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SUMMARY 

Limbs emerge from the embryo flank as a mass of mesenchymal cells within an 

ectodermal jacket that will give rise to skeletal elements and connective tissues, structured along 

the dorsal-ventral (DV), anterior-posterior (AP) and proximal-distal (PD) axes. The apical 

ectodermal ridge (AER) and the zone of polarizing activity (ZPA) are limb signalling centres that 

drive the establishment of PD and AP axis, respectively (Zeller et al., 2009). Development of all 

embryo structures requires precise orchestration of cell proliferation and differentiation in both 

space and time. However, how cells measure time was puzzling until the first evidence for a time 

counting mechanism was provided by Palmeirim et al. (1997) in chick presomitic mesoderm 

(PSM). In a decade, the existence of a limb molecular clock by unveiling cyclic hairy2 gene 

expression in limb chondrogenic precursor cells was demonstrated (Pascoal et al., 2007). The 

discovery of the limb clock raises the exciting possibility that parallelisms could be established 

between somitogenesis and limb development. This PhD work has been designed to establish 

parallelisms between limb and trunk development. In order to do this analysis, first, we have 

established the existing parallelisms from the available literature and further extended the list by 

focusing on limb hairy2 oscillation´s biological significance.  

So as to comprehend the biological significance of hairy2 oscillations, two main 

approaches have been taken. One is to understand its regulatory pathways; the second is to 

analyse the functional relevance of hairy2 cycles and to assess the existence of a wavefront in 

limb. In the light of the first part, we have found the involvement of the two major limb signaling 

centers and their signaling molecules, the AER/FGFs and the ZPA/SHH in hairy2 regulation. This 

regulatory network was identified based on in-ovo ablation and bead implantation experiments 

to overexpress or downregulate signalling molecules in both the hairy2 positive (Posterior 

positive domain: PPD and Distal Cyclic Domain: DCD) and negative (Anterior and Posterior 

Negative Domains: AND and PND) limb domains. Analysis on the intracellular pathways by 

immunoblot revealed that FGF mediated Erk and Akt phosphorylation and SHH mediated 

modulation of Gli3 activity levels is responsible for this effect. We have further established the 

difference in the mechanisms employed by the AER/FGFs and ZPA/SHH to regulate distal limb 

mesenchymal hairy2 expression. The AER-FGFs provide a short-term, short-range instructive 

signal while, the ZPA-SHH deliver a long-term, long-range permissive signal for limb hairy2 
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expression. The AER/FGFs were only able to execute their inductive role on hairy2 expression 

when the tissue is in a ZPA/SHH-created permissive state defined as Gli3-A/Gli3-R≥1. In 

accordance with the ZPA/SHH reliant posteriot-anterior Gli3-A/Gli3-R ratio gradient, hairy2 is 

persistently expression in the PPD and absent from the AND. However, in the absence of the 

inductive AER/FGF signal, SHH cannot induce hairy2 expression suggesting a mutual dependency 

existing between AER/FGF and ZPA/SHH for limb hairy2 expression regulation. Importantly, we 

demonstrate that this joint requirement is not a signaling relay but a convergence of both signals 

at the level of hairy2 expression making hairy2 a readout of AER/FGF and ZPA/SHH signals at both 

time and space.  

Additional analysis on the participation of RA and BMP4 signals in limb hairy2 expression 

suggests RA as a positive regulator and BMP4 as a negative regulator of its expression. 

Interestingly, the inductive effect of RA-bead is also found to be via Gli3 activity modulation.  

Finally, we have proposed a model defining the combinations of signals laying down the 

distinct expression domains of hairy2 in the limb distal mesenchyme. The PPD is defined by high 

AER/FGF and ZPA/SHH signal mediated Gli3-A/Gli3-R≥1 (higher than 1); the DCD with high 

AER/FGF and moderate ZPA/SHH derived Gli3-A/Gli3-R≥1 (tending towards 1) and the AND 

possesses no SHH signal and so Gli3-A/Gli3-R˂1 (less than 1) and high BMP4 acZvity.  

The functional relevance of cyclic gene expression in limb development/patterning will be 

assessed by perturbing hairy2 oscillations in limb mesenchymal cells by infecting them with 

retrovirus carrying either hairy2 gene or hairy2 specific siRNAs. At present we are performing this 

task and the results are promising. Since hairy2 expression is tightly regulated by the PD 

patterning AER/FGFs and the AP pattering ZPA/SHH signals, we expect to obtain limb elements 

displaying both PD and AP defects upon Hairy2 misexpression. Supporting our analysis of 

molecular parallelisms among somitogenesis and limb development, the existence of a limb 

wavefront (Differentiation Front: DF) reminiscent to the PSM Determination Front (DetF) has also 

been evaluated. Experiments aiming to shift the limits of FGF or RA signaling along the PD limb 

axis is affecting the limb skeletal element size, reinforcing the similarity with somitogenesis. 

However, the results are not yet conclusive. 

The parallelisms identified from our work and the ones established from the literature 

point to enormous resemblance among limb and trunk development at the level of gene 
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expression and their function. This brings great insight on the molecular mechanisms operating in 

both systems and enriches our understanding of how a pool of undifferentiated cells acquires 

spatial/temporal information to form a defined structure. 
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SUMÁRIO 

Os membros dos embriões vertebrados começam a formar-se à medida que uma massa 

de células mesenquimais rodeada de tecido epitelial cria uma protuberância nos flancos do 

embrião, mais tarde originando os elementos ósseos, músculos e tecido conjuntivo, estruturados 

ao longos dos eixos dorsal-ventral (DV), anterior-posterior (AP) e proximal-distal (PD). A apical 

ectodermal ridge (AER) e a zone of polarizing activity (ZPA) são centros sinalizadores que 

orquestram o estabelecimento dos eixos PD e AP do membro embrionário, respectivamente 

(Zeller et al., 2009). O desenvolvimento de todas as estruturas embrionárias requer uma 

coordenação espacial e temporal precisa de proliferação e diferenciação celulares. No entanto, 

não se sabia como medem a células o tempo até se obter a primeira evidência da existência de 

um relógio molecular embrionário, providenciada por Palmeirim et al. (1997). Uma década 

depois foi demonstrada a existência de um um relógio molecular no membro através 

daidentificação da expressão cíclica do gene hairy2 nas células precursoras de condrócitos 

(Pascoal et al., 2007). A descoberta de um relógio no membro sugere a forte possibilidade de ser 

possível estabelecer paralelismos moleculares entre o processo de somitogénese e o 

desenvolvimento do membro. Esta tese de doutoramento foi projectado de modo a estabelecer 

os paralelismos entre o desenvolvimento do membro e do tronco. Para tal, começamos por 

estabelecer os paralelismos já existentes na literatura e aumentámos esta lista concentrando a 

atenção no significado biológico das oscilações de hairy2 no membro. 

Com o objectivo de melhor compreender o significado biológico das oscilações de hairy2 

no membro em desenvolvimento, aplicámos duas abordagens distintas. Primeiramente, 

procurámos identificar as vias de sinalização envolvidas na regulação da sua expressão. 

Posteriormente analisámos a relevância funcional do relógio no desenvolvimento do membro. 

Relativamente ao primeiro objectivo, descrevemos o envolvimento dos centros sinalizadores do 

membro e as suas moléculas de sinalização, o AER/FGF e o ZPA/SHH, na regulação da expressão 

de hairy2, utilizando experiências de ablação e/ou de implantação de micro-esferas  in ovo com o 

objectivo de sobre- ou sub-expressar estas as moléculas sinalizadoras nos domínios hairy2 

positivo (Posterior positive domain: PPD e Distal Cyclic Domain: DCD) e hairy2 negativo (Anterior 

and Posterior Negative Domains: AND e PND) do membro. Análise das vias intracelulares por 

immunoblot mostraram que a fosforilação mediada por Erk e Akt e a modulação dos níveis de 
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actividade de Gli3 por SHH são responsáveis por este efeito. Também descobrimos que os 

AER/FGFs e o ZPA/SHH utilizam diferentes mecanismos para regular a expressão de hairy2 no 

membro distal Os resultados obtidos indicam que os AER-FGFs são sinais reguladores da 

expressão de hairy2 com curto alcance e de curta duração, enquanto o ZPA-SHH é um morfogene 

com uma acção permissiva de longo alcance e duração sobre hairy2 no membro. 

A AER/FGFs foram apenas capazes de executar a sua função indutiva quando os tecidos 

estavam num estado permissivo criado pela ZPA/SHH, definido como Gli3-A/Gli3-R≥1. Em 

sintonia com o gradiente AP do ratio Gli3-A/Gli3-R≥1, hairy2 apresenta expressão na PPD e não 

na AND. No entanto, na ausência de sinal indutivo da ERA/FGF, SHH não é capaz de induzir 

expressão de hairy2, o que sugere uma dependência mútua entre o AER/FGF e o ZPA/SHH na 

regulação da expressão de hairy2 no membro. De forma importante demonstramos que este 

necessidade conjunta não é uma passagem de sinal, mas uma convergência de ambos os sinais 

ao nível da expressão de hairy2, o que torna esta expressão uma leitura dos sinais do AER/FGF e 

do ZPA/SHH no tempo e no espaço.  

Uma análise adicional da contribuição dos sinais RA e BMP4 para a expressão de hairy2 

sugere que o RA seja um regulador positivo e que o BMP4 seja um regulador negativo. É também 

de notar de forma interessante que o efeito de uma micro-esfera de RA também pode obter 

através da modulação da actividade de Gli3. Finalmente, propomos um modelo que define a 

combinação dos sinais que ditam a expressão de domínios distintos de hairy2 no mesênquima 

distal do membro. A PPD é definida por altos níveis de Gli3-A/Gli3-R≥1 (maiores que 1) mediados 

por sinalização da AER/FGF e ZPA/SHH; A DCD por altos níveis de FGF e níveis moderados de Gli3-

A/Gli3-R≥1 (tendendo para 1) derivado de ZPA/SHH e a AND por não possuir sinalização SHH e, 

portanto, Gli3-A/Gli3-R˂1 (menor que 1), para além de alta actividade de BMP4.  

No sentido de estabelecer a relevância funcional da expressão cíclica de hairy2 no 

crescimento e padronização do membro em desenvolvimento, propomo-nos a perturbar a 

expressão de hairy2 nas células distais do mesênquima do membro, recorrendo a infecção por 

retrovírus, expressando o gene hairy2 ou siRNAs específicos para o gene De momento estamos a 

realizar esta tarefa e os resultados são promissores. Sabendo que a expressão de hairy2 é 

fortemente regulada pelos sinais padronizantes da AER/FGF e da ZPA/SHH, esperamos obter 

elementos do membro com defeitos nos eixos PD e AP após desregulação da expressão de 
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Hairy2. De modo a apoiar a nossa tese da existência de paralelismos entre a somitogénese e o 

desenvolvimento do membro, avaliámos ainda a existência de uma frente de diferenciação no 

membro (DF) reminescente da frente de determinação na PSM (DetF). Verificamos também se a 

alteração dos limites de sinalização de FGFs ou RA ao longo do eixo PD tem efeito sobre o 

tamanho dos elementos ósseos do membro, reforçando as semelhanças com a somitogénese. No 

entanto estes resultados não foram até agora conclusivos. 

Tanto os paralelismos identificados no nosso trabalho, como os recolhidos a partir da literatura 

apontam para uma grande semelhança entre o desenvolvimento membro e do tronco ao nível 

funcional e de expressão génica. Todo o trabalho desenvolvido tem como objectivo global a 

aplicação dos conhecimentos adquiridos no processo da somitogénese para uma melhor 

compreensão de como as células indiferenciadas do membro em desenvolvimento adquirem 

informação espacial/temporal e se diferenciam de forma coordenada ao longo do tempo, 

formando um membro correctamente segmentado e inteiramente funcional. 
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1. GENERAL INTRODUCTION 

1.1. AN OVERVIEW ON VERTEBRATE LIMB PATTERNING 

 

Vertebrate appendages have undergone tremendous diversification, ranging from fin 

folds or pectoral and pelvic fins to wings, hands and legs. However, the fundamental 

arrangement and pattern of the developing tetrapod limb has been preserved in phylogeny 

(Shubin et al., 1997). Tetrapods have a pair of both fore and hind limbs, which emerge at defined 

somite positions perpendicular to the primary body axis (Figure 1.1). At presumptive limb levels, 

lateral plate mesoderm (LPM) cells proliferate under the epidermal tissue, initiating the 

formation of growing buds. Later on, this mesenchyme will give rise to skeletogenic precursors, 

while muscle precursor cells invade the limb upon delamination from the lateral edges of the 

nearby somites (Figure 1.1) (Niswander, 2003). Three orthogonal axes describe the anatomy of 

the limb: anterior-posterior (AP), from the thumb to little finger; dorsal-ventral (DV), from the 

back of the hand (knuckle) to the palm and the proximal-distal (PD), from the shoulder to the 

fingertips.  

A crucial step during the initiation of vertebrate limb development is the formation and 

establishment of morphogenetic signaling centers that co-ordinately control cell specification and 

proliferation along these three axes. Patterning of each limb axis is controlled by key signaling 

centres within the limb bud (Figure 1.1). Morphologically, the limb skeleton develops with three 

distinct sets of bones possessing a characteristic size and shape that are laid down along the PD 

axis of the growing limb bud. The apical ectodermal ridge (AER), which is formed by the 

thickening of ectoderm at the distal tip of the limb bud is responsible for the PD patterning of the 

limb and this axis is characterised by the most proximal stylopod (humerus and femur), the 

middle zeugopod (radius/ulna and tibia/fibula) and the distal autopod (metacarpals and 

phalanges) limb bone elements (Figure 1.1). The activities of the AER are mediated by Fibroblast 

Growth Factor (FGF) family of secreted proteins (Martin, 1998; Towers and Tickle, 2009) 

reviewed in Towers and Tickle, 2009, Martin, 1998). The zone of polarising activity (ZPA) which is 

located at the posterior domain of the limb bud regulates the AP axis development. Although the 

number of digits differs between chick and mouse, the molecular mechanism involved in their 

determination is almost similar (Towers and Tickle, 2009). Digit formation is instructed by ZPA 

secreted Sonic Hedgehog (SHH), which belongs to the Hedgehog (HH) family of signaling proteins 
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(Tickle, 2003). The DV axis is specified by the expression of wnt7a and the transcription factor 

Lmx1b, which are respectively expressed in the dorsal limb ectoderm and in the dorsal 

mesenchyme (Chen and Johnson, 1999; Arques et al., 2007). Expression of wnt7a in the ventral 

ectoderm is repressed by Engrailed1, a target of BMP signaling (Loomis et al., 1996).  

Additionally, cell proliferation, cell movement, cell death as well as assignment and 

interpretation of positional information must be coordinated along all the three axes for proper 

limb bud development.  

 

 

 

Figure 1.1: An over view of chick limb development. (A) Schematic representation of stage HH18 chicken embryo 

representing the forelimb and hindlimb positions in the AP body axis. (B) Transverse section of the embryo trunk at 

the forelimb level. As a result of rapid proliferation of the LPM cells under the surrounding ectoderm, the limb bud 

begins to be visible from stage HH17 onwards. These mesenchymal cells contain the skeletal precursors while the 

limb muscles are derived from the nearby differentiated somitic compartments. Somites differentiate into the 

ventro-medial sclerotome and the dorso-lateral dermomyotome which will further subdivide into dermotome and 

myotome. The precursor cells from the epaxial myotome migrate to form the back musculature (blue dots) and the 

precursors from the hypaxial region migrate to the newly formed limb buds (red dots). These cells take two paths to 

occupy the dorsal and ventral compartments, which will eventually become the extensor and flexor muscle groups of 
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the limb. This movement is facilitated by the surrounding structures such as the neural tube, notochord, aorta, and 

overlying ectoderm (reviewed in (Hawke and Garry, 2001; Niswander, 2003). (C) Stage HH23 limb illustrating the key 

limb signaling centers governing its patterning and growth along the three limb axes. The AER will direct the PD 

patterning through its morphogen FGFs. The distal limb mesenchymal cells directly under the influence of the AER-

FGFs are maintained in a proliferative undifferentiated state and this region is called the Progress Zone (PZ). The ZPA 

derived SHH patterns the AP axis and the non-ridge ectoderm is responsible for DV patterning. (D) Schematic 

representation of chick limb skeleton from a 7 days incubated embryo. All the three limb segments: the stylopod, 

zeugopod and the autopod are represented. 

  

1.1.1. LIMB BUD INITIATION  
 

Limb bud begins as a mass of mesenchymal cells encompassed within the ectoderm as the LPM 

at specific AP axis of the embryo (forelimb between somite position 15-20 in chick and 8-12 in 

mouse) starts to undergo rapid proliferation compared to the rest of the LPM (Searls and Janners, 

1971). These mesenchymal cells along with the ectoderm are believed to possess the cues to 

form a complete limb, as grafting of these cells in another location can induce ectopic limb 

development. Hox genes, particularly the HoxC cluster has been implicated in providing 

positional information to the limb forming flank, in such a way that the 3´ HoxC genes are 

expressed in the forelimb forming LPM and 5´ HoxC genes in the hindlimb LPM domain (Christ et 

al., 1998; Duboc and Logan, 2011). However, this is not conclusive, since deletion of the entire 

HoxC cluster did not alter limb position in mouse (Suemori and Noguchi, 2000).   

