figure 3.4 C, F, black arrows, respectively), quite the 

opposite of the remaining epithelial compartment which lacks its expression (figure 3.4 G, red arrow). 

Differences in hairy2 expression pattern were observed in lungs of the same stage primarily in 

the most distal mesenchyme, surrounding the main bronchus tip (figure 3.4 C, E). In some cases, 

the mesenchymal expression at the terminal region of the main bronchus is absent (figure 3.5 B, 

yellow arrow) and in others shows a strong expression (figure 3.5 A, red arrow). hairy2 is always 

present in the medial distal mesenchyme and absent from main bronchus epithelium (figure 3.5 B, 

white arrow; 3.5 C, green arrows, respectively). The strong mesenchymal expression masks distal 

lung epithelium and, for this reason, epithelial variations in this region are difficult to detect. 

Figure 3.3. Representative examples of st b1 (A, B) and b3 lungs (C) probed with hairy1. Blue arrows (), 

secondary bronchi epithelium; black arrows (), main bronchus epithelium; green arrow (), distal 

mesenchyme; purple arrow (), distal lateral mesenchyme. 25m Technovit sections. 
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Figure 3.4. hairy2 expression pattern during chick lung development, visualized by ISH, under precisely 

the same conditions. Representative examples of hairy1 expression pattern of stage b0 (A), b1 (B), b1 

(C), b3 (D), b4 (E), b5 (F), b6 (G), b7 (H), b8 (I). tr, trachea: trb, tracheal bifurcation; Black arrows () - 

epithelium of secondary bronchi; blue arrow () - proximal medial mesenchyme of the main bronchus; 

green arrows ()- distal medial mesenchyme of the main bronchus; purple arrow () - distal epithelium of 

the main bronchus yellow arrow () - lateral mesenchyme of the main bronchus; red arrow () - 

epithelium of the main bronchus. 

Figure 3.5. hairy2 expression pattern of st b2 lung (A-C). Red and yellow arrows (;) - tip mesenchyme; 

white arrow - distal medial mesenchyme of the main bronchus; green arrows () - main bronchus 

epithelium. 
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Representative examples of lungs from different stages of development, hybridized with hairy2, 

where processed for histological slide sectioning. hairy2 is absent from the main bronchus epithelium 

(figure 3.6 A, B, black arrows) except in the most distal region of primary and secondary (figure 3.6 

B, C, green arrows). Moreover, expression is also absent in the distal epithelium (figure 3.6 D, 

orange arrow): this observation could not be described previously since it was masked by the 

mesenchymal expression. Medial mesenchymal expression is observed in all stages studied (figure 

3.6 A, B, C, purple arrow); on the other hand, tip mesenchyme presents presence versus lack of 

expression (figure 3.6 C, yellow arrow; figure 3.6 D, red arrow; respectively). 

3.2. IN VITRO INHIBITION STUDIES 

In order to determine a possible role for hairy1 and hairy2 in chick lung development, in vitro 

inhibition studies were performed. The consequences of blocking FGF and Notch signaling in early 

stages of chick lung development were examined. For this purpose, chick lung explant culture 

system was optimized and explants were processed for ISH for both probes. Lung explants showed 

the same expression pattern as whole lungs, for both genes, as expected. After this optimization 

step, lung explants were incubated with SU5402 and DAPT so as to inhibit FGF and Notch signaling, 

respectively. 

3.1.2. FGF SIGNALING INHIBITION 

Chick lungs from b1 to b3 stages were processed for explant culture as described in section 

2.3.2 and incubated with an FGF receptor antagonist (SU5402), which has been shown to inhibit the 

tyrosine kinase activity all four FGFRs blocking FGF signaling. The doses used, 25 and 50 M, were 

selected according to the literature and lung culture was maintained for 24 hours. In treated explants, 

hairy1 and hairy2 expression is not affected by FGF signaling inhibition (figure 3.7 and 3.8, F, I 

Figure 3.6. Representative examples of st b0 (A) and b1 (B, C, D) lungs probed with hairy2. Black arrows (), 

main bronchus epithelium; purple arrow (), distal medial mesenchyme; green and orange arrows (;), distal 

epithelium; yellow and red arrows (;), tip mesenchyme; blue arrow (), secondary bronchi epithelium. 25m 

Technovit sections. 
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respectively) presenting a pattern similar to control explants (figure 3.7 and 3.8, C, respectively). 