 

1.1.1.1. FGFs and WNTs in limb initiation 

 

FGFs in limb initiation 

Numerous molecules have been proposed to be required for limb initiation program 

(Martin, 1998). A potential cross talk between the FGF, WNT, RA and SHH signaling has 

pronounced effect on this process. These signaling pathways must be sensed by appropriate 

tissues to get the trigger and one such tissue is the intermediate mesoderm (IM) that lies 

between the somites and the LPM. Active participation of IM in limb initiation has been described 

based on the results obtained from classical experiments, namely placing a barrier between the 

IM and the LPM or extirpation of the IM, that inhibited limb initiation (Stephens and McNulty, 

1981; Strecker and Stephens, 1983; Geduspan and Solursh, 1992). However, irrespective of the 
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presence of IM all along the embryonic AP axis, the limb develops only from its presumptive 

territory suggesting that a signaling molecule could be expressed at this level of the IM. 

Eventually, this molecule was identified as FGF8 (Crossley et al., 1996; Vogel et al., 1996) (Figure 

1.2). Shortly before limb bud outgrowth and during its initiation, fgf8 is expressed at the surface 

ectoderm (SE) (Crossley and Martin, 1995; Mahmood et al., 1995) suggesting that the tissue 

located between the IM and the SE (LPM) is somehow relaying fgf8 from the IM to the SE.  The 

excellent candidate to mediate this event was found to be fgf10, which is induced by IM 

expressed fgf8 (Ohuchi et al., 1997; Xu et al., 1998) (Figure 1.2). This induction occurs in parallel 

to the appearance of the AER. Although fgf10 begins to be expressed in a wider domain of the 

presomitic mesoderm (PSM) and the LPM, at stage HH14 it becomes restricted to the 

presumptive limb areas (Ohuchi et al., 1997). Limbless mice generated by fgf10 mutants 

emphasise the importance of FGF10 in limb initiation (Min et al., 1998; Sekine et al., 1999). 

Remarkably, the capability of different FGF soaked beads to produce a complete ectopic limb 

when implanted in the flank (Martin, 1998) and to maintain the LPM cells in proliferative state, 

points FGFs as the key inducers of limb formation (Cohn et al., 1995; Ohuchi et al., 1997). In 

addition, these experiments also show that the short window of FGF ligand activity is enough to 

begin a whole cascade of signaling mechanisms necessary to form a complete limb (Duboc and 

Logan, 2011).  

All FGFs mediate their cellular responses by binding to and activating appropriate FGF 

receptors (FgfRs- a subclass of receptor tyrosine kinases). There are four known FgfRs (FgfR1-4). 

The alternative splicing within the third Immunoglobulin (Ig) like domain generates IIIb and IIIc 

isoforms in FgfR1-3 (Eswarakumar et al., 2005) that display different ligand specificity (Ornitz et 

al., 1996; Zhang et al., 2006). Similar to the FGF ligands, their receptors also have restricted 

spatial expression in limb  (Marcelle et al., 1995; Szebenyi et al., 1995; Lizarraga et al., 1999; 

Havens et al., 2006; Eloy-Trinquet et al., 2009; Sheeba et al., 2010) FgfR1 is ubiquitously 

expressed all over the limb mesenchyme from very early stages of its development. FgfR1 and 

FgfR2 take part in limb development right from very early stages (Orr-Urtreger et al., 1991; Xu et 

al., 1998) whereas, FgfR3 and FgfR4 are involved in later events like chondrogenesis and 

myogenesis through their proficient interaction with specific FGF ligands (Ornitz et al., 1996; 

Zhang et al., 2006; Sheeba et al., 2010). Although FgfR1-3 have splice variants, FgfR2IIIb and IIIc 

variants are crucial for limb initiation, since FGF8 and FGF10 signal through distinct FgfR2 splice 
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variants enabled by their tissue specific expression. FgfR2IIIb is mainly expressed in the ectoderm 

and FgfR2IIIc in limb mesenchyme (Orr-Urtreger et al., 1993). This exclusive expression profile of 

FgfR2 renders a paracrine signaling loop for FGF8 and FGF10 activity, which is crucial not only for 

limb initiation but also for its outgrowth. Ectodermal FGF8 and mesenchymal FGF10 

predominantly activate mesenchymal FgfR2IIIc and ectodermal FgfR2IIIb, respectively (Ornitz et 

al., 1996; Xu et al., 1998; Revest et al., 2001). Absence of FgfR2 signaling resulted in limbless mice 

revealing the importance of FgfR2 expression and epithelial-mesenchymal interaction for limb 

initiation (Xu et al., 1998). This is because, when there is no ectodermal-FgfR2, the mesenchymal 

FGF10 could not induce fgf8 in ectoderm including the AER, as this induction requires 

ectodermal-FgfR2. Since there is no FGF8 in the ectoderm to feedback to the mesenchymal 

FGF10, the epithelial-mesenchymal loop halts and so does the limb development. Furthermore, 

FGF signaling mediated by FgfR2IIIb is essential for ZPA-shh and AER-fgf4 expression to be 

induced (Revest et al., 2001). Although FgfR1 is shown not to be required for limb initiation (Deng 

et al., 1997), due to its strong mesenchymal expression, it could be transducing FGF signaling in 

limb mesenchyme (Revest et al., 2001) along with FgfR2IIIc. 

 

Integration of WNT signaling in limb initiation  

The Wingless (WNT) family members signal through the trans-membrane frizzled 

receptors. There are canonical and non-canonical WNT signaling pathways. In the canonical way, 

WNT proteins signal via β-catenin by repressing the axin/glycogen synthase kinase-3β (GSK3β) 

complex that stimulates the degradation of β-catenin (Kikuchi, 2000). Hence, in WNT-activated 

cells, cytoplasmic β-catenin accumulates and is translocated into the nucleus. There, β-catenin 

along with T-cell-specific factor and lymphoid enhancer binding factor1 (Tcf/Lef1) transcription 

factors activates the transcription of WNT target genes. In the non-canonical way, WNT signal 

occurs through the release of intracellular Ca2+, activator of protein kinase C (PKC) and 

Ca2+/calmodulin-dependent kinase II (CamKII) (Sheldahl et al., 1999; Kuhl et al., 2000).  In 2001, 

WNT signaling was introduced to the prevailing FGF based model of limb initiation, where the 

canonical WNT/β-catenin signaling was shown to be necessary and sufficient to induce both the 

fore and hind limbs in chick (Kawakami et al., 2001). At stage HH14, wnt2b is expressed in the 

LPM of the presumptive forelimb region and the IM along with fgf8 (Figure 1.2). According to the 

model proposed by Kawakami et al. (2001), fgf8 controls wnt2b expression in the LPM which 
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induces fgf10 expression in the LPM. Similar to FGF protein beads, ectopic WNT2b in the flank 

was able to produce ectopic limb (Kawakami et al., 2001) enlightening the importance of this 

molecule in limb initiation program. Furthermore, another WNT family member, wnt8c is co-

localized with fgf10 in the presumptive hindlimb area and thus may be responsible for restricting 

fgf10 to this area, as suggested by ectopic induction of fgf10 by WNT8c producing cells implanted 

in the embryo flank.  Additionally, this model also proposes that FGF10 in the LPM will in turn 

induce wnt3a in the SE along with fgf8 and WNT3a helps in the maintenance of fgf8 in the AER 

(Kengaku et al., 1997; Kawakami et al., 2001). Both WNT2b and WNT8c signal through the 

canonical β-catenin pathway and take part in the regulation of fgf10 expression (Kawakami et al., 

2001). However, the participation of WNT2b and WNT8c in mouse limb bud induction is 

questioned, since these molecules are not expressed in mouse limb (Agarwal et al., 2003). 

Nevertheless, the crucial WNT/β-catenin dependent transcription factors LEF1 and TCF1 have 

been illustrated to be required for normal fgf10 expression and limb development in mouse 

(Galceran et al., 1999; Agarwal et al., 2003).   

 

1.1.1.2. Importance of SHH and RA signaling in early limb development 

 

The nascent limb mesenchyme prior to initial shh expression is pre-patterned by 

anteriorly expressed Gli3 and posteriorly restricted Hand2 (also known as dHand) expression 

(Figure 1.2). These two molecules inhibit each other to maintain their domain-restricted 

expression. Thus, HAND2 inhibits Gli3 and Alx4 expression in the posterior mesenchyme and 

enables the establishment of shh expression in the ZPA (te Welscher et al., 2002). Recently, the 

absolute need for Hox9 genes from all the four Hox clusters (HoxA, B, C, D) for the initiation of 

Hand2 expression and eventually for shh in mouse forelimb was demonstrated (Xu and Wellik, 

2011). In the absence of Hox9 genes, Hand2 was never established in the posterior limb and Gli3 

expanded its domain to the posterior mesenchyme resulting in a skeletal phenotype similar to 

conditional shh or Hand2 null mutant mice (Chiang et al., 2001; Kraus et al., 2001; Galli et al., 

2010). The positive feedback loop between the AER-FGFs and ZPA-SHH helps to maintain their 

mutual expression (Laufer et al., 1994; Niswander et al., 1994) (Figure 1.2) and is crucial in all 

stages of limb development (Zeller et al., 2009). Accordingly, conditional shh mutants exhibit 

abrogated AER-fgf4 and fgf8 expression (Chiang et al., 2001; Kraus et al., 2001) and AER-fgf8/fgf4 
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mutants have no shh expression (Sun et al., 2002). This loop which links the mesenchymal SHH 

signaling with the ectodermal FGF signaling is mediated by mesenchymal expressed BMP 

antagonist Grem1 (Gremlin1) (Zuniga et al., 1999; Michos et al., 2004).  

 

 

 

 

Figure 1.2: A scheme illustrating all the important interactions involved during limb bud initiation. (A) Stage HH14 

chicken embryo, where the blue box represents the presumptive forelimb field between somite 15 and 20. (A´) 

Enlarged view of the presumptive forelimb region and operating molecular interactions therein. The intermediate 

mesoderm (IM) expresses fgf8 in a broader domain (green bar) which induce fgf10 expression in the lateral plate 
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mesoderm (LPM). This induction is regulated by fgf8 induced wnt2b expression in the LPM (combination of red and 

blue for fgf10+ wnt2b). The LPM also expresses meis2 and the forelimb identity gene Tbx5 downstream of RA 

signaling (Mic et al., 2004). (B, B´) Representation of stage HH16 chick embryo and the enlarged presumptive limb 

field interactions. During this stage, FGF10 from the LPM relay fgf8 expression from the IM to the surrounding 

ectoderm (SE). This happens through the induction of wnt3a in the SE (Kawakami et al., 2001). Both wnt3a and fgf8 

co-exists in the SE (navy blue and green). (C, C´) Scheme illustrating the molecular network underlying forelimb 

initiation in stage HH17 chick embryo. Initiation of shh (orange) expression and the emergence of the pre-AER are 

the key events taking place at this stage of development. (D) Higher magnification of stage HH17 limb bud (E9.5 in 

mouse) revealing the molecular cross talks involved in ZPA-shh establishment. The limb is pre-patterned by mutually 

antagonising anteriorly expressed Gli3 (yellow gradient) and the posteriorly expressed Hand2 (purple gradient). 

Positive cooperative regulations from RA, AER-FGFs and HAND2 facilitate shh induction in the ZPA, in turn, SHH 

induce fgf4 expression in the posterior AER. Among the signaling modules operating between the ZPA-SHH and AER-

FGFs positive loop (Benazet et al., 2009; reviewed in Zeller et al., 2009), by stage HH17, BMP induce Grem1 

expression through a fast module (2h). Eventually GREM1 will also be produced by ZPA-SHH which will relieve BMPs 

inhibition on AER-fgfs in the subsequent module (represented by dotted bars; Benazet et al., 2009). Black arrows 

indicate positive transcriptional interactions; black lines with blunt bars in the end represent inhibitions and dotted 

lines denote interaction that will occur in the subsequent stages of limb development. This image is a modification of 

Fig. 2 from the review Capdevila and Belmonte, 2001. 

 

 

Gli3 mediated initial pre-patterning of limb mesenchyme also restricts Grem1 to the posterior 

limb (te Welscher et al., 2002). This mesenchymal-epithelial interaction to establish the 

functional AER and ZPA consists of two loops: the initial fast loop (2h; Figure 1.2) of BMP-induced 

Grem1 expression in limb mesenchyme that enables the slow loop (12h) of SHH-GREM1-FGF 

(Benazet et al., 2009). Recent studies suggests the presence of SHH protein and Hedgehog 

signaling in the limb ectoderm including the AER (Bell et al., 2005; Bouldin et al., 2010). 

Furthermore, Bouldin et al. have described the role of AER-SHH signaling in regulating the AER-fgf 

expression and thus the length of AER in mouse and chick (Bouldin et al., 2010).  These authors 

have proposed that the link between AER-SHH signaling and AER-fgfs (4 and 8) expression is 

crucial to maintain proper mesenchymal SHH concentration (Harfe, 2011). The intensity of AER-

SHH signaling is directly proportional to the level of SHH produced by the ZPA cells i.e, if the ZPA 

produces too much of SHH, then this leads to a corresponding increase in the AER-SHH signaling 

which will modulate AER length by decreasing AER-fgf expression. As a result, the AER-FGF/ZPA-

SHH positive feedback loop will reduce the levels of SHH in the ZPA and regulate optimum 

concentration of SHH in the ZPA (Bouldin et al., 2010; Harfe, 2011).  
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Retinoic acid (RA), the active derivative of vitamin A signaling is also critical in many 

aspects of limb development including its initiation, since inhibition of RA synthesis or signaling 

prevents limb bud initiation in chick, mouse and zebrafish (Helms et al., 1996; Stratford et al., 

1996; Niederreither et al., 1999; Grandel et al., 2002; Gibert et al., 2006). Recently, RA has been 

proposed to have two distinct yet related roles during zebrafish fin development (Grandel and 

Brand, 2010). Consistent with the role for RA in limb initiation, Raldh2 mutant mouse or zebrafish 

lacks forelimb or pectoral fins development, respectively (Niederreither et al., 1999; Mic et al., 

2004; Gibert et al., 2006). These authors showed that at early gastrula stage, RA signaling 

specifies Tbx5 expressing fin precursors and in later stages, maintains and expands these fin 

precursors (Grandel and Brand, 2010). Somites express Raldh2 and serve as a main source of RA, 

which has been implicated in limb initiation, through classical experiments in chick. When an 

impermeable foil barrier was inserted between the somites and the LPM from where forelimb 

will emerge, forelimb buds failed to be formed (Duboc and Logan, 2011). Although maternal 

dietary RA supplementation rescued forelimbs of Raldh2/Raldh3 deficient mouse, these limbs did 

not possess any RA activity in both mesenchyme and presumptive LPM arguing against the need 

for RA for limb induction (Zhao et al., 2009). Endogenous RA synthesised in the somites and LPM 

is only needed in a paracrine fashion to antagonise FGF signaling in the developing trunk to 

provide a permissive environment for the induction of forelimbs. In agreement with these results 

from mouse mutants, zebrafish Raldh2 mutants treated with SU5402 (an FgfR inhibitor) formed 

pectoral fins which are otherwise absent (Zhao et al., 2009). This finding suggests a permissive 

role for RA rather than its long accepted instructive role (Lewandoski and Mackem, 2009).  

High rate of RA synthesis in the presumptive forelimb territory is demonstrated to be 

necessary for proper ZPA-shh expression and early limb development (Helms et al., 1996). In 

chick, RA signaling has been shown to induce ZPA-shh expression through its cooperative role 

with posterior signals like HAND2 (Niederreither et al., 1999; Tickle, 2002; Mic et al., 2004). 

Further, it is reported that RA deficiency prevents FGF4-SHH signaling loop (Power et al., 1999; 

Stratford et al., 1999). An antagonistic AER-FGF/Cyp26b1/RA module established during limb 

initiation even before the onset of shh expression in mouse forelimb development was recently 

identified (Probst et al., 2011). They have also demonstrated that RA beads could inhibit AER-fgf8 

and AER-fgf4 expression. This study had postulated two potent roles for RA at different limb 

developmental stages:  at induction stages, RA might be restricting fgf8 expression in the flank to 
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mark the forelimb territory and shortly after limb bud formation, RA establish proper AER length 

by controlling AER-fgf8 expression (Probst et al., 2011). This proposal is also supported by 

previous studies (Mic et al., 2004; Zhao et al., 2009; Probst et al., 2011). 

 

1.1.1.3. Establishment of limb identity  

 

 Although the two pairs of tetrapod limbs look very much alike in their early stages of 

development, soon they begin to be morphologically and functionally different. This difference 

starts with the differentially expressed genes in the fore and hindlimb territories. Tissue grafting 

experiments performed in chick suggest that the fore and hindlimb specification area in 

embryonic flank is established pretty earlier than LPM budding. When presumptive forelimb LPM 

cells were transplanted into an ectopic location, they always induced forelimb formation 

indicating that the specification of limb identity resides in these cells (Zwilling, 1955  ).  

 The T-box transcription factors, Tbx5 and Tbx4, and a paired-like homeodomain factor 

Pitx1 play important roles in type-specific limb initiation. Tbx5 expression starts in the 

presumptive forelimb region and its expression is maintained in the forelimb bud during limb 

development, whereas the expression of Tbx4 and Pitx1 is totally hindlimb bud specific (Gibson-

Brown et al., 1998; Isaac et al., 1998; Logan et al., 1998; Ohuchi et al., 1998; Saito et al., 2002). 

Limb specific expression of Tbx5 or Tbx4 is evolutionarily conserved (Duboc and Logan, 2011). 

Tbx5 or Tbx4 have the ability to change limb identity from one to the other when introduced into 

the presumptive hind limb or forelimb regions, respectively (Rodriguez-Esteban et al., 1999; 

Takeuchi et al., 1999; Takeuchi et al., 2003). Tbx5, Tbx4 and Pitx1 gain-of-function and loss-of-

function studies suggest that these molecules are involved in limb initiation and outgrowth 

process in association with members of the FGF and WNT families (Ahn et al., 2002; Ng et al., 

2002; Agarwal et al., 2003; Marcil et al., 2003; Rallis et al., 2003; Takeuchi et al., 2003; Minguillon 

et al., 2005). Takeuchi et al. (2003), blocked Tbx5 or Tbx4 genes activity by misexpressing 

dominant negative forms of these genes in the prospective limb field and produced limbless chick 

embryos via downregulation of FGF and WNT components. Similarly, when they misexpressed 

either one of these genes in the embryo flank, an ectopic limb was formed through the induction 

of the limb initiation oriented genes, fgf10, fgf8 and wnt2b or wnt8c suggesting that these T-box 

genes are not only involved in limb identity but also in limb initiation (Takeuchi et al., 2003). 
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Moreover, these results also reveal that Tbx genes function upstream of fgf and Wnt genes in 

limb (Duboc and Logan, 2011). Evidence for RA acting upstream of Tbx5 expression in mice also 

exists (Mic et al., 2004). Although, Tbx4 and Tbx5 are thought to substitute for each other 

(Minguillon et al., 2005), a difference in the phenotypes observed in Tbx5 (Rallis et al., 2003) and 

Tbx4 (Naiche and Papaioannou, 2003) null mutants argue against this possibility. Recent evidence 

points to different temporal roles for Tbx5 and Tbx4 genes: an early role during limb initiation by 

involving in FGF10 based feedback loop establishment and a later role in limb morphogenesis 

while limb outgrowth is independent of these genes (Hasson et al., 2007; Naiche and 

Papaioannou, 2007; Hasson et al., 2010). Despite these evidences, the direct involvement of T-

box genes in limb specification is still questioned and elusive (Minguillon et al., 2005; Naiche and 

Papaioannou, 2007). Pitx1 regulates Tbx4 expression and contributes to hindlimb initiation and 

morphology (Duboc and Logan, 2011). Consistent with Pitx1´s role in hindlimb identity, Pitx1 

misexpression in the forelimb has the ability to transform the morphologies into hindlimb 

oriented at the level of the bones, muscles and tendons in chick and mouse (Logan and Tabin, 

1999; Takeuchi et al., 1999; Delaurier et al., 2008).     

 

1.1.2. LIMB OUTGROWTH 
 

 Although the molecular determination at the presumptive limb level takes place between 

stages HH13 to HH14 in chick, limb bud will be visible only from stage HH17 onwards. In order to 

obtain a proper limb, changes should occur co-ordinately in three different orthogonal axes 

during limb outgrowth: the PD, AP and DV axes. Growth along each axis is controlled by different 

signaling centers: the AER, the ZPA and the non-ridge ectoderm respectively controls the PD, AP 

and DV axis. 

     

1.1.2.1. AER formation and fgf signalling in limb outgrowth 

AER formation  

As a consequence of the limb initiation program, certain inductive signals from the LPM 

will give rise to a thickening in the distal tip of the surface ectoderm structuring it like a ridge 

called the apical ectodermal ridge (AER). During its life span, the AER undergoes four sequential 

morphogenic changes namely initiation, maturation, maintenance and regression which are 
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denoted by changes in gene expression and cell shape (Altabef et al., 1997; Kimmel et al., 2000). 

In chick, the AER becomes visible from stage HH18 and it runs along the AP axis separating the 

dorsal and ventral sides of the limb, while in mouse, the AER is conspicuous from E10.5, although 

its activity can be traced back from E9.5 onwards (Wanek et al., 1989).   

During limb initiation, FGF10 in the LPM relays fgf8 expression from the IM to the AER 

(Ohuchi et al., 1997; Xu et al., 1998) where it will be expressed until its regression. Apart from the 

induction of the AER, FGF signaling through AER expressed FgfR2 is necessary for the survival of 

AER cells, its maintenance and proper AER-fgf8 expression (Lu et al., 2008). As mentioned before, 

the participation of WNT/β-catenin signaling in AER induction cannot be neglected. It is proposed 

that FGF10 will induce wnt3a in the SE along with fgf8 (Kawakami et al., 2001) and wnt3a helps in 

the maintenance of fgf8 in the AER during later stages through its persistent expression in the 

AER. Meanwhile, the complete absence of fgf8 expression in the SE of WNT/β-catenin mediators 

Lef-1 and Tcf-1 knockout mice (Galceran et al., 1999), the ability of ectopic WNT3A to induce fgf8 

and the inability of FGF8 to induce wnt3a suggest that WNT3A lies upstream of AER-fgf8 

expression (Kengaku et al., 1998; Kawakami et al., 2001). In agreement with the importance of 

ectodermally expressed wnt3a, its inactivation caused severe limb defects (Barrow et al., 2003). 

Moreover, β-catenin signaling has been shown to be necessary for the formation of functional 

AER and for its maintenance (Barrow et al., 2003; Soshnikova et al., 2003; Lu et al., 2008).  

The SE surrounding the LPM seems to be pre-patterned before limb bud induction and 

contains pre-AER cells (Altabef et al. 1997). These pre-AER cells migrate from the ectoderm 

towards the distal limb and compact themselves to form the mature AER (Loomis et al., 1998). 

Prior to AER induction, the DV specifying gene Rfng (Radical fringe) and the homeobox-

containing transcription factor En-1 are expressed respectively in the dorsal and ventral 

ectoderm of the chick limb bud (Davis and Joyner, 1988; Laufer et al., 1997; Rodriguez-Esteban et 

al., 1997). Eventually, AER forms right between the cells that express Rfng and En-1 where EN-1 

prevents the expression of Rfng in the ventral ectoderm (Laufer et al. 1997, Rodriguez-Esteban et 

al. 1997) indicating the importance of DV boundary establishment for AER induction. Bone 

morphogenetic proteins (BMPs) that belong to the Transforming growth factor beta (TGFβ) 

multigene family play a major role in determining the DV axis of limb (Ahn et al. 2001; Pizette et 

al. 2001). Since the interface between the dorsal and ventral ectoderm is necessary for the 

emergence of the AER, the importance of BMPs in AER formation is noteworthy. BMP4 and BMP7 
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signalling are participating in AER formation through ectodermally expressed BmpR1a (Ahn et al., 

2001; Pizette et al., 2001; Lallemand et al., 2005). In physiological condition these major signaling 

pathways cooperatively function in AER formation. Emphasising this notion, the necessity of BMP 

and FGF receptors, BmpR1a and FgfR2, respectively for AER formation and WNT/β-catenin 

signaling for its maintenance has been reported (Soshnikova et al. 2003; Lu et al., 2008). 

 Before regression, the signals from the AER maintain the underlying distal mesenchymal 

cells in undifferentiated proliferative state (Dudley et al., 2002; Sun et al., 2002) and pattern the 

PD axis of limb (Saunders, 1948). Eventually it starts to regress through apoptosis and become a 

flat cuboidal epithelium (Guo et al., 2003) at stage HH33-HH35 in chick hindlimb (Pautou, 1978). 

Despite its role in AER initiation, BMP signaling promotes AER destruction (Pizette and 

Niswander, 1999). Accordingly, the AER cells are first lost in the interdigital domain with high 

BMP signaling and then in the distal tip leading to its complete absence at birth (Guo et al., 2003). 

Expression of fgf8, considered as the marker of AER tissue that persists until its regression, is first 

lost in the AER over the primordia of digit4 followed by digit2 and digit3. This correlates the loss 

of AER-fgf8 expression with the number of phalanges in each digit in away digits with more 

phalanges switch-off fgf8 later than digits with fewer phalanxes (Sanz-Ezquerro and Tickle, 2003).  

 

FGFs are the prime AER signaling molecules  

The key signaling molecules produced by the AER are the members of the Fibroblast 

Growth Family (FGF) morphogenic proteins. Expression of fgf8 marks the AER progenitors even 

before the morphologically distinct AER is formed (Martin, 1998). After AER establishment in 

mouse and chick, fgf2, fgf4, fgf9, fgf17 and fgf19 are also expressed in the AER, while some are 

expressed only in chick (fgf2 and fgf19) (Fernandez-Teran and Ros, 2008). fgf10, fgf12, fgf13 and 

fgf18 are expressed in chick limb mesenchyme and fgf2 transcripts are detected both in the 

ectoderm, including the AER, and in the mesenchyme (Sheeba et al., 2010 and references there 

in). Although initially fgf8 begins to be expressed in patches of AER cells, soon it marks the entire 

AER (Crossley et al., 1996), whereas, other AER-fgfs (fgf4, fgf9, fgf17) are restricted to its 

posterior domain in chick and mouse (Fernandez-Teran and Ros, 2008; Mariani et al., 2008). 

Moreover, studies performed in mouse show that the spacio-temporal expression of fgf4 in the 

AER is negatively regulated by AER-FGF8, as the absence of fgf8 caused anterior expansion and 

prolonged fgf4 expression (Lewandoski et al., 2000; Moon and Capecchi, 2000).  
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The reason to imply FGFs as the mediator of AER signaling is due to the ability of heparin 

beads soaked in different FGF proteins to substitute the major role of AER as the regulator of PD 

growth and patterning after AER ablation (Niswander et al., 1993; Fallon et al., 1994; Martin, 

1998; Zeller et al., 2009). This property is partially attributed to their capacity to prevent distal 

limb mesenchymal cell death after AER extirpation (Fallon et al., 1994; Dudley et al., 2002).  

After a series of classical amputation and transplantation studies from 1940s, many other 

experimental manipulations in chick limb contributed to our present understanding about AER-

FGF signaling and its importance in limb development. Although ectopic application of FGF1, 

FGF2, FGF4, FGF8 or FGF10 in the flank gave rise to an ectopic limb (Cohn et al., 1995; Vogel et 

al., 1996; Ohuchi et al., 1997), the only gene among them that is expressed early and longer in 

the entire AER is fgf8.  However, misexpression of fgf8 in chick forelimb using retroviral vectors 

or by grafting cells transfected with fgf8 constructs caused severely shortened limb structure 

suggesting that higher and continuous exposure of FGF8 or misexpression at wrong time has 

adverse effect in limb development (Vogel et al., 1996). Similarly, implantation of FGF4 soaked 

beads in different positions of stage HH20-21 wing bud formed thick and short limb bone 

elements (Akita et al., 1996). These authors accounted the formation of thicker bones to 

upregulation of Bmp2 and Bmp4 expression following FGF4 bead implantation. Whereas, another 

study attributed the chemoattractive nature of FGF4 soaked beads for the generation of short 

radius and ulna (Li and Muneoka, 1999). This work shows that FGF4 is a potent chemoattractive 

molecule produced by the AER and its presence in the AER, is necessary for limb distal 

outgrowth. 

Nevertheless, the mutant studies performed in mice embryos have added substantial 

wealth of knowledge in this field. The mouse AER expresses fgf4, fgf8, fgf9 and fgf17, where, fgf8 

is the first to be expressed and persists in the entire AER until its regression unlike the other 

three members (Crossley and Martin, 1995; Mariani et al., 2008). Conditional KO of fgf8 in the 

AER using two different promoters, the Msx2 that corresponds to transient fgf8 expression in the 

forelimb and complete absence of fgf8 in the hindlimb (Lewandoski et al., 2000) and RARβ2 that 

render complete absence of fgf8 in the forelimb bud (Moon and Capecchi, 2000) reveal that FGF8 

is the only individual AER-FGF necessary for normal limb development. Additionally, these studies 

have also revealed the instructive nature of AER-FGF signal. On the other hand, the KO mice for 

other AER-FGFs either alone or in combination (fgf4: (Moon and Capecchi, 2000; Sun et al., 
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2000), fgf17: (Xu et al., 2000), fgf9: (Colvin et al., 2001), triple KO for fgf4, fgf9, fgf17: Mariani et 

al., 2008), did not show any limb abnormalities indicating that fgf8 is sufficient for normal limb 

patterning and growth, while the other members have redundant function. Consistent with their 

redundant function, FGF4 was able to replace and rescue the limb defects caused by the absence 

of FGF8 (Lu et al., 2005). Although conditional fgf8 and/or fgf4 KOs had defective limbs and 

normal limbs respectively, fgf8/fgf4 double KOs failed to form hindlimbs although defective 

forelimbs were formed (Sun et al., 2002). This variation observed among the hind and forelimb 

formation is due to the difference in the Msx2-Cre- function which commences before and after 

hindlimb and forelimb initiations, respectively. Thus, hindlimb presents complete absence of fgf8 

and fgf4 expression while forelimb has their transient expression in the AER.  The loss of hindlimb 

was attributed to the role of AER-FGFs as cell survival factors to maintain ideal number of cells in 

the limb mesenchyme to form the limb elements (Sun et al., 2002; Boulet et al., 2004). However, 

compound triple KO mice of fgf8/fgf4 along with other AER-fgf members (fgf9) displayed much 

severe forelimb phenotypes compared to fgf8/fgf4 double KO mouse forelimbs, indicating the 

importance of each AER-fgf´s contribution for the total AER-FGF signal (Mariani et al., 2008). 

Since fgf8 is the first FGF member to be expressed and the last to disappear from the entire AER, 

it could contribute in a more crucial way than other FGF members to the total AER-FGF signal 

allowing it to account for the phenotypes resulting from individual fgf8 inactivation.  

The impact of FgfRs is also equally important to that of FGF ligands for proper FGF 

signaling to occur. Interaction of FGFs with FgfRs leads to the formation of receptor dimers and 

activation of their intracellular tyrosine kinases domain. Activated kinases phosphorylate tyrosine 

residues to provide a docking site for other proteins to bind. In turn, signaling complexes are 

formed and cause a cascade of phosphorylation events that activate downstream signal 

transduction pathways. Among them the more important ones are the Erk/MAPK, Akt/PI3K and 

the PLCγ pathways (Dailey et al., 2005; Eswarakumar et al., 2005). During limb development the 

Erk/MAPK and the Akt/PI3K pathways have been proposed to be essential. Corson et al. (2003) 

detected phosphorylated-Erk (p-Erk) in the surface ectoderm of initiating limb and in a distal to 

proximal gradient in the mesenchyme during limb outgrowth stages of mouse. The authors were 

able to inhibit p-ERK in the presence of the FgfR inhibitor SU5402 suggesting the importance of 

the FfgR mediated activation of Erk/MAPK pathway in limb initiation, outgrowth and patterning 

(Corson et al., 2003). In the same year, another study performed in chick has proposed MAPK 
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phosphatase 3 (Mkp3) as the effector of limb FGF signaling, which was illustrated as a target of 

Akt/PI3K pathway. Mkp3 functions as an anti-apoptotic agent by dephosphorylating p-Erk (Muda 

et al., 1996; Kawakami et al., 2003). This study also demonstrated that p-Akt and p-Erk have a 

complementary expression during chick limb development, the former being expressed in the 

distal mesenchyme and the later in the AER, thus enabling the survival of distal mesenchymal 

cells (Kawakami et al., 2003). Later on, Palmeirim and co-workers shown that the distal to 

proximal gradient of mkp3 expression observed in chick distal limb mesenchyme is the 

consequence of mRNA decay (Pascoal et al., 2007b).  

As the complete deletion of FgfR1 or FgfR2 was lethal, different approaches such as, 

hypomorphic mutations, isoform KOs and transgenic chimeric animals were used to access their 

function during limb development (Xu et al., 1999). Manipulation of ectodermal FgfR2 levels 

originated various phenotypes, including  limbless mice, pointing to the importance of this 

receptor for limb initiation (Celli et al., 1998; Xu et al., 1998; Arman et al., 1999; Revest et al., 

2001) and supporting the involvement of FgfR2 in the epithelial (FGF8)-mesenchymal(FGF10) 

loop (Sekine et al., 1999). Shh and fgf4 expression were never observed in FgfR2IIIb disrupted 

mouse limb buds, strongly suggesting that FgfR2 ectodermal signal is required for their induction 

(Reveste et al., 2001). Genetic ablation of AER by conditional inactivation of FgfR2 in the AER 

after its induction by Msx2-Cre resulted in the absence of forelimb hand-plate emphasising the 

novel function of AER in autopod development (Lu et al., 2008). Cell survival and proliferation 

experiments have shown massive cell death only in the ectoderm and not in the mesenchyme of 

AER-FgfR2 KO limbs, suggesting a prematured regression of the AER in the absence of FgfR2 

signal (Lu et al., 2008). Alternatively, another study utilizing similar Msx2-Cre mediated 

ectodermal specific inactivation of FgfR2 also obtained the same phenotype and the authors 

compared it to the classical stage HH23 AER ablated chick limb skeleton (Yu and Ornitz, 2008). 