Moreover, hairy1 and hairy2 expression is not affected by increasing doses of inhibitor. 

SU5402 treated explants showed atypical lung branching when compared with explants treated 

only with DMSO (figure 3.7 and 3.8, A), presenting a reduced number of secondary branches (figure 

3.7 and 3.8, B). The results of morphometric analysis on fetal lung explants are summarized in figure 

3.9. The highest SU5402 dose (50 M) induced a decrease in total number of peripheral airway 

buds when compared to control in stage b2 and b3 explants, whereas no statistical differences were 

found with the lower dose (25 M). Curiously, no differences were found between the two doses in 

stage b2 explants (figure 3.9 A), but in stage b3 the differences have statistical significance (figure 

3.9B). It was not possible to carry out statistical analysis in b1 lung explants due to the reduced n 

number. 

Figure 3.7. In vitro FGF inhibition studies. Representative examples of branching morphogenesis of st b3 b3 

lungs in the chick lung explant system (A-B; D-E; G-H), and ISH for hairy1 (C, F, I). D0: 0 h, D1: 24 hours  of 

of culture. A-C, control explants. D-F and G-I, 25 and 50 M SU5402, respectively. 
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Figure 3.9. Morphometric analysis of lung explant culture treated with SU5402. Results are expressed as 

D1/D0 ratio. (A) st b2 lung: DMSO (n= 6), 25 M SU5402 (n= 6), 50 M SU5402 (n= 4); (B) st b3 lung: 

DMSO (n= 5), 25 M SU5402 (n= 7), 50 M SU5402 (n= 7). Data is represented as mean ± SD. *p < 

0.05 vs DMSO. § p< 0.05 vs 25 M SU5402. ns, not statistically significant. 

Figure 3.8. In vitro FGF inhibition studies. Representative examples of branching morphogenesis of st b3 b3 

lungs in the chick lung explant system (A-B; D-E; G-H), and ISH for hairy2 (C, F, I). D0: 0 h, D1: 24 hours  of 

of culture. A-C, control explants. D-F and G-I, 25 and 50 M SU5402, respectively. 
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3.1.2. NOTCH SIGNALING INHIBITION 

Chick lungs from b1 to b3 stages were processed for explant culture as described in section 

2.3.2 and incubated with a -secretase inhibitor (DAPT), which efficiently blocks the release of NICD 

and inhibits Notch signaling. The doses used, 20 and 45 M, were selected according to the 

literature and, in this case, lung culture was prolonged for 48 hours. 

Lung explants treated with DAPT show abnormal lung growth when compared with control 

explants treated only with DMSO (figure 3.10; 3.11). DAPT- treated lungs (figure 3.10 E-G, I-L; figure 

3.11 E-G, I-L) show not only an increased number of secondary branches but also an anomalous 

lung structure in the distal tip of the main bronchus when compared with control lungs (figure 3.10 A-

C; figure 3.11 A-C). 

In treated explants, epithelial hairy1 expression is apparently not affected by Notch signaling 

inhibition (figure 3.10 H, M) presenting a pattern similar to control explants (figure 3.10 D). It seems 

that DAPT treated lungs might have a slight decrease in hairy1 expression levels mainly in the 

mesenchyme; to confirm this observation additional RT-PCR studies are necessary. Moreover, 

branching and hairy1 expression are not affected by increasing doses of inhibitor. 

Figure 3.10. In vitro Notch inhibition studies. Representative examples of branching morphogenesis of st B3 

b3 lungs in the chick lung explant system (A-C; E-G; I-L), and ISH for hairy1 (D, H, M). D0: 0 h, D1: 24 h,   , 

D2: 48h of culture. A-C, control explants. E-G and I-L, 20 and 45 M DAPT, respectively. 
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By contrast, hairy2 expression was dramatically reduced in DAPT-treated lungs (figure 3.11 H, 

M) when compared with control explants (figure 3.11 D). In these DAPT-treated lungs, hairy2 

expression was selectively decreased in the tracheal area and in the tracheal bifurcation 

independently of the dose used (figure 3.11 H, M: tr, trb). On the other hand, hairy2 expression was 

almost abolished in the mesenchymal and epithelial compartment of the lung, except for the proximal 

most and anterior most secondary bronchi which is only slightly diminished (figure 3.11 H, M, blue 

arrow and red arrows, respectively). 