Unlike Lu et al (2008), who suggested a delay in autopod progenitor generation as a reason for 

the absence of forelimb handplate, Yu and Ornitz (2008) attributed this to increased cell death, 

decreased cell proliferation and failure to establish chondrogenic primordia along the PD axis 

marked by sox9 expression for the observed phenotype. Mesenchymal-FgfR2´s role in autopod 

patterning was also demonstrated using an RNA interference (RNAi) approach in mouse 

(Coumoul et al., 2005). Yu and Ornitz also inactivated FgfR1IIIc and FgfR2IIIc either alone or in 

combination to ensure complete absence of mesenchymal-FgfRs in mouse. This manipulation 
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resulted in mild limb phenotypes for FgfR1IIIc and no effect for FgfR2IIIc, while the double KO 

presented severe skeletal hypoplasia suggesting that AER-FGFs signal transduction by FgfR1 and 

FgfR2 in the early limb mesenchyme is partially redundant and that mesenchymal-FgfR1 plays a 

role in distal limb patterning, compared to the mesenchymal-FgfR2 (Yu and Ornitz, 2008). This 

result with FgfR1IIIc is consistent with previous reports about mesenchymal FgfR1 signal in distal 

limb patterning and morphogenic movements (Ciruna et al., 1997; Deng et al., 1997; Partanen et 

al., 1998; Xu et al., 1999; Ciruna and Rossant, 2001) and suggests that FgfR1 might be the 

predominant candidate mediating FGF signaling in the mesenchyme as proposed by Revest et al. 

(2001). By taking an approach of conditionally inactivating mesenchymal FgfR1 before and after 

limb initiation, Li et al. (2005) emphasised the necessity of mesenchymal FgfR1 for early limb 

patterning events, cell survival and for proper digit formation. In this study, early inactivation 

caused severely truncated limb skeletal phenotypes and late inactivation affected anterior digit 

formation (Li et al., 2005). In the absence of mesenchymal-FgfR1, although defective, AER-fgf8 

and ZPA-shh expression were observed further suggesting that FgfR1 signaling is dispensable for 

limb initiation (Li et al., 2005). Applying a similar strategy, Verheyden et al (2005) conditionally 

inactivated FgfR1 using two different cre promoters: T (brachyury) and shh, which disabled FgfR1 

throughout the limb mesenchyme and in the ZPA, respectively. The results enabled the authors 

to propose that FgfR1 signaling is necessary in the initial phase to pattern the PD axis by 

regulating cell number, in the middle phase for cell survival allowing the expansion of skeletal 

precursors and finally in later stages for autopod patterning (Verheyden et al., 2005).  

Overall, FGF signal from the AER that is transduced through FgfR1 and FgfR2 mainly 

functions as a cell survival factor for both the AER and mesenchymal cells. AER-FGFs also ensure 

that proper number of skeletal progenitors is specified for each PD segment (Reveste et al., 2001; 

Li et al., 2005; Lu et al., 2008). Table 1.1 summarizes all the important functional studies so far 

carried out to decipher the function of limb FGF signaling.  

 

 
Table 1.1: A comparative analysis of the limb phenotypes, gene expression alterations and main conclusions 
obtained from important functional studies performed in chick and mouse FGF signaling components 
 

 
Gene Manipulation  strategy Limb phenotypes, and main conclusions Reference 

fgf4 

fgf1, Fgf2 

OE RCAS BP(A)/ 
beads- C 
 

Importance of AER expressed FGFs and demonstrated 
ectopic limb formation from the flank upon respective 
bead implantations.  

Niswander et al., 1993; 
Fallon et al., 1994; 
Ohuchi et al.,1994  
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fgF4 OE Bead- C Chemo attractive nature of FGF4 responsible for distal 
limb outgrowth 

Li and Muneoka, 1999 

fgf8    FGF8 is an AER-derived mitogen that stimulates limb bud 
outgrowth in chick and mouse 

Mahmood et al., 1995 

fgf8 OE Bead- C 
 

fgf8 expression in IM is necessary for limb induction; FGF8 
induce shh expression in stage HH17 limb mesenchyme 

Crossley et al., 1996  

fgf8 OE RCAS BP(A)- C Reduction of proximal skeletal limb structures; digit 
abnormalities resembling the phocomelic phenotypes- 
FGF8 is a key signaling molecule involved in limb 
initiation, outgrowth and patterning 

Vogel et al., 1996 

fgf10 OE RCAS BP(A)- C Mesenchymal FGF10 can induce fgf8 expression and a 
complete ectopic limb; it is the endogenous inducer of 
limb bud formation 

Ohuchi et al. 1997 

fgf10   KO KO- M Perinatal lethality associated with complete absence of 
lungs; limb bud formation was initiated but outgrowth did 
not occur; Fgfr2b was expressed in presumptive limb 
region; no fgf8 expression was detected; AER and ZPA  
were not established  

Min et al., 1998; Sekine 
et al., 1999 

fgf17 KO M No limb defects Xu et al., 2000 
fgf9 KO M No limb defects Colvin et al., 2001 
fgf4 C-KO Msx2-Cre (AER) 

or RAR-Cre (IM, 
LPM & AER)- M 

No limb defects; normal shh, Bmp2, Bmp4, fgf8 & fgf10 
expression - suggesting a combination of at least 2 AER-
FGFs is needed to maintain ZPA-shh expression & limb 
development  

Sun et al., 2000; Moon 
et al., 2000 

fgf8  C-KO Msx2-Cre or 
RAR-Cre M 

Substantially shortened limb phenotype and autopod 
defects; late shh expression; anteriorly expanded AER-fgf4 
expression- suggesting AER-fgf8´s role in limb patterning 
and outgrowth 

Lewandoski et al., 2000 
Moon and Capecchi, 
2000  

fgf8/fgf4 C-KO Lefty-Cre(early 
mesoderm-IM) 
or RAR-Cre or 
AP2-Cre (PZ at 
E10.5 )- M 

No limb defects in Lefty-Cre-fgf8 KO; Absence of forelimb 
in RAR-Cre- fgf8/fgf4 KO & expression of shh & fgf10 were 
nearly abolished; Absence of both fore and hind limb in 
AP2-Cre-fgf8/fgf4 KO- suggesting AER expressed fgf8 & 

fgf4´s importance in limb initiation  

Boulet et al., 2004 

fgf8/fgf4 C-KO Compound-
Msx2-Cre- M 

Abnormal forelimbs and no hind limbs were generated; 
Shh expression was never initiated; presented abnormal 
cell death- suggesting AER-FGFs as cell survival factors 
regulating sufficient progenitor cell number to form limb 
elements 

Sun et al., 2002 
 

fgf4  C-
GOF 

Msx2-Cre GOF 
or Msx2-Cre 
substituting 
AER-fgf8 KO - 
mouse 
 

Limb polydactyly & syndactyly in fgf4 GOF mutants & 
expansion of shh & Gremlin1 expression were observed; 
FGF4 completely rescued limb defects caused by the loss 
of FGF8- suggesting the need for proper AER-FGF signaling 
for normal limb development and FGF4´s ability to replace 
FGF8 

Lu et al., 2005 

AER-fgfs 

(fgf8,4,9,1

7) 

C-KO Compound 
Msx2-Cre- M 

No limb defects & normal shh expression - AER-fgf4 fgf9 

& fgf17 triple KO; Mild limb defects-  fgf8/fgf17 or 
fgf8/fgf9 or fgf8/fgf4 double KO; Severe limb truncations- 
fgf8/fgf4/fgf9 triple KO suggesting the contribution of 
each AER-FGFs role for cell survival & PD patterning 

Mariani et al., 2008 

FgfR1 KO Gene targeting 
in ES cells- M 

Embryos die between E6.5 and E9.5 with severe growth 
retardation and defective mesodermal patterning.  

Deng et al., 1994; 
Yamaguchi et al., 1994 

FgfR1 KO Chimeric 
embryo- M 

Malformed limb buds-suggesting FgfR1 mediated 
signaling in the PZ for cellular proliferation and 
patterning; FgfR1 signal is dispensable for AER 
establishment and limb initiation 

Deng et al., 1997 

FgfR1 C-KO Ap2-Cre; Short & distorted AER; shh, mkp3 expression was Li et al., 2005 
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Hoxb6-Cre (LPM 
at E8.5)- M 

downregulated; affected autopod development- 
suggesting FGF/FGFR1 signaling is dispensable for limb 
initiation and necessary for PD patterning  (anterior digit 
formation) 

FgfR1 

 

C-KO T-Cre (in all limb 
mesenchyme) 
Shh-Cre (in 
posterior limb 
mesenchyme)- 
M 

T-Cre-FgfR1 mutants die at birth; present severely 
affected fore and hind limb skeletons with defect in all the 
3 limb segments; abnormal expression of shh, Bmps, 

Hox13 genes. Shh-Cre-FgfR1 mutants miss one digit in the 
autopod. Suggesting FgfR1´s role in PD patterning, cell 
survival and expansion of progenitor cell population. 

Verheyden et al., 2005 

Fgfr1IIIc C-KO Prx1-Cre- M Mild limb skeletal defects- suggesting unique function 
mesenchymal- FgfR1IIIc during limb development 
compared to mesenchymal-FgfRIIIc 

Yu and Ornitz, 2008 

Fgfr2IgIII KO M Perinatal lethality between E10.5-E11.5; no limb 
formation; absence of fgf8 expression in the ectoderm 
and fgf10 downregulation in limb mesenchyme-FGFR2 
signal is essential for the reciprocal regulation loop 
between FGF8 and FGF10 during limb induction. 

Xu et al. 1998 

FgfR2 KO Chimeric 
embryo- M 

No limb buds form; fgf10 and  msx1 were downregulated 
in presumptive limb mesenchyme; fgf8 expression was 
not detected  

Arman et al., 1999 

FgfR2IIIb KO Hypomorphic 
mutants- M 
 

Limb less mice were generated; limb bud initiates but fail 
to grow; fgf8, fgf10, msx1 & Bmp4 were expressed while 
shh & fgf4 were not expressed- suggesting an essential 
role for FgfR2IIIb in AER maintenance, limb outgrowth, 
and cell survival; FgfR1IIIc might be the major 
mesenchymal receptor 

Revest et al., 2001 

FgfR2  C-KO Msx2-Cre M Defective autopod; expression of mkp3, shh & Gremlin1 
was downregulated- Suggesting AER-FgfR2 is necessary 
for AER maintenance, autopod development by regulating 
the number of autopod progenitors  

Lu et al., 2008 

Fgfr2 C-KO Msx2-Cre- M Absence of hind limb & severely truncated (without 
autopod) forelimb ; also showed reduced cell 
proliferation- suggesting decreased cell proliferation and 
sustained cell death accountable for limb truncations 

Yu and Ornitz, 2008 

Fgfr2IIIc C-KO Prx1-Cre- M No limb skeletal defects Yu and Ornitz, 2008 
FgfR1IIIc/F

gfR2IIIc 

C-KO Prx1-Cre (both 
fore & hindlimb 
mesenchyme)- 
M 

Severe skeletal hypoplasia in forelimbs and hindlimb- 
suggesting that AER-FGF signaling is mediated in the 
mesenchyme by both FgfR1 & FgfR2. This facilitates SOX9 
function and ensure progressive establishment of 
chondrogenic primordia along the PD axis. 

Yu and Ornitz, 2008 

 
KO: Knockout; C-KO: Conditional Knockout; C-GOF: Conditional Gain of Function; OE: Overexpression; M: Mouse; C: 
Chick 

 

1.1.2.2. Proximal-Distal (PD) patterning 

 

The PD axis defines the primary direction of limb outgrowth and is governed by the AER. 

This axis is characterized by three limb segments: the most proximal stylopod, the middle 

zeugopod and the distal autopod. These skeletal elements are laid down as cartilaginous 

primordia in a PD sequence during limb outgrowth.  
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PD patterning models 

The Progress Zone (PZ) model  

Microsurgical experiments performed in 1940s in order to access the role of the AER in 

laying down the future limb tissues show that the earlier the removal of the AER, the most 

proximal limb elements are truncated (Saunders, 1948). These results directly revealed that the 

AER is necessary for normal limb outgrowth and its patterning in the PD sequence.  The PZ model 

was built on this foundation and proposes that the positional values in the distal mesenchyme 

freezes after AER ablation and thus the resulting skeletal patterns reproduce the PD information 

already acquired by these cells. Additionally, other microsurgical manipulations were performed 

in which AER or AER along with the limb distal mesenchyme were swapped from younger to 

older and older to younger embryos (Rubin and Saunders, 1972; Summerbell et al., 1973). Limb 

elements developed from this transplanted tissue retained their presumptive fate, suggesting 

that the PD positional information is retained by the distal limb mesenchyme and that the nature 

of the AER signal is permissive. These conclusions led to the proposal of the `PZ model´ in 1973 

(Summerbell et al., 1973; summarized in Figure 1.3). This model calls the distal mesenchymal 

cells corresponding to about 300 µm just beneath the AER as the PZ. These cells are under the 

influence of the AER and are maintained in an undifferentiated, proliferating state and keep them 

labile to acquire positional information about their future PD fate. The model also proposes an 

intrinsic timer operating in the PZ that would provide the cells the notion of time they spend in 

the PZ. Due to continuous cell proliferation and outgrowth of the limb, cells will be pushed out of 

the PZ and escape the influence of the AER. The amount of time each cell spends in the PZ will 

determine its positional identity. In other words, the cells that leave the PZ earlier will be 

incorporated in more proximal limb segment compared to the cells that leave later in 

development. Once cells leave the PZ, cartilage elements begin to develop in a proximal to distal 

sequence.  

This proposal was supported by X-irradiation experiments which gave similar results in the 

congenital limb malformation, phocomelia or the toxicological effect induced by thalidomide 

where proximal limb elements are missing while the distal elements are present (Wolpert et al., 

1979). The authors reasoned this phenotype through their model: PZ cells supposed to form the 

proximal limb segments were killed by irradiation and hence the remaining cells need to spend 

longer time in the PZ before they could be pushed out to be determined. This phenomenon 
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makes them to be a part of a more distal element while the proximal elements are left without 

enough or no determined cells. Recently Tabin and collaborators repeated the same X-irradiation 

experiments in the light of molecular data that has been accumulated during the past years 

(Galloway et al., 2009). Although the results were similar to that of Wolpert et al. (1979), these 

authors suggested that the phenotype is not due to patterning defects but the reflection of poor 

cell survival and differentiation (Galloway et al., 2009). This conclusion was deduced based on the 

expression of segment specific marker genes (Meis1, Hoxa11 and Hoxa13) subsequent to 

irradiation. While no respecification was observed at the level of the markers, expression of Sox9, 

the earliest marker for condensing mesenchyme showed considerable absence or reduction in its 

expression (Galloway et al., 2009). These experimental results enabled the authors to state that 

the absence of proximal segments after X-irradiation is the consequence of the proximal 

chondrogenic precursor’s elimination by cell death and not because the cells stay in the PZ longer 

than usual and acquire different PD identity.  

However, the PZ model prevailed for around 30 years after which a new model was 

proposed to explain the PD patterning of limb. Moreover, the driving force of the PZ model, the 

distal limb mesenchymal intrinsic clock was revealed by Palmeirim and co-workers after 10 years 

of the discovery of the somitogenesis molecular clock (Pascoal et al., 2007). 

 

Early specification (ES) model  

The forelimb developed from the fgf4/ fgf8 double KO mice (Sun et al., 2002) and the 

hindlimb developed from single fgf8 KO mice (Lewandoski et al., 2000) lacked some proximal 

elements while forming the distal elements arguing against the PZ model which states that PD 

patterning is a progressive process where proximal structures are laid down before the distal 

(Summerbell et al., 1973). Although these phenotypes could be explained based on the X-

irradiation experiments (Wolpert et al., 1979) in such a way that the PZ cells might have been 

killed by the reduced AER-FGF signaling, hence, the remaining cells need to stay in the PZ longer 

than usual and thus got distalized. However, this was not the case since TUNEL assay showed cell 

death only in the proximal zone of the limb (Sun et al., 2002). At the same time, based on fate 

mapping and transplantation experiments in chick limb, Dudley and co-workers (Dudley et al., 

2002) came up with a new model in which they proposed that all the three limb segments are 

already specified in the very early limb bud as distinct domains and only further expansion occurs 
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during development (Figure 1.3). Cell death and cell proliferation assays revealed that the distal 

mesenchymal cells corresponding to the PZ suffered extensive cell death and decreased cell 

proliferation after AER extirpation, which emphasises these mesenchymal cells as the possible 

cause for the truncations resulted from AER ablation experiments which were on the basis of the 

proposal of the PZ model (Dudley et al., 2002). Moreover, cell labelling studies did not show the 

incorporation of the distal limb cells in any skeletal elements formed after AER ablation (Dudley 

et al., 2002; Galloway and Tabin, 2008) as it had been predicted by the PZ model. Additional fate 

mapping studies to identify the time or stage at which the PD segments are specified revealed 

that the already specified pool of progenitor cells in the early chick limb bud complete their 

expansion between specific developmental stages: stylopod between stage HH19-20, zeugopod 

between HH22-23 and the autopod progenitors continue to expand even after stage HH26 

(Dudley et al., 2002). Consistent with this, another fate map study carried out in chick showed 

that the prospective stylopod and zeugopod limb segments were located in distinct distal 

domains by stage HH19 limb while considerable mixing or overlap between the future zeugopod 

and autopod cells was observed (Sato et al., 2007). In agreement with both the PZ and ES models, 

this fate map also states that the proximal elements are laid down before the distal elements. 

 

The two signal (TS) model 

Although a mechanism that renders the notion of time to the distal limb mesenchymal 

cells has been identified (Pascoal et al., 2007), so far no other functional or molecular data 

supporting neither the PZ model nor the ES model has been reported. As a result, a new model 

purely based on the molecular evidence such as gene expression pattern and genetic mutations 

was proposed (Tabin and Wolpert, 2007) (Figure 1.3). During the early and outgrowth limb 

developmental stages, the distal limb mesenchymal cells experience the activity of two opposing 

signals: RA signaling from the proximal stump and FGF signaling from the distal tip (Capdevila et 

al., 1999; Mercader et al., 1999; Mercader et al., 2000). However, in the early limb bud, these 

two signals overlap with each other. As the limb bud grows, the space between the proximal-RA 

and the distal-FGF signals increases and establishes three separate domains: the proximal domain 

under the influence of RA signal, the distal domain under the influence of FGF signal and the 

middle domain that is neither influenced by RA nor by FGFs. These domains also express specific 

genes which represent the three PD segments of the limb: the proximal meis1 or meis2, the 
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middle portion with Hoxa11 and the distal most with Hoxa13 which would result in the formation 

of stylopod, zeugopod and autopod respectively. Except meis1 and meis2, none of these segment 

specific markers are directly involved in segment specification (Tabin and Wolpert, 2007). This 

model also refers the region almost corresponding to the PZ as Undifferentiated Zone (UZ) as the 

cells in this region are under the influence of the AER-FGFs and maintained in a proliferating 

undifferentiated state (Globus and Vethamany-Globus, 1976; Tabin and Wolpert, 2007). Due to 

limb outgrowth and continuous proliferation in the UZ, cells are pushed out of the AER-FGFs 

influence and begin to enter the differentiation program. The marker gene expressed in the cell 

at the time of its exit from the UZ determines its fate (in which limb element the cell should be 

incorporated). The limb region from where cells start their differentiation program is named as 

the `Differentiation Front´ (DF) which represents the proximal limit of the AER-FGF signal (Tabin 

and Wolpert, 2007).  

 

 

 

 

Figure 1.3: Depiction of all the three PD patterning models so for proposed. (A) The present model for PD 

patterning: The two-signal model. As per this model, the opposing gradients of flank RA (Proximal-Distal) and the 

AER-FGF (Distal-Proximal) signals pattern the limb mesenchyme based on their influence. This sequentially 
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establishes the proximal stylopod (S) expressing Meis1 or Meis2, middle zeugopod (Z) expressing Hoxa11 and the 

most distal autopod (A) with Hoxa13 expression (reviewed in Tabin and Wolpert, 2007). The asterisks represent limb 

domains under the influence of both the RA and FGF signals (B) The very first PD patterning model: The progress 

zone model (Summerbell et al., 1973). Here, the distal most (~300μm) limb mesenchymal cells under the influence of 

the AER-FGFs called the Progress Zone (PZ) is maintained in a labile state to undergo patterning by the intrinsic clock 

like mechanism functioning in these cells (marked with spiral arrow). Thus, the limb segments are laid down in a PD 

sequence. (C) The early specification model proposed is based on the fate map studies which states that the limb 

segments are pre-patterned in the very early limb mesenchyme and they just need to proliferate and expand further 

in population to form the skeletal primodia (Dudley et al., 2002). (D) Chick wing skeleton representing all the three 

limb segments that (stylopod, zeugopod and the autopod) eventually form from the patterned limb mesenchymal 

cells. All limbs are represented anterior on top and proximal side to the left. 

 

 

This model could explain the single fgf8 and double fgf8/fgf4 KO mouse mutant 

phenotypes that do not fit into the explanations of the previous PD patterning models (Mariani et 

al., 2008). The participation of the proximal (RA) and distal (FGF and WNT) signals in PD 

patterning was recently substantiated by two parallel studies in chick embryo. Cooper et al. 

(2011), used the in vitro system of cultured primary limb mesenchymal cells from stage HH18 

embryo in the presence of WNT3A and FGF8 to maintain them in the proliferative 

undifferentiated state to prove the requirement of RA signaling for the expression of the 

proximal marker Meis1 and the necessity of AER produced FGF8 and WNT3A for the sequential 

expression of Hoxa11 and Hoxa13 by quantitative RT-PCR. Further, the authors also utilized the 

recombinant limbs in association with their previous experiments (in vitro cultures of stage HH18 

limb mesenchyme maintained under various combinations of FGF8, WNT3A and/or RA) to show 

that exposure of limb mesenchymal cells to RA signaling is enough to express Meis1 and for their 

subsequent differentiation into stylopod. Similarly, FGF and WNT signaling make the cells to 

express the middle and distal markers, Hoxa11 and Hoxa13 and eventually form the zeugopod 

and autopod, respectively (Cooper et al., 2011). Simultaneously, another study also concluded 

the same through transplantation of stage HH19-20 distal leg tip to non-RA and endogenous RA 

containing embryonic regions and recombinant limb experimental systems in chick (Rosello-Diez 

et al., 2011). These experiments suggest a balance between the trunk-RA and the distal-FGF 

signals rather than certain level of one particular signal for PD patterning. Moreover, they also 
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suggest that the plasticity of limb mesenchyme to respond to the proximal RA signal is 

progressively lost as the limb develops (Rosello-Diez et al., 2011). 

 

1.1.2.3. WNT and BMP signaling in limb outgrowth 

 

WNT signaling in limb outgrowth 

 Several members of WNT family are expressed in the SE including the AER and in the limb 

mesenchyme (Loganathan et al., 2005). Apart from the importance of WNT/β-catenin signaling in 

AER establishment and maintenance (Fernandez-Teran and Ros, 2008), it is also required for cell 

proliferation, cell fate specification and differentiation (ten Berge et al., 2008). Although the AER 

has been implemented in maintaining the distal limb mesenchymal cells in an undifferentiated 

proliferative state, AER-FGFs have been demonstrated as survival factors more than proliferative 

signals (Reveste et al., 2001; Li et al., 2005; Lu et al., 2008). Recently, AER-WNTs were established 

as the proliferative signaling molecules produced by the ectoderm. While continuous exposure to 

FGF8 or WNT3A rendered chondrogenic or connective tissue fate, their combined application to 

limb micromass cultures retained the cells in undifferentiated proliferative state and upon their 

withdrawal cells began to differentiate. Interestingly, these signals regulate the expression of 

distinct target genes based on their individual or synergistic action in the limb field (ten Berge et 

al., 2008). Thus, a model implementing WNT/FGF signaling was proposed to explain limb 

development: The early limb mesenchyme experiences both the ectodermal WNT and AER-

FGF/WNT signals and maintains the cells in a multipotent proliferative state.  As a result of 

proliferation, cells start to escape the influence of the AER derived signals and begin to 

differentiate into chondrocytes. Since the entire limb ectoderm expresses wnt3a, limb periphery 

still undergoes proliferation. WNT signal also re-specifies the outer layer of chondrogenic cells 

into soft connective tissue fate. Although, proliferation takes place all over the limb margin by 

WNT signal, the distal proliferation dominates due to the strength of the AER-FGF/WNT signals. 

Thus, a distally growing (the limb also grows in other dimensions) limb with a chondrogenic core 

surrounded by connective tissues is sculptured by the combination of FGF and WNT signal (ten 

Berge et al., 2008). Moreover, Dickkopf1 (Dkk1) the negative regulator of WNT signaling also 

regulates limb development. Corroborating this, thalidomide induced limb truncations were 

attributed to enhanced Dkk1 levels, induced WNT/β-catenin signal inhibition and increased cell 
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death since, blocking Dkk1 or Gsk3 dramatically counteracted thalidomide-induced limb 

truncations (Knobloch et al., 2007).   

 

BMP signaling in limb outgrowth 

BMP signal plays a considerable role in limb development. However, its contribution to 

the PD patterning and outgrowth is not as highlighted as its role in early limb establishment, DV 

patterning, chondrogenic differentiation as well as patterning and shaping of the digits. Several 

members of the BMP genes are expressed throughout limb development (Geetha-Loganathan et 

al., 2006). Particularly, Bmp2, Bmp4 and Bmp7 are crucial for normal limb formation. Although all 

these three Bmps are expressed in the AER and mesenchyme, Bmp4 and Bmp7 have stronger 

expression in the AER, while Bmp2 and Bmp7 have stronger distal limb mesenchymal expression 

(Geetha-Loganathan et al., 2006). Due to the absolute requirement of these BMPs for embryo 

development and their functional redundancy, it had been hard to decipher their precise 

function in limb development until the introduction of the conditional allele technique where we 

can inactivate or over express genes in a tissue and stage specific manner.  

In the developing limb, the predominantly expressed BMP receptors are BmpR1a and 

BmpR1b. Among these, BmpR1a has high affinity for BMP2 and BMP4 (Yamaji et al., 1994; 

Robert, 2007). The ubiquitously expressed BmpR1a mutant mice present abnormalities in all the 

three limb segments (Ovchinnikov et al., 2006), while mutants for BmpR1b expressed in the 

mesenchymal condensations display mild defects in cartilage differentiation (Baur et al., 2000; Yi 

et al., 2000). Inactivation of mesenchymal-BmpR1a resulted in mildly affected stylopod/zeugopod 

and severely affected autopod. The short limb phenotype was attributed to reduced cell 

proliferation as CyclinD1 and Wnt5a expression decreased in the mutant limbs rather than PD 

patterning defects (Ovchinnikov et al., 2006).  But, AP and DV patterning signal related genes 

such as: patched1, Hoxd11, Hoxd13 and Lmx1b were affected in the mutant limb buds suggesting 

a patterning defect in these two axes. However, these molecular changes and cell proliferation 

defects were traced back only from E11.5 and so the limb skeletal phenotype might be a 

consequence of poor mesenchymal condensation and cartilage differentiation rather than 

incorrect patterning (reviewed in Robert, 2007). Individual inactivation of either Bmp7 or Bmp4 

had almost no effect to mild autopod defects with polydactyly (Bmp7- Luo et al., 1995; Bmp4- 

Selever et al., 2004) due to the functional redundancy between BMPs. Tabin and his group took 
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an approach of conditionally inactivating Bmp2, Bmp4 and Bmp7 either alone or in combination 

to gain further insights on the role of BMP signaling in limb development (Bandyopadhyay et al., 

2006). This study revealed that none of these BMPs are involved in the limb mesenchymal 

patterning, but a certain threshold of BMP signaling is necessary to form proper chondrogenic 

condensations (Bandyopadhyay et al., 2006). However, the BMP antagonist GREM1 which is 

expressed in a complementary pattern to the Bmp´s in chick forelimb is important for distal 

outgrowth by neutralizing BMP signal (Merino et al., 1999) and by relaying SHH mediated positive 

feedback loop (Zuniga et al., 1999; Michos et al., 2004) to maintain a functional AER.  

 

 1.1.2.4. Role of RA and SHH signal in limb outgrowth 

 

 Role of RA signal in limb outgrowth 

RA is an important signaling molecule for embryo development. Although it is difficult to 

detect its precise location in the embryo, detection of RA synthesising (Retinaldehyde 

dehydrogenases: Raldh1-3) and catabolising enzymes (cytochrome P450 family members: 

Cyp26a1, b1, c1) distribution is an alternative approach to locate RA. During limb development, 

the synthesising and catabolising enzymes are transcribed in mutually exclusive domains, where 

Raldh2, the most relevant enzyme for limb development (Niederreither et al., 1999) is expressed 

in the limb stump mesenchyme and Cyp26b1 in the distal limb mesenchyme and ectoderm other 

than the AER (Yashiro et al., 2004) generating a graded RA activity across the limb mesenchyme 

(Lewandoski and Mackem, 2009). RA activity is denoted by two closely related homeobox genes, 

Meis1 and Meis2 expression. These genes are expressed in the LPM before limb initiation, in the 

entire nascent limb bud mesenchyme, in early phase of limb development and later in the 

proximal limb region, up to the humerus-radius/ulna boundary (Tabin and Wolpert, 2007). This 

pattern of proximal to distal RA signaling opposing the distal to proximal FGF signaling has long 

been believed to be an instructive signal functioning during limb initiation and patterning. These 

genes have been identified as determinants of proximal limb elements, since overexpression of 

either of these Meis genes leads to inhibition or truncation of the distal compartments. In 

addition, ectopic distal Meis1 expression inhibits progressive distalization of PZ cells, resulting in 

limbs with proximally shifted identities along the P-D axis in chick and mouse (Capdevila et al., 

1999; Mercader et al., 1999; Mercader et al., 2000; Mercader et al., 2009). When RA activity in 
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the limb mesenchyme was distally expanded by inactivation of its degrading enzyme Cyp26b1, 

distal limb truncated phenotypes similar to Meis gene overexpression were observed (Yashiro et 

al., 2004). Also in amphibians RA acts as a proximalizing signal during limb regeneration causing 

tandem duplicated PD limb structures (Maden, 1982). Indeed, the two-signal model for PD 

patterning has been built on the basis of the work of Mercader et al. (2000), where the authors 

clearly showed the proximalizing potential of RA signal denoted by Meis expression which is 

counteracted by the distal FGF signaling in chick limb (Mercader et al., 2000). As mentioned 

before, the proximalizing ability of RA during chick limb development has been clearly illustrated 

by two parallel studies (Cooper et al., 2011; Rosello-Diez et al., 2011). Furthermore, apart from 

the necessity of RA signal in the early phase of limb development for the induction of Tbx5, Meis2 

and Hand2, it is also required in later phase for proper AER formation (Mic et al., 2004). Together, 

these data provide a compelling evidence for the requirement of RA signaling for proper PD 

patterning. However, recent data based on Raldh2/Raldh3 double KO mice argue against the 

instructive role of RA signal during limb development (Lewandoski and Mackem, 2009). These 

mice, which had a complete absence of endogenous RA production/signaling, managed to 

restore normal hindlimb and relatively small forelimb upon maternal RA supplementation during 

gastrulation (Zhao et al., 2009). Since the restored limb buds completely lacked RA activity, these 

authors proposed that the role of RA is only to counteract FGF signaling which will otherwise 

inhibit limb induction (Zhao et al., 2009). Supporting this proposal, recently, AER-FGF signal was 

found to positively regulate distal limb mesenchymal Cyp26b1 expression in mouse (Probst et al., 

2011).  

 

 SHH signaling in limb outgrowth 

ZPA-SHH signaling is well known to govern AP limb patterning (Riddle et al., 1993). Null 

shh mutants present abnormal limb phenotype with unaffected stylopod, severely affected 

zeugopod and autopod (Chiang et al., 2001; Kraus et al., 2001). Moreover, expression of AER-fgf8 

was progressively lost in shh null limbs and restricted to the posterior AER indicating that the SHH 

signaling is not only important for AP patterning but also for proper PD patterning. 

Oligozeugodactyly (ozd) chick mutant limbs, which develop in the absence of SHH signaling, also 

exhibit skeletal phenotypes similar to that of shh null mouse mutants and show progressive loss 

of fgf4 and fgf8 expression in the AER (Ros et al., 2003). These results support the positive 
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signaling loop operating between AER-FGFs and ZPA-SHH via the BMP antagonist GREM1 to 

maintain each other’s expression (Michos et al., 2004). In fact, the ZPA-SHH/GREM1/AER-FGF 

positive module is a self-regulatory loop allowing the propagation and termination of distal limb 

outgrowth (Benazet et al., 2009; Verheyden and Sun, 2008; Scherz et al., 2004) supporting the 

fact that SHH signaling may have a role in PD patterning. In corroboration with this, Probst et al. 

identified a negative AER-FGF/Cyp26b1/RA module in mouse which provided a more direct 

evidence for the requirement of SHH in PD patterning. These authors show that ZPA-SHH signal 

not only allows the propagation of the ZPA-SHH/GREM1/AER-FGF positive module, but also 

indirectly enables the expression of Cyp26b1 in the distal limb mesenchyme through AER-FGFs 

which, in turn, establishes a RA free distal domain (Probst et al., 2011). The negative AER-

FGF/Cyp26b1/RA module is crucial for distal propagation by eliminating the teratogenic activity 

of RA (Yashiro et al., 2004; Zhou and Kochhar, 2004). Distal mesenchymal cells have to be 

maintained in a proliferative and undifferentiated state for distal propagation of limb (Dudley et 

al., 2002). SHH also functions as a proliferative signal in the distal limb mesenchyme in chick and 

mouse (Towers et al., 2008; Zhu et al., 2008), further emphasising its role in distal limb 

outgrowth. 

 

1.1.3. ANTERIOR- POSTERIOR (AP) PATTERNING 
 

Limb development should also occur along the anterior to posterior (AP) axis to pattern 

the autopod that runs from the little finger to the thumb in the forelimb. The directions for this 

axis formation is provided by the posterior distal limb mesenchyme located signaling centre, the 

zone of polarizing activity (ZPA).   