The results of morphometric analysis on fetal lung explants are summarized in figure 3.12. 

DAPT induced an increase in total number of peripheral airway buds, independently of the dose 

used, in stage b1 and b3 explants (figure 3.12 A and C, respectively). However, in stage b2 explants 

only with the lower dose, this increase has statistical significance (figure 3.12 B). Curiously, no 

differences were found between the two doses in stage b1 and b2 explants, but in b3 lung explants 

the differences have statistical significance. 

 

Figure 3.11. In vitro Notch inhibition studies. Representative examples of branching morphogenesis of st b3 

b3 lungs in the chick lung explant system (A-C; E-G; I-L), and ISH for hairy2 (D, H, M). D0: 0 h, D1: 24 h,    

D2: 48h of culture. A-C, control explants. E-G and I-L, 20 and 45 M DAPT, respectively. tr, trachea; trbrb, 

tracheal bifurcation. Blue arrow () -proximal secondary bronchi; red arrow () - distal secondary bronchi. 
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Figure 3.12. Morphometric analysis of lung explant culture treated with DAPT. Results are expressed as 

D2/D0 ratio. (A) st b1 lung: DMSO (n= 19), 20 M DAPT (n= 24), 45 M DAPT (n= 25); (B) st b2 lung: 

DMSO (n= 36), 20 M DAPT (n= 46), 45 M DAPT (n= 54); (C) st b3 lung: DMSO (n= 28), 20 M DAPT (n= 

37), 45 M DAPT (n= 46). Data is represented as mean ± SD. *p < 0.05 vs DMSO. § p< 0.05 vs 20 M 

DAPT. ns, not statistically significant. 
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Although much is known about some aspects of lung development, the mechanisms that 

regulate the spatiotemporal control of this process are not well defined. The identification of a 

segmentation clock that ensures the correct spatiotemporal periodicity of somite generation, during 

chick somitogenesis, provided the first molecular evidence of how embryonic cells count time. The 

underlying mechanisms of this process involve the oscillation of ―clock-genes‖ like hairy1 and hairy2, 

which are intimately related to the Notch signaling pathway. Inactivation of this pathway results in 

dramatic segmentation defects and a severe impairment of the periodic expression of the cyclic 

genes (Dubrulle & Pourquié, 2002). 

Given the importance of hairy1 and hairy2 in somitogenesis, and since this process share 

similarities with lung development, the main goal of this work was to describe the expression pattern 

of both genes during chick lung development. Moreover, taking into consideration that Notch and 

FGF signaling pathways are involved in the molecular clock mechanisms, the link between hairy1 

and hairy2, these pathways and branching morphogenesis was assessed by lung explant culture 

system. 

hairy1 and hairy2 expression pattern 

The present work characterizes, for the first time, hairy1 and hairy2 expression pattern in early 

stages of chick lung development. The expression of hairy1 is evident in the epithelial region of the 

main bronchus and secondary bronchi throughout all the stages studied. This general pattern 

expression in the pulmonary epithelium is, in part, consistent with the one described in the 

embryonic mouse lung. Sasai et al. (1992) has disclosed Hes1 expression, a hairy1 homolog in the 

mouse, in the mouse airway epithelium by in situ hybridization. More recently, Ito and coworkers 

(2000) demonstrated by immunohistochemistry that Hes1 is present in the nuclei of non-

neuroendocrine airway epithelial cells in early stages of mouse lung development; the authors also 

showed, by northern blot analysis that Hes1 mRNA expression progressively rises in the mouse lung 

until birth and then remains detectable in adult lung as well. Apparently, during early stages of chick 

lung development, hairy1 expression levels remain overall constant, although in order to confirm this 

observation RT-PCR or northern blot analysis should be performed. Furthermore, hairy1 is 

expressed also in chick lung mesenchyme. Collins et al. (2004) demonstrated by 

immunohistochemistry that Hes1 expression was negative in the surrounding lung mesenchyme and 

vessels (Collins et al., 2004); conversely, recent work by Tsao et al. (2008) showed by in situ 

hybridization that E11–E12 mouse lung mesenchyme expresses Hes1, where it could potentially 

play a role in the development of the lung vasculature or other derivatives (smooth muscle or 
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cartilage), corroborating the results found in the chick model. The differences between the studies 

could be related to the fact that two different techniques have been used. 