 

1.1.3.1. Establishment of ZPA-SHH expression  

The early classical experiments in chick (Saunders and and Gasseling, 1968) lead to the 

discovery of the limb polarizing region, a group of mesenchymal cells located at the posterior 

margin of limb bud. This region has the potential to induce complete mirror image duplications of 

the digits when transplanted to the anterior margin of chick wing bud, revealing its function an 

AP limb axis organiser (Saunders and Gasseling, 1968). The number and identity of the induced 

digits was shown to be dependent on both the strength (Tickle, 1981)  and duration (Smith, 1980) 



Molecular parallelisms between vertebrate limb development and somitogenesis C. J. Sheeba 

   

32 | P a g e  

 

of the polarizing signal. Based on these findings, it was proposed that the ZPA signal should be 

mediated by a morphogen. RA was the first chemical identified to behave as a polarizing activity 

morphologic signal, because of its diffusible nature and potential to establish a gradient (Tickle et 

al., 1982). Moreover, dose-dependent anterior digit duplications similar to the polarizing region 

grafts were observed, when RA-soaked beads were implanted at the anterior margins of chick 

wings (Tickle et al., 1985). But, now it is known that the effect of RA on AP patterning is not 

direct, but, through the activation of shh expression (Riddle et al., 1993).  

Eventually, Tabin and colleagues identified sonic hedgehog (SHH) as the correct ZPA 

signaling molecule (Riddle et al., 1993). Several molecular networks function together to initiate 

shh expression in the ZPA. Two molecules upstream of SHH such as the basic helix-loop-helix 

(bHLH) transcription factor HAND2 and Gli3 are involved in the early restriction of shh to the 

posterior portion of the nascent limb bud by mutual antagonism (Zeller et al., 2009; te Welscher 

et al., 2002) (Figure 1.2). Functional analysis of Hand2 in mice emphasises the role of this 

molecule in shh initiation. Hand2 deficient limbs fail to express shh and have limb skeletal 

phenotypes similar to shh null limbs (Charite et al., 2000; Galli et al., 2010), whereas, over-

expression of Hand2 caused polydactyls limb (McFadden et al., 2002). This particular function of 

HAND2 is expected to happen through its direct interaction with the cis-regulatory region known 

as the ZPA regulatory sequence (ZRS), located about 800 Kb up-stream of the shh gene (Lettice et 

al., 2003; Liu et al., 2009; Galli et al., 2010). Similar to Hand2, Gli3 also restricts the expression of 

5´Hoxa and Hoxd genes to the posterior limb which participate in the initial establishment of shh 

expression (Zuniga and Zeller, 1999; Kmita et al., 2005; Tarchini et al., 2006) through their direct 

interaction with the ZRS (Capellini et al., 2006). Interestingly, Galli et al (2010) enlightened the 

requirement of cross interactions between HAND2, Gli3 and HoxD13 in the ZRS of mouse limb for 

shh expression in the posterior limb bud.  

Many other additional pathways are also necessary for this initial organization of limb 

polarizing region.  One such factor is RA which might be doing this in cooperation with Hand2 or 

Hoxb8 expression (Niederreither et al., 2002) (Figure 1.2). However, RA bead implanted in the 

anterior limb mesenchyme could only induce shh expression in its distal side proximal to the AER 

after 24h, pointing to the need of AER signal in this process (Riddle et al., 1993). Hox9 cluster is 

crucial for ZPA-shh induction through its regulation on Hand2 expression in the posterior limb (Xu 

and Wellik, 2011) (Figure 1.2). Apart from establishing the PD patterning and ensuring distal 
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outgrowth of developing limb, AER-FGFs also maintain shh expression in the ZPA through the 

positive SHH/GREM1/FGF module operating in the distal limb (Benazet et al., 2009; Figure 1.2). 

This positive regulation could be evidenced by the downregulation of shh in the AER ablated 

chick and conditional fgf8/fgf4 double knock-out mice limbs and its rescue upon implantation of 

FGF-soaked bead in chick limb (Laufer et al., 1994; Niswander et al., 1994; Yang and Niswander, 

1995; Vogel et al., 1996; Sun et al., 2002). Moreover, Wnt7a secreted by the dorsal ectoderm is 

another factor required for shh expression (Parr and McMahon, 1995; Yang et al., 1997). 

Although, the entire distal limb mesenchyme is influenced by both FGF and WNT signaling, the 

transcription factor Tbx2 restricts shh expression to the posterior margin (Nissim et al., 2007). 

SHH can also regulate its own domain by controlling the number of shh expressing cells through 

apoptosis (Sanz-Ezquerro and Tickle, 2000). However, this auto-regulatory effect was shown to 

be operating through the BMPs later on (Bastida et al., 2009). As a negative regulator of SHH, 

BMP signaling is also participating in ZPA confined shh expression by interfering with FGF and 

WNT signaling pathways that positively regulate shh expression (Bastida et al., 2009).  

 

1.1.3.2. AP patterning by ZPA-SHH signaling  

During limb development, the canonical Hedgehog signaling pathway plays a major role 

compared to the non-canonical signalling, since all the reported effects of SHH signaling on limb 

development are mediated by Gli´s (Ahn and Joyner, 2004). There are three Gli´s in vertebrates 

each of them performing distinct transcriptional functions (Theil et al., 1999). Gli2 and Gli3 can be 

either in an activator or in a repressor form, whereas, Gli1 is always an activator and a target of 

SHH signaling. Across the limb field, Gli1 and Gli2 mediate the activator function while Gli3 

contributes to the repressor activity (Ahn and Joyner, 2004). SHH signaling pathway involves two 

trans-membrane proteins, Patched 1 and 2 (PTC1 and PTC2) (Carpenter et al., 1998), which binds 

to SHH ligand and the signal transducer Smoothened (SMO). Upon ligand binding, the inhibition 

of PTC on SMO is released which stops the constitutive processing of full length Gli3 Activator 

(Gli3-A) to its repressor form (Gli3-R) (Wang et al., 2000; Varjosalo and Taipale, 2008). Both Gli-R 

and Gli-A are translocated into the nucleus where they function as transcriptional repressors and 

activators respectively, of SHH target genes Ptc1 and Gli1 (Yang et al., 1997).  

Initially, a morphogen based French flag model was formulated (Wolpert, 1969) to explain 

the digit duplications caused by ectopic SHH in chick (Wolpert, 1969; Figure 1.4). According to 
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this model, the ZPA secretes a morphogen that diffuses and generates a spatial gradient across 

the limb field forming a French flag pattern depending on the morphogen threshold levels. 

Eventually, each threshold level will give rise to each digit of the chick forelimb. The posterior-

anterior SHH concentration gradient is translated into Gli-A (Gli1 and Gli2) gradient that is 

opposed by the anterior-posterior Gli-R (Gli3-R) gradient (Ahn and Joyner, 2004). Consistent with 

the establishment of a Gli based gradient in the limb, SHH has been shown to prevent Gli3 

proteolytic cleavage into its repressor form (Wang et al., 2000). Genetic analysis shows that Gli1 

and Gli2 are not essential for limb bud development as revealed by the normal limb formation 

after their inactivation (Park et al., 2000; Bai et al., 2002). In contrast, inactivation of Gli3 resulted 

in severe polydactyly (Hui and Joyner, 1993) emphasising the importance of Gli3 in specifying the 

number and identity of digits (Benazet and Zeller, 2009). Polydactyl limb phenotypes of both 

single Gli3 and double Gli3/shh mutants suggest that SHH functions almost solely through Gli3 

processing in limb AP patterning (Litingtung et al., 2002; te Welscher et al., 2002). The 

nonprocessed full length Gli3 functions as an activator as demonstrated in shh null background, 

where, the conversion of one Gli3 allele into a Gli3 mutant allele (activator form) was able to 

considerably rescue shh mutant limb phenotype (Wang et al., 2007). However, reduction of the 

SHH target gene Gli1 expression in Gli2 null mutants and its loss in Gli2/Gli3 double mutants 

reveal that the activator function of SHH is also mediated by Gli2 (Bai et al., 2004). Fate map of 

SHH responding cells, as revealed by Gli1 reporter assay, clearly showed the importance of 

opposing Gli3-R and Gli-A gradients in the limb and enabled the proposal of an AP patterning 

model purely based on Gli3-R activity. As per this model, the anterior-most digit is patterned by 

high Gli3-R activity, while the posterior-most digit is by the absence of Gli3-R (Ahn and Joyner, 

2004; Figure 1.4). However, later on it was proposed that, in addition to the Gli3-R gradient, the 

ratio of the Gli3-A to Gli3-R also determines limb digit patterning (Wang et al., 2007). 

Meanwhile, a model based on the temporal expansion of SHH signal exposed cells was 

proposed by Harfe et al. (2004) in mouse. According to this model, it is not only the 

concentration of SHH exposure but also its duration that determines digit identity i. e both the 

spatial and temporal requirement of SHH signaling for AP patterning. Digit1 is patterned 

independent of SHH signaling since these cells are not at all exposed to SHH. Its development 

depends on Sal-like 4 (SAll4), T-box 5 (TBX5) and Hox transcriptional regulators (Montavon et al., 

2008). Digit4 and digit5 contain SHH-descendants that were exposed to higher level of SHH 
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signaling for longer duration (autocrine signaling). Digit2 is exclusively formed from cells exposed 

to lower SHH signal through diffusion (long-range signaling), while, digit3 contains half of the cells 

that are exposed to high level SHH (but lesser than digit4) and remaining half cells that 

encountered SHH signal by diffusion (Harfe et al., 2004; Figure 1.4). Independent experiments to 

test the importance of duration and concentration were analysed by cyclopamine treatment in 

chick and genetically modified mouse, respectively. In accordance to this model, brief exposure 

to SHH was sufficient to specify anterior but not posterior digit and longer duration of moderate 

SHH exposure produced posterior digit (Scherz et al., 2007). Moreover, the fate map of SHH 

responding cells performed by Ahn and Joyner (2004) exemplified that digit2 depends on low 

SHH concentration owing to diffusion is in agreement with the temporal model (Harfe et al., 

2004).  

   

 

 

Figure 1.4: Important models explaining AP patterning. (A) The French flag model was proposed to explain chick 

wing digit patterning. Each colour of the flag represents different threshold concentrations established by the ZPA 

produced SHH through its diffusion across the limb mesenchyme. Eventually this spatial gradient will pattern each of 

the chick forelimb digits and this occurs within 24h of shh induction in the ZPA (Wolpert, 1969). (B) AP patterning 

based on the anterior-posterior Gli-R gradient. The anterior digit (D1) is specified purely by high Gli-R function and 
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the most posterior digit (D5) is specified because of the total absence of Gli-R in this domain. The intermediate digits 

are patterned by various levels of Gli-R at that position. The opposing Gli-R and Gli-A gradients derived by SHH 

signaling will specify the intermediate digits D2, D3 and D4 (Ahn and Joyner, 2004). The nonprocessed Gli3 also 

functions as an activator in vivo (Wang et al., 2007). (C) AP patterning is specified not only by SHH concentration but 

also by the duration of exposure to SHH signal. As per this model, SHH descendants derived from SHH expressing 

cells endow a gradient of SHH signaling across the AP limb mesenchyme. Thus, D1 is SHH independent; D2 is 

specified by cells that were exposed exclusively to long-range SHH signaling (low concentration) by diffusion; D3 is 

specified by a combination of cells exposed to low SHH concentration by long-range diffusion and by SHH 

descendants that were derived from former shh-expressing cells shortly after shh expression; D4 and D5 are 

specified solely by SHH-descendants derived from cells that expressed shh for progressively longer duration of time 

(Harfe et al., 2004). (D) SHH is not only needed for AP digit patterning but also for distal mesenchymal cells 

proliferation. As soon as shh is induced in mouse (E9.75), it patterns the AP axis within the first 12h. After this initial 

phase, SHH is necessary for survival and proliferation of the mesenchymal cells which is crucial for proper expansion 

of the early specified cells to form digit primordia after cessation of shh expression (E12). This expansion occurs in 

the order of D4, D2, D5 and D3 (indicated by asterisk in the scheme) (Zhu et al., 2008). AP patterning models are 

reviewed in Zeller et al. (2009). All limbs are represented anterior on top and proximal side to the left. 

 

 

The post translational modifications of SHH protein by the addition of cholesterol and palmitate 

moieties (Mann and Beachy, 2004), regulate its long-range signaling. Inactivation of these 

modifications results in opposing effects, where, inhibition of cholesteration increases its 

diffusion (Li et al., 2006) while prevention of palmitoylation caused reduced diffusion (Chen et al., 

2004). In fact, higher diffusion enabled the formation of polydactylus of anterior digit (digit2), 

further emphasising its patterning is dependent on long-range SHH signaling (Li et al., 2004; Harfe 

et al., 2004).   

Patterning of the limb distal mesenchyme by SHH is also linked with cell proliferation. This 

function of SHH was illustrated by Towers et al. (2008) in chick and Zhu et al. (2008) in mouse 

limb. When cyclopamine was used in chick to inhibit SMO and thus all the signal transductions 

downstream of SHH, along with reduced limb field, only the anterior digits (digit2 & 3) were 

formed. But, when they used cell proliferation inhibitors, the reduced limb field formed posterior 

digits at the expense of the anterior ones since shh expression was maintained. This suggests that 

SHH signaling is ensuring proliferation of distal mesenchymal cells to have enough cells for the 

formation of each digit primordia as a part of AP patterning mechanism (Francis-West and Hill, 

2008; Towers et al., 2008). In the same year, a genetic study in mouse, inhibited shh expression 
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at different stages of development and analysed the resulted digit patterns to assess the role of 

SHH in distal patterning (Zhu et al., 2008; Figure 1.4). Emphasising the role of SHH in 

mesenchymal cell proliferation, these set of experiments gave an unexpected order of digit 

formation in mouse: digit4, 2, 5 and 3. At present, this order of digit formation is difficult to be 

explained (reviewed in Francis-West and Hill, 2008). It has been suggested that SHH specifies digit 

pattern at very early stages, within around 12h of its induction in the ZPA and subsequently SHH 

signaling is necessary for cell cycle propagation and cell survival to ensure enough cells for the 

formation of digit primordia (Zhu et al., 2008). 

 

1.1.3.3. Digit formation  

Several lines of evidence suggest that BMP signaling is necessary for AP patterning and to 

determine digit identity and shape by inducing interdigital cell death (Robert, 2007). The 

involvement of BMP signaling in autopod formation was demonstrated by (Kawakami et al., 

1996), by co-expressing dominant negative Brk2 and Brk3 (BmpR1b and BmpR2) in chick limb 

which displayed truncated forelimbs with complete absence of ulna and autopod, comparable 

with shh null mutant mouse limbs. Moreover, Bmp2 and Bmp7 are considered to be expressed as 

the consequence of SHH signalling (Laufer et al., 1994; Chiang et al., 1996; Yang et al., 1997) 

unlike Bmp4. Indeed, consistent with the role of BMPs in proper autopod formation, individual 

inactivation of Bmp4 and Bmp7 or BmpR1a displayed polydactyly or truncated autopod, 

respectively (Luo et al., 1995; Selever et al., 2004; Ovchinnikov et al., 2006). Apart from this first 

phase where BMPs are required for autopod formation, BMP signaling also has a second phase in 

which it renders digit identity from the secondary signaling centers, the inter-digital domain 

(Dahn and Fallon, 2000; Drossopoulou et al., 2000). The ability of graded BMP signaling across 

the posterior to anterior autopod has been implicated in digit specification where high levels of 

BMP signaling was implicated in the specification of posterior digits (Dahn and Fallon, 2000). 

More molecular data and insight to this particular function of BMP signaling was added by Suzuki 

et al (2007) in chick embryo. These authors show that a small group of sub ridge mesenchymal 

cells at each digital level escape the influence of the AER and start to express sox9, the early 

chondrogenic marker and eventually BmpR1b, denoting the phalanx-forming region. As a 

consequence, the intracellular mediators of BMP signaling, SMAD1/5 and 8 are phosphorylated 

and reach certain threshold of SMAD activity at these domains. Each digit in chick hindlimb is 
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specified by distinct SMAD activity in the phalanx-forming region with highest activity for digit3, 

lowest for digit1 and digit2 and 4 with intermediate activity (Suzuki et al., 2008).  

BMP signaling is an inducer of cell death and crucial for interdigital apoptosis that shapes 

the digit. Inhibition of BMP signaling either by dominant negative BMP receptors or by its 

antagonists creates soft tissue syndactyly in limb (Zou and Niswander, 1996; Merino et al., 1999). 

However, whether this is a direct or an indirect effect through other signaling pathways was 

analysed by (Pajni-Underwood et al., 2007) where they inactivated the AER-expressed BmpR1a 

either alone or in combination with fgf8 and fgf4 and demonstrated that inter digital cell death is 

caused by BMP signaling regulated AER-FGFs. But, a previous study showed that interdigital cell 

death is regulated by the convergence of FGF- and BMP-mediated signaling pathways (Montero 

et al., 2001). (Hernandez-Martinez et al., 2009) showed that both FGF and RA are crucial for 

interdigital cell death, the former as negative and the later as positive regulators. They also found 

that BMP signaling is required only in chick for interdigital cell death and not in mouse. Many 

previous reports are in agreement with the cell death inducing nature of RA signaling as 

application of RA in inter-digital domain accelerated cell death (Lussier et al., 1993; Rodriguez-

Leon et al., 1999). Also, in chick it has been proposed that RA is a physiological regulator of 

interdigital cell death as an all-trans-RA receptor antagonist decreases interdigital cell death 

(Rodriguez-Leon et al., 1999). Although the RA receptor Rarβ deficient limbs were normal, 

Rarβ/Rarγ double mutants showed interdigital webbing (Dupe et al., 1999) supporting the role of 

RA signaling in interdigital cell death.  