hairy2 is expressed in the mesenchyme surrounding the trachea and the trachea bifurcation 

and in the most distal region of the main bronchus resembling a rostral-caudal wave along the AP 

axis, and also in the distal epithelium of the primary and secondary bronchi hairy2 expression pattern 

does not match completely with its mammalian counterpart, Hes1, since in the latter case no 

tracheal expression is observed. Very limited data is available for other Notch effectors in lung 

development. Hes5 has not been detected in whole fetal lung by RT-PCR (Ito et al., 2000). However, 

recent studies showed that Hes1, Hes5 and Hey2 were present in mouse airway epithelium 

predominantly in the distal buds, as it occurs with hairy2 (Tsao et al., 2008). 

Our results suggest that hairy1 and hairy2 might have a dynamic expression since differences 

in the expression pattern of lungs belonging to the same developmental stage were detected. In the 

distal epithelium of the main bronchus it is possible to observe two different scenarios, either 

presence or absence of both genes, meaning that their expression is not constitutive. This type of 

expression had already been described in other developmental events such as somitogenesis 

(Palmeirim et al., 1997; Jouve et al., 2000) and limb bud outgrowth (Pascoal et al., 2007), and 

associated with a mechanism responsible for translating temporal into spatial information. In order to 

confirm these results, additional experiments should be performed. Taking advantage of chick lung 

symmetry, both lungs will be dissected through the trachea axis and one half will be cultured for 

different time periods while the other will be fixed immediately; after hybridization of both halves, 

different expression patterns are expected in sibling lungs confirming the dynamic expression pattern 

of these genes. Moreover, we expect to find a relationship between the formation of a new 

secondary branch and the expression cycle, just as it occurs with the formation of a new somite and 

a limb element. Preliminary results in our lab show some evidence that these genes present a 

dynamic expression pattern during chick lung development. 

Classical studies of lung structure raise the question of how the information required to 

generate a bronchial tree is biologically encoded. One possibility suggests that the process is not 

precisely controlled; branching occurs randomly to fill available space. Another is that control is 

precise but coding is simplified by repeated use of a branching mechanism. Lately, the complete 

three dimensional branching patterns and lineage of the mouse bronchial tree were described, and it 

was shown that it is generated using three geometrically distinct local modes of branching coupled in 

three different sequences throughout the lung. The authors found that Spry2 regulates the site of 
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initiation and number of branches in specific domains, and controls the proximal–distal register of 

entire domains (Metzger et al., 2008). Sprouty genes (Spry) have a role in FGF signaling pathway 

regulation, functioning as inhibitors of intracellular signaling cascade of this pathway. They are part 

of a control mechanism of the size and number of lung buds, which may ultimately be responsible for 

the inhibition of branching. mSpry2 is localized in the distal tips of the embryonic lung epithelial 

branches and is down regulated at sites of new bud formation (Sutherland et al., 1996). Abrogation 

of mSpry2 expression has a stimulatory effect on murine lung branching morphogenesis and 

differentiation in organ cultures (Tefft et al., 1999). Eventually, other genes might be involved in 

these control mechanisms, and hairy genes seem to be good candidates considering their role in 

other tightly regulated developmental process. 

In vitro inhibition studies 

In order to determine a possible role for hairy1 and hairy2 in chick lung development, in vitro 

inhibition studies were performed. For this purpose, the consequences of blocking FGF and Notch 

signaling pathway in early stages of chick lung development were examined. 

hairy1 and hairy2 expression was not affected by FGF signaling inhibition by SU5402, 

independently of the dose used, and lung explants presented a pattern of expression similar to the 

control group (figure 3.7, 3.8). These results seem to indicate that hairy1 and hairy2 are not 

downstream targets of this signaling pathway in the embryonic chick lung. In order to confirm these 

results, additional RT-PCR experiments would be necessary to quantify expression levels of both 

genes. In contrast, morphological differences were observed between treated vs. control explants: 

SU5402 treated explants presented a reduced number of secondary branches when compared to 

control explants. These results are in agreement with the role of FGF signaling in branching 

morphogenesis. In the developing mouse lung, a mechanism involving FGF-10 and FGFR-2 

regulates airway branching. FGF-10 locally induces and guides bud outgrowths to proper positions 

during lung branching morphogenesis (Cardoso, 2001). In Fgf10-deficient mice tracheal 

development is normal but main-stem bronchial development as well as all subsequent pulmonary 

branching morphogenesis is completely absent (Chuang & McMahon, 2003). Therefore, when FGF 

signaling is impaired, as it occurs in SU5402 treated explants, FGF10 is not able to induce primary 

bud formation and for that reason no additional branches emerge. 

hairy1 expression was not affected by Notch signaling inhibition by DAPT, independently of the 

dose used, and lung explants presented a pattern of expression similar to the control group (figure 
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3.10). These results point out that, in chick lung development, hairy1 is not a downstream target of 

Notch signaling pathway. These findings are in agreement with a recent study that states that Hes1 

expression levels remain unaffected by DAPT treatment in mouse lung organ culture (Tsao et al., 

2008). On the other hand, hairy2 expression was dramatically reduced (figure 3.11). In order to 

quantify these differences, additional RT-PCR analysis need to be performed to assess expression 

levels. Tsao and coworkers (2008) showed a down-regulation of Hes5 mRNA, by RT-PCR, in DAPT-

treated explants which is in accordance with the results obtained in this work. Despite the sequence 

homology between hairy2 and Hes1, hairy2 expression behaves like Hes5 when Notch signaling is 

inhibited. Intriguingly, not all the regions showed the same expression abrogation, independently of 

the dose used. The tracheal area and the tracheal bifurcation showed only a minor decrease in 

hairy2 expression, meaning that its expression might not be dependent of Notch signaling pathway 

in those regions; in the same exact areas, no variation of expression was observed in whole lungs 

which might indicate that hairy2 expression is constitutive. These findings seem to indicate that 

dynamic hairy2 expression is Notch-dependent whereas constitutive expression is not. 

DAPT treated lungs showed not only an increased number of secondary branches but also an 

anomalous lung structure. These results are consistent with those described by Tsao et al. (2008) 

who described an overall increase in branching in DAPT-treated mouse lungs. Consistent with these 

findings, morphometric analysis of fetal lung explants (D2/D0) revealed, that DAPT induced an 

increase in total number of peripheral airway buds, independently of the dose used, in stage b1 and 

b3 explants. 

Notch signaling is not necessary for lung bud initiation; however, Notch is required to maintain a 

balance of proximal-distal cell fates at early stages of lung development (Tsao et al., 2008). The 

moderate hypotrophic phenotype of lungs from animals bearing a Hes1 mutation, and the expression 

of Notch components in the distal lung bud during branching morphogenesis, suggest that Notch 

may play a role in normal lung growth, especially in Clara cell precursors. Hes1 was detectable in 

fetal mouse lung in non-endocrine airway epithelial cells that are destined to become Clara cells (Ito 

et al., 2000). This late-differentiating population of airway epithelial cells is the predominant, non-

ciliated airway lining cell in the mouse (Collins et al., 2004). In fetal lung development, Notch 

signaling appears to be essential for the lung to achieve its normal size. The Hes1−/− mouse 

exhibits a 20% decrease in lung length, compared to wild type littermates, airway pulmonary 

neuroendocrine cell hyperplasia and a decreased number of secretory cells (Ito et al., 2000). In the 

chick lung, however, it was not possible to establish a similar role for hairy1 since its expression was 

not abrogated. For this purpose, additional RNAi inhibition studies should be performed. 
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The present work characterizes, for the first time, hairy1 and hairy2 expression pattern in early 

stages of chick lung development, by in situ hybridization. The differences found in hairy1 and hairy2 

expression pattern of lungs belonging to the same developmental stage suggest a dynamic 

expression for these genes in lung development, as it has already been described in somitogenesis 

and limb development. 

hairy1 and hairy2 are not downstream targets of FGF signaling pathway in the chick lung, since 

their expression was not affected by FGF signaling inhibition. 

hairy1 expression is not affected by Notch inhibition, suggesting that this gene is not a 

downstream target of this signaling pathway. On the other hand hairy2 expression is either 

dramatically reduced or maintained by Notch inhibition, suggesting two types of hairy2 regulation in 

chick lung. Moreover, Notch signaling inhibition originated not only an increased number of 

secondary branches but also an anomalous lung structure in the distal tip of the main bronchus, 

which suggest that this inhibition interferes in the correct process of lung development. 
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