 

1.1.4. DORSAL-VENTRAL (DV) PATTERNING 

By looking at our own arm we can observe the difference between the back and the inner 

side (palm) of it. This difference also exists inside the limb at the level of tissue arrangement 

(skeleton, muscles, tendons, blood and nerves). The DV patterning is regulated by the non-ridge 

ectoderm. Similar to the identification of the key signaling centers patterning the PD and AP axes 

of limb, the importance of ectoderm for DV axis establishment was also first identified by 

classical experiments in chick. When limb ectoderm was dorso-ventrally rotated 180o, the 

mesenchymal structures (skeleton, muscle and tendons) become inverted corresponding to the 

polarity of the ectoderm (MacCabe et al., 1974). DV limb axis specification in vertebrate embryos 

occurs through a complex, poorly understood series of epithelial-mesenchymal interactions 
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(Chen and Johnson, 1999). It has been suggested that the signals from the somatic mesoderm 

specify the dorsal fate and render it to the LPM through an inductive mechanism, whereas, the 

ventral fate is a default (Chen and Johnson, 2002). Subsequently, the DV polarity from the LPM is 

transferred to the ectoderm prior to limb bud outgrowth resulting in the expression of wnt7a in 

the presumptive dorsal limb bud ectoderm and En-1 in the ventral limb bud ectoderm. En-1 is 

induced in the ventral ectoderm by BMP signaling through BMPR1a. In the absence of WNT7a, 

the dorsal pattern of the distal structures is not established and the limbs appear bi-ventral (Parr 

and McMahon, 1995). WNT7a induces the expression of the LIM-homeodomain transcription 

factor Lmx1b specifically in the dorsal mesenchyme of the limb bud. Gain of function experiments 

in the chick indicated that LMX1b is sufficient to specify dorsal limb pattern in ventral limb 

mesenchyme (Riddle et al., 1995; Vogel et al., 1995). Subsequently, it was shown through gene 

targeting in the mouse that LMX1b activity is necessary to specify dorsal limb pattern (Chen et al., 

1998). In mouse, lineage compartments defining the dorsal and ventral mesenchyme were 

identified and the dorsal compartment coincided with Lmx1b expression domain (Arques et al., 

2007). In En-1 knockout limbs, wnt7a is misexpressed in the ventral ectoderm and the distal 

structures develop with bi-dorsal character (Loomis et al., 1996). Loss of BMP signaling also leads 

to Wnt7a misexpression and bi-dorsal limbs (Chen and Johnson, 1999; Ahn et al., 2001; Pizette et 

al., 2001).  

 

1.1.5. INTERACTIONS BETWEEN THE KEY LIMB AXES PATTERNING MOLECULES 
 

As it has been described in previous sections, each axis is primarily patterned by different 

signaling molecules: the PD by AER-FGFs; the AP by ZPA-SHH and the DV by WNT7a from the 

dorsal ectoderm and BMP target gene En-1 in the ventral ectoderm. However, under 

physiological conditions, these pathways coordinate and interact with each other to organize the 

structure of a fully functional adult limb. Particularly, the well understood feedback loop between 

the ectodermal AER-FGFs and the mesodermal ZPA-SHH to maintain each other links most of the 

signaling pathways. Even though, this partnership was first identified by FGF bead implantation 

experiments (Laufer et al., 1994; Niswander et al., 1994), the need for an intermediate molecule 

to relay SHH signal to the AER-FGFs in order to maintain its expression was soon identified as the 

BMP antagonist, GREM1 through the SHH/GREM1/FGF positive loop (Zuniga et al., 1999; Michos 
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et al., 2004). In the absence of GREM1 the distal limb is truncated with digit loss (Michos et al., 

2004). Recently, the SHH/GREM1/FGF loop was showed as a self-regulatory system that functions 

in three phases of limb development: initiation, propagation and termination (Benazet et al., 

2009). Using computational modelling and experimental analysis these authors proposed the 

mechanism and duration of this module in each stage of mouse limb development. First, during 

limb initiation, high mesenchymal BMP signaling is necessary to initiate the expression of its own 

antagonist, Grem1 around E9 stage through a fast loop that takes only about 2h (Figure 1.5). 

Whereas, the second phase occurs in the presence of low BMP signaling created by the inhibitory 

effect of GREM1 to release the natural inhibitory effect of BMPs on FGFs (Ganan et al., 1998; 

Pizette and Niswander, 1999). Here, SHH takes 6h to induce Grem1 and GREM1 takes about 6h to 

induce AER-fgf expression making a total of 12h loop, making GREM1 as a node between the 

BMP-GREM1 and the SHH/GREM1/FGF modules (Benazet et al., 2009; Figure 1.5). The third 

interesting nature of the SHH/GREM1/FGF loop is its self-terminating nature where GREM1 plays 

a crucial role and this will be discussed in the next section (reviewed in Zeller et al., 2009).  

 

 

                                   

                  

Figure 1.5: Representation of cross interactions between the key signaling pathways controlling limb 

development. (A) Interactions occur during limb distal propagation stage (mouse E11.5) link most of the important 

signaling pathways through the positive ZPA-SHH/GREM1/AER-FGF and the negative AER-FGF/Cyp26B1/RA modules. 
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By E9.5in mouse (stage HH17-18 in chick), BMP4 (BMP2 in chick) upregulates its own antagonist, GREM1 (high BMP 

signaling; fast loop of ~2h) which will inhibit BMP signaling during distal propagation stage (~until E10.5 in mouse and 

stage HH23 in chick). Thus, the inhibitory effect of BMPs on AER-FGFs will be relieved resulting in high AER-FGF 

accumulation. Meanwhile, ZPA-SHH will induce transcription of GREM1 to maintain its positive regulation to the 

AER-FGFs that reciprocally maintain ZPA-SHH. This whole loop functions to upregulate AER-FGFs, ZPA-SHH and 

mesenchymal-GREM1 in the presence of low BMP activity and takes about 12h (Benazet et al., 2009). Recently, it 

was identified that the high AER-FGFs maintained by the SHH/GREM1/AER-FGF loop upregulated Cyp26b1 in the 

distal mesenchyme. This enables the clearance of RA from the undifferentiated zone (represented by purple 

gradient) and facilitates limb distal propagation (Probst et al., 2011). These loops connect the SHH, FGF, BMP and RA 

signaling pathways (B) The DV patterning molecule functioning in the dorsal ectoderm, WNT7a is also necessary for 

proper ZPA-SHH expression because in its absence shh expression is abolished (Yang and NIswander, 1995). In (A) the 

limb is represented anterior on top and proximal side to the left and in (B) the limb is represented dorsal to the top 

and proximal to the left. 

 

This year, a new antagonistic module of AER-FGF/Cyp26B1/RA was identified and linked 

with the already existing SHH/GREM1/AER-FGF loop based on shh deficient mouse limb buds and 

computational simulations (Probst et al., 2011; Figure 1.5). When they made a differential 

screening for the genes up or down regulated in shh null mouse limbs, they found Cyp26B1 to be 

downregulated in the distal limb while the RA responsive genes like Meis1 and Meis2 were 

upregulated with a distal expansion. Further analysis revealed that this effect is indirect through 

the AER-FGFs as demonstrated by Cyp26b1 induction upon FGF4 bead implantation either in the 

wild type or shh null limb bud mesenchyme (Probst et al., 2011). This explains the indirect role of 

SHH in the clearance of the RA from the distal mesenchyme through the AER-FGFs to enable 

distal propagation through the antagonistic newly identified AER-FGF/Cyp26B1/RA module to the 

self-regulatory SHH/GREM1/AER-FGF positive feedback loop. These loops connect the major limb 

signaling pathways FGFs, RA, SHH and BMPs and provide evidence for the cooperative 

establishment of PD and AP patterning. 

BMP signaling is necessary for initial AER induction by defining the ectodermal DV 

boundary (Pizette et al., 2001). However, high BMP activity during distal propagation stages has 

an adverse effect on the AER (Pizette and Niswander, 1999; Michos et al., 2004), emphasising a 

transient requirement of BMPs for the establishment of functional AER and distal outgrowth 

(Hayashi and McMahon, 2002). The low and persistent BMP signaling is crucial to create correct 

length AER which is not only important for PD patterning but also for proper AP patterning, since 

anteriorly extended AER can cause polydactylies (Selever et al., 2004). WNT and BMP signaling 
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from the non-ridge ectoderm patterns the DV axis (Chen and Johnson, 1999). Interestingly, 

removal of dorsal ectoderm caused loss of posterior structures and shh expression in the ZPA 

mediated by dorsal ectoderm-produced WNT7a (Yang and NIswander, 1995). Together, these 

experimental results indicate the connection between the patterning of limb DV, AP and PD axes. 

 

1.1.6. TERMINATION OF OUTGROWTH 
 

 The self-terminating SHH/GREM1/FGF loop has been proposed to take different sequence 

to do so in chick and mouse. Manipulation of the loop components, the AER-FGF (FGF4), GREM1 

or SHH just prior to the outgrowth termination stage in chick (HH27) gave different results. When 

either FGF4 or GREM1 was overexpressed in the posterior limb, they were able to induce the 

expression of shh or fgf4 and shh, respectively. But, a SHH bead implanted in the posterior limb 

failed to upregulate both Grem1 and fgf4 expression suggesting the inability of mesenchymal 

cells to respond to SHH signaling in favour of Grem1 expression (Scherz et al., 2004).  Moreover, 

cells that produce SHH are refractory to express Grem1. Thus SHH descendants resulted from 

SHH dependent cell proliferation and outgrowth create a broad domain adjacent to the ZPA that 

will not express Grem1. By stage HH27 in chick, cells competent to express Grem1 become too 

far to receive ZPA derived SHH signaling and mark the loop termination (Scherz et al., 2004; 

Figure 1.6).  

Verheyden and Sun (2008) identified an inhibitory AER-FGF/GREM1 loop in mouse and 

integrated it with the SHH/GREM1/FGF positive loop. As per their model, during the distal 

propagation stages of HH18-23 in chick and E9.5-10.5 in mouse, the low FGF signaling from the 

AER promotes Grem1 expression through SHH´s maintenance. GREM1 in turn relay SHH signaling 

to the AER-FGFs and upregulate their expression. This result in the accumulation of all the three 

proteins: GREM1 in the mesenchyme adjacent to the AER, ZPA-SHH and AER-FGFs. When AER-

FGF signaling surpasses a threshold level, it begins to inhibit Grem1 expression more or less at 

stage HH23-27 in chick and E10.5-12 in mouse. Due to this inhibition and continuous growth of 

the distal limb mesenchyme, the Grem1 negative domain expands pushing the Grem1 positive 

domain away from the AER and the ZPA (Verheyden and Sun, 2008) triggering a sequence of 

termination mechanisms which take a different order in mouse and chick (Verheyden and Sun, 

2008; Scherz et al., 2004; Figure 1.6). In mouse, first, Grem1 negative domain will stop relaying 
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SHH signal to the AER-FGFs and permit them to fall which is followed by the ZPA-SHH and then by 

GREM1 (Verheyden and Sun, 2008). Whereas, in chick, the Grem1 negative domain will be too far 

for the ZPA-SHH to signal and so the positive regulation of SHH on Grem1 expression is stopped 

owing to the downregulation of AER-fgfs and finally to the ZPA-SHH (Scherz et al., 2004). 

 

 

                      

 

Figure 1.6: Outgrowth termination mechanisms in chick and mouse. (A) In chick, before shh expression ceases at 

stage HH27, Grem1 expression domain is displaced anteriorly from the ZPA due to SHH dependent cell proliferation 

of its descendants. Thus, Grem1 will no longer be upregulated upon SHH signaling and it starts to reduce. The 

reduction of GREM1 leads to a release of BMP inhibition that in turn will downregulate AER-fgfs and consequently 

ZPA-shh expression by stage HH27 (Scherz et al., 2004). (B) In mouse, between stage E10.5-12 the continuously 

upregulated AER-FGFs through the SHH/GREM1/AER-FGF loop will surpass a threshold level above which it starts to 

inhibit Grem1 expression. As a result, GREM1 domain will be proximally displaced, that makes it difficult to maintain 

AER-FGFs. In addition, GREM1 domain will also be pushed anteriorly to receive inductive signals from ZPA-SHH.  This 

leads to the overall fall of AER-fgfs first and then for the sequential loss of ZPA-shh and mesenchymal-Grem1 

expressions (Verheyden and Sun, 2008). All limbs are represented anterior on top and proximal side to the left. 

 

1.2. TEMPORAL CONTROL 

 

The central question in developmental biology is how a group of undifferentiated 

progenitor cells undergo differentiation in a timely and co-ordinated manner to create an entire 
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living being. What mechanisms give the notion of time for the formation of either definite or 

transient structures? There must be an endogenous oscillatory process functioning during 

embryogenesis. Now, we know that cells “can count time” through their molecular clock which 

was discovered in 1997 (Palmeirim et al., 1997) in the presomitic mesoderm (PSM). This work 

was considered to be a 20th century milestone in developmental biology (Skipper, 2004) and 

opened a new field of research (Andrade et al., 2007). 

 

1.2.1. SOMITOGENESIS  

After fertilization, the embryo undergoes repeated cleavage to form the blastoderm, which 

in the chick is located on the top of a cavity named blastocoel, which separates it from the yolk. 

Soon, the blastoderm splits apart to form two layers: the upper epiblast and the lower hypoblast. 

This is followed by the formation of a triangular thickening at the junction between the 

extraembryonic tissue and the posterior epiblast, the Koller sickle, and an extension of it towards 

the anterior region of the embryo gives rise to the primitive streak (PS). At the level of the PS, 

epiblast cells rapidly proliferate and start to invaginates inward giving rise to a trilayered embryo, 

as a consequence of the process of gastrulation. At the rostral end of the fully extended PS, a 

small thick structure known as the Hensen´s node (HN) arises. It is considered as the embryonic 

organizer and establishes the left-right asymmetry either by monociliary leftward movements or 

by cellular rearrangements towards the left side which eventually establish asymmetric gene 

expression (Levin, 2005; Raya and Izpisua Belmonte, 2006; Gros et al., 2009). While the epiblast 

cells ingress through the PS, they acquire positional information (Schoenwolf et al., 1992). Cells 

that ingress earlier form more anterior structures compared to cells ingressing later. FGF 

signaling through FgfR1c (Chuai et al., 2006) has been implicated in PS cell movement where 

anterior FGF4 has been demonstrated as a chemo attractant and posterior FGF8 as repellent 

(Yang et al., 2002). As gastrulation occurs, the HN begins to regress caudally until it reaches the 

posterior end of the embryo at stage HH12 in chick embryo. Thus the addition of cells added by 

ingression through the PS no longer occurs, but gastrulation continues from the tailbud (Figure 

2.2). The PS and the tailbud have similarities at the level of gene expression and morphogenic 

movements (Catala et al., 1995; Cambray and Wilson, 2007).  

The presomitic mesoderm (PSM) tissue is generated during gastrulation, and arranges itself 

in two bands flanking the embryo axial structures, neural tube and notochord. Somitogenesis is 
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the process of the formation of somites, the transient metameric units of the vertebrate embryo. 

Somites form in pairs as epithelial blocks pinching off from the anterior-most PSM in an anterior 

to posterior sequence, beginning immediately after the otic vesicle. The specialised feature of 

somitogenesis is its species conserved periodicity and total number. In chick, for every 90 min 

one pair of somites is formed until the total of 52 pairs is reached. In mouse and zebrafish, it 

takes 120 min and 30 min, respectively, to make a pair of somites. However, there could be a 

variation in this standard time to form the first and last few pairs of somites. For instance, 

recently it was demonstrated to take about 150 min to form the last pair of somites in chick 

(Tenin et al., 2010). In order to uniformize the process of somitogenesis between species and for 

better scientific clarity, somites are represented by roman numbers based on their AP position in 

the embryo, in a way that the forming somite is considered as S0 and presumptive somites 

starting caudally adjacent to somite S0 are represented with negative roman numbers (S-I, S-II 

etc.), while the completely formed somites beginning from the somite placed immediately rostral 

to S0 are mentioned by positive roman numbers (SI, SII…etc) (Christ and Ordahl, 1995; Pourquie 

and Tam, 2001) (Figure 2.2). Moreover the number of somite pairs has been used as a standard 

way to classify chick embryo for first ~2.5 days of its development as per Hamburger and 

Hamilton table (Hamburger and Hamilton, 1951; Hamburger and Hamilton, 1992). 

Formation of epithelial somites from the rostral PSM is a complex process which involves 

extensive cell movements, mesenchymal to epithelial transitions and several molecular and 

environmental cues (Rifes et al., 2007; Martins et al., 2009; Benazeraf et al., 2010). The PSM cells 

are highly dynamic and the process of somite epithelialization has been proposed to take much 

longer than the periodicity of somitogenesis in chick (Martins et al., 2009). The mesenchymal to 

epithelial transition of PSM cells involves two steps of epithelialization both of which starts 

medially and recruits the adjacent lateral cells (Martins et al., 2009). This kind of medial to lateral 

somite boundary formation where medial cells behave autonomously while the lateral cells 

require the medial cells for their segregation has been previously reported (Freitas et al., 2001). 

Ectoderm plays a crucial role in somitogenesis, as in the absence of ectoderm, PSM explants 

failed to form somites, (Palmeirim et al., 1998; Borycki et al., 2000) which was later shown to be 

due to its ability to maintain extra cellular matrix (ECM) through the production of fibronectin 

(Rifes et al., 2007). In fact, employing advanced imaging techniques, the requirement of the ECM 

in modulating cells shape, motility and differentiation status has been exemplified during 
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somitogenesis (Martins et al., 2009). As the mature PSM cells are incorporated into somites in 

the rostral PSM, the caudal growth zone replenishes the PSM with new cells allowing the embryo 

to elongate posteriorly and develop properly. Pourquie and co-workers implicated the posterior 

to anterior gradient of random cell motility relative to the ECM endowed by FGF signaling in the 

posterior elongation of amniote embryo (Benazeraf et al., 2010).  

Somites, the transient structures will eventually differentiate into two main sub-domains: 

sclerotome and dermomyotome, which will further form definite structures of the vertebrate 

body (Figure 1.1). WNT, BMP and SHH signals exerted by the surrounding tissues, such as 

ectoderm, notochord, neural tube and LPM, are responsible for this differentiation. Epithelial to 

mesenchymal transition occurs in the ventro-medial portion of the somite to form the 

sclerotome which contains the precursors of the cartilage and bone, giving rise to the axial 

skeleton and ribs depending upon their location within the somite. The cells in the dorso-lateral 

side of the somite initially retain their epithelial nature and make the dermomyotome, which 

further divides into the dermatome and myotome during later developmental stages to derive 

the dermis of the back and the skeletal muscles, respectively. In fact, another sub-compartment 

known as the syndetome is established and maintained by the sclerotome and myotome, which 

give rise to the tendons (Brent et al., 2003). Although no distinct margin exists, the position of the 

cells in the dermomyotome and their surrounding signals determines their eventual fate. The 

medial dermomyotome is specified as the epaxial myotome by the floor plate and notochord 

produced SHH (Borycki et al., 1999). Epaxial myoptome forms the back muscles. On the other 

hand, WNT signaling from the ectoderm and BMP signaling from the LPM defines the hypaxial 

muscles of the limb, diaphragm and body wall (Chen et al., 2004; Yokoyama and Asahara, 2011). 

All these events should occur in sequence and in a timely manner because defects in 

somitogenesis cause common human developmental disorders (Turnpenny et al., 2007). 

 

1.2.1.1. Theory and experimental evidences for Clock and wavefront concept  

 

The prevailing classical model predicting the mechanism behind somitogenesis is the 

``Clock and Wavefront model´´ proposed in 1976 (Cooke and Zeeman, 1976). This model points 

to an intrinsic oscillator functioning in the PSM between permissive and non-permissive phase 

which controls timely somite formation. The second component of this model is the wavefront 
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which corresponded to the clear embryonic gradient of maturation. When the clock is in the 

permissive phase, the wavefront moving anteriorly, will allow the maturation of PSM cells in the 

anterior most PSM.  

 

 

 

 

Figure 2.1: somitogenesis molecular clock. In chick, somite pairs are formed from the rostral tip of the PSM every 90 

min. This periodicity is underlined by the evolutionarily conserved molecular oscillator functioning in the PSM. Here, 

the cyclic hairy1 expression in chick PSM of embryos belonging to the same stage is presented as a schematic 

illustration. Each hairy1 expression cycle takes 90 minutes and culminates in the complete separation of one somite 

pair from the anterior-most PSM (Palmeirim et al., 1997). The forming somite is represented as S0 and the somites 

immediately anterior to the latter are identified as SI. This kind of dynamic gene expression is observed in genes 

belonging to Notch, FGF and WNT signaling pathways in chick, mouse, zebrafish, etc (Krol et al., 2011). The PSM is 

positioned anterior on top. 

 

 

The first evidence for the existence of the intrinsic clock in the PSM was provided by 

Palmeirim et al. (1997). These authors identified different expression patterns of the Notch target 

gene, hairy1, a member of the Hairy and enhancer of split (HES/HER) family of the basic helix 

loop helix (b-HLH) transcription factor, in the PSM of chick embryos belonging to the same stage. 
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Hairy1 expression was found to oscillate in the PSM and for sake of simplicity the variable 

expression patterns were grouped in three phases (Figure 2.1).  

1. Phase I: hairy1 is expressed in a broad caudal PSM domain along with a narrow stripe in    

the anterior PSM roughly corresponding to the caudal portion of the presumptive somite. 

2. Phase II: hairy1 transcripts become completely absent in the caudal PSM and are 

detected in a broader domain in the anterior PSM, while the more anterior narrow stripe 

is still maintained in an even narrower domain.       

3. Phase III: Now, the presumptive somite is almost formed and the most anterior stripe of 

hairy1 is restrained to its posterior region, while the other hairy1 domain gets more 

anterior and thinner than in phase II. Meanwhile hairy1 appears again in the caudal PSM 

representing phase I of the next cycle. 

The time it takes to complete all these three phases and return to phase I is 90 min that 

culminate in the time to form a new pair of somite in chick (Palmeirim et al., 1997). They also 

showed that generation of these oscillations is an intrinsic property of the PSM tissue and is not 

affected by cell movement or signals coming from the posterior PSM (Palmeirim et al., 1997). 

Many attempts to mess the original orientation of the PSM tissue by transplantation to various 

locations or flip flop between them or ablation of a portion of the tissue failed to cause any 

alternations in its original pattern (Packard, 1978; Aoyama and Asamoto, 1988; Palmeirim et al., 

1998), pointing to the robustness of segmental determination (Dubrulle et al., 2001).  

Following the discovery of hairy1 in chick PSM, many more cyclic genes in different model 

organisms were added to the list. However, all of them were from Notch signaling pathway, until 

the first WNT target gene axin2 was found to have such oscillatory behaviour in  mouse (Aulehla 

et al., 2003). Subsequently, many other segmentation clock genes belonging to the Notch, WNT 

and FGF signaling pathways were identified to have oscillatory expression in the PSM both by 

classical method (Andrade et al., 2007) and by microarray analysis in mouse, chick and zebrafish, 

(Dequeant et al., 2006; Krol et al., 2011) indicating their evolutionary conserved nature. Although 

previous findings suggest that the WNT signal clock genes oscillate out of phase from the Notch 

and FGF signaling cyclic genes in mouse (Dequéant et al., 2006), recent data from chick and 

zebrafish do not suggest such clear phase alterations (Krol et al., 2011). Among the 100s of cyclic 

genes identified by genome wide search, only HES/HER members coincided in the list of genes 

identified from mouse, chick and zebrafish PSM. Moreover, orthologs of HES/HER members were 
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also identified to present oscillations in other species suggesting their importance in the clock 

gene network and conservation among species (Krol et al., 2011). Jouve et al. (2002), proposed 

that the dynamic oscillatory gene expression is not only present in the mature PSM tissue, but 

also in its precursors in the PS, based on their analysis in early gastrulation stages until the 

formation of the first somite. To know more about the cyclic gene expression in vivo, transgenic 

mice that have a special construct with ubiquitinated firefly luciferase as reporter was used 

(Mazamisu et al., 2006). Firefly luciferase has the ability to quickly degrade (within 20 min, which 

corresponds to the half-life of Hes1 protein) and gets activated making it a suitable reporter 

protein to study the dynamic HES1 patterns. In combination with the real time bioluminescence 

imaging system, Mazamisu and co-workers recorded Hes1 expression for 15 hours which clearly 

oscillated with 2h periodicity (Masamizu et al., 2006). 

 

Table 2.1: Comprehensive presentation of the PSM oscillatory genes belonging to the Notch, FGF and WNT signaling 

pathways in mouse, chick and zebrafish. Several cyclic genes have been identified in these species which represent a 

total of 82 in mouse, 182 in chick and 24 in zebrafish (Krol et al., 2011). 

 

                 Mouse                     Chick Zebrafish  

 
 
 
 
 
Notch 
 

Lfng (Forsberg et al., 1998) hairy1 (Palmeirim et al., 1997) deltaC  (Jiang et al., 2000) 

hes1 (Jouve et al., 2000)  hairy2 (Jouve et al., 2000) her1  (Holley et al., 2000)  

hey2 (Leimeister et al., 2000)  hey2 (Leimeister et al., 2000)  her7  (Oates and Ho, 2002) 

hes7 (Bessho et al., 2001)  Lfng (McGrew et al., 1998)  nrarp (Wright et al., 2009) 

hes5 (Dunwoodie et al., 2002)  nrarp (Wright et al., 2009)  her15, her2, her4 (Krol et al., 
2011) 

nkd1 (Ishikawa et al., 2004)    

nrarp (Dequéant et al., 2006)   

Hey1, Id1, Efna1 (Krol et al., 2011)   

 

 

 

FGF 

dusp6 (Dequéant et al., 2006)  snail2 (Dale et al., 2006) tbx16 (Krol et al., 2011) 

snail1 (Dale et al., 2006)   raf1, Erk, dusp6 (Krol et al., 

2011) 

 

spry2 (Dequéant et al., 2006)    

dusp4  (Niwa et al., 2007)    

spry4 (Hayashi et al., 2009)    

bcl2l11, egr1 (Krol et al., 2011)   

 
 
WNT 

axin2 (Aulehla et al., 2003)  axin2, T, gpr177, rrm2 (Krol et 
al., 2011) 

        tbx16 (Krol et al., 2011) 

dact1  (Suriben et al., 2006)   
dkk1, sp5, myc, tnfrsf19, cyr61,shisa2 

(Krol et al., 2011) 
  

 

 The second component of the ``Clock and Wavefront´´ model, the Wavefront has also 

been experimentally proved. The first proof for the presence of a maturation front in the PSM 
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that provides the notion of space for somitogenesis was given by Dubrulle et al. (2001). These 

authors performed a series of different experiments like flip flop transplantations of PSM tissue 

from different locations, bead implantation and overexpression of fgf8 in the PSM by 

electroporation to study the wavefront concept. First, they inverted the orientation of somites 

from the anterior or posterior PSM and assessed the resulted somites orientation using a caudal 

somatic marker, dll1 (Notch ligand: delta like 1). When the PSM tissue at the level of S0 or S-I was 

inverted, the resulting somites were also inverted, whereas the caudal PSM tissue at the level of 

S-V to S-XII inversion resulted in normal somite formation. But somites S-II to S-IV presented 

irregular AP segregation within the abnormally formed segmental boundaries (Dubrulle et al., 

2001). These set of experiments suggest that by S0, S-I level, somites have fixed AP polarity, while 

the caudal S-V to S-XII somites are yet to be determined. These determinations occur at the 

molecular level much before the morphological boundaries are formed. The ectopic boundaries 

and disorganized dll1 expression observed after S-II to S-IV inversions suggest S-IV as the possible 

level of the determination front (DF) (Dubrulle et al., 2001). They further demonstrated this 

concept by placing FGF8 soaked bead at different positions in the PSM and inhibiting FGF 

signaling by in-ovo application of the FgfR1 inhibitor, SU5402. These experiments confirmed the 

existence of a DF in chick PSM and suggested its position at the level of S–IV after which FGF bead 

didn’t present any effect on somitogenesis, unlike its ability to make smaller somites when 

implanted before somite level –IV (Dubrulle et al., 2001). The opposite was also achieved by 

SU5402 application simply by recruiting more cells to make bigger somites than the normal size 

(Dubrulle et al., 2001). These experiments reveal that FGF8 bead caused a rostral shift in the DF 

while SU5402 did the opposite both in chick and zebrafish, (Dubrulle et al., 2001; Sawada et al., 

2001) pointing to a wavefront mechanism based of the caudo-rostral fgf8 gradient in the PSM. 

This is substantiated by the fact that posterior PSM cells are maintained in an undifferentiated 

state by FGF signaling and they can only differentiate when they pass certain threshold level of 

this signal (Vasiliauskas and Stern, 2001). Soon, the proposed DF-fgf8 gradient was illustrated to 

be established through mRNA decay (Dubrulle and Pourquie, 2004). Only the tail bud region of 

the chick and mouse embryo actively transcribes fgf8 as viewed by the intronic probe expression 

and so the caudo-rostral fgf8 gradient in the PSM is endowed by mRNA decay (Dubrulle and 

Pourquie, 2004). This mRNA gradient is translated into a protein gradient in the PSM that 

interacts with FgfR1, the only FgfR expressed in the PSM (Wahl et al., 2007), creating a graded 
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FGF activity. The intracellular pathways activated by FGF signaling in the PSM vary between 

species: chick and zebrafish PSM presents a p-Erk gradient indicating the role of Erk/MAPK 

signaling (Sawada et al., 2001; Delfini et al., 2005), whereas it is identified as the Akt/PI3K 

pathway in mouse (Dubrulle and Pourquie, 2004b).  

 

 

 

 

Figure 2.2: An overview of somitogenesis, molecular clock and the determination front concept. (A) Dorsal view of 

stage HH11 chick embryo. Epithelial Somite pairs are periodically formed from the anterior most tip of the PSM in an 

AP manner. As the PSM tissue is depleted by somitogenesis it will be replenished with new cells from the tailbud 

stem cell zone and the embryo elongates posteriorly. For proper somitogenesis to occur, the PSM cells should have 

the notion of time and space which are provided respectively by the molecular clock and the determination front. (B) 

Enlarged view of posterior embryo highlighting determination front (DF). The DF is positioned more or less in the two 

third level of the PSM by the confrontation of anterior-posterior RA and the posterior-anterior FGF (and WNT) 

signaling (Dubrulle et al., 2001; Diez del Corral et al., 2003; reviewed in Dequeant and Pourquie, 2008). The FGF 

signaling gradient is translated into p-ERK activity gradient which takes major role in positioning somite boundaries 

through its cooperative function with the molecular clock (Niwa et al., 2011). Rostral to the DF, the PSM tissue is 

molecularly determined. Here, cells undergo mesenchymal-epithelial transition and somite rostro-caudal patterning 



Molecular parallelisms between vertebrate limb development and somitogenesis C. J. Sheeba 

   

52 | P a g e  

 

(levels S-I to S-IV). Caudal to the DF, mesenchymal cells are maintained in an undifferentiated proliferative state by 

FGF and WNT signaling (Naiche et al., 2011). The forming somite is represented as S0 and the fully formed somites as 

SI to SIV. 

 

The functional relevance of the graded FGF activity in chick was first tested by constitutive 

activation and inhibition of ERK signaling, which mimics overexpression and downregulation of 

FGF8 (Delfini et al., 2005). They showed that ERK activity regulates PSM cell movement and 

converts the FGF activity gradient into cell motility gradient which decreases towards the anterior 

PSM, enabling them to undergo proper somitogenesis (Delfini et al., 2005). This PSM cell motility 

was further confirmed by time lapse microscopy which implicated it in the caudal extension of 

chick embryo (Benazeraf et al., 2010).  

Despite of the strong implication of FGF8 signaling in the PSM maturation front, mouse 

embryos lacking FGF8 in the PSM do not have any somitogenesis abnormalities (Perantoni et al., 

2005). Homozygous null mutations for other FGFs expressed in mouse PSM: fgf3, fgf5, fgf15, 

fgf17, fgf18 and fgf4 also show no early somitogenesis defects or die before somitogenesis (Sun 

et al., 1999; Perantoni et al., 2005; Itoh and Ornitz, 2008). The functional redundancy between 

FGFs is well known and could be accounted for the lack of phenotypes. The ideal candidate to 

evade this problem is to delete FgfR1, the only FgfR expressed in the PSM (Wahl et al., 2007). 

When such an attempt was made (Wahl et al., 2007; Oginuma et al., 2008), somitogenesis was 

affected progressively, while the anterior somites formed normally. 

A parallel signaling pathway working alongside of the FGF signaling to maintain the caudal 

PSM cells in an undifferentiated state is the WNT pathway (Aulehla et al., 2008; Dequeant and 

Pourquie, 2008). Manipulation of canonical WNT signaling is accompanied by loss of FGF signaling 

and causes shifts in the DF (Aulehla et al., 2003; Aulehla et al., 2008; Dunty et al., 2008). Thus, it is 

difficult to conclude whether the somitogenesis defects observed are due to the primary loss of 

WNT signaling or due to the secondary loss of FGF signaling.  

The most recent study performed to understand the true DF signal in the PSM produced 

the phenotype one could expect from a DF signal loss (Naiche et al., 2011). When the DF signal is 

abolished from the PSM, the entire PSM tissue will lack the undifferentiating cue and 

differentiate prematurely.  Naiche et al. (2011) applied the strategy of compound mutants to 

understand the actual role of FGF signaling in somitogenesis and found that the loss of fgf8 and 

fgf4 in the PSM completely disrupts the DF. Additionally, they also showed that restoration of 
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WNT signaling by constitutive activation of β-catenin in the PSM of fgf8/fgf4 double KO mouse 

was unable to reverse the lost wavefront activity, proposing FGF8 and FGF4 as the sole mediators 

of wavefront activity (Naiche et al., 2011). According to their model, both FGF and WNT signaling 

reciprocally upregulate each other in the caudal PSM and maintain the cells in an 

undifferentiated state. But, only FGF signaling facilitated by FGF8 and FGF4 mediate the 

maturation front activity and position the DF at the threshold level above which cells will become 

determined to form somites and undergo epithelialization (Naiche et al., 2011). 

Both FGF and WNT signaling gradients act from the caudal to rostral embryonic axis. The 

opposing gradient that runs from the rostral to caudal axis is the RA signaling whose 

confrontation with the maturation front is also important to position the DF (Diez del Corral et 

al., 2003). Raldh2, the RA synthesising enzyme, is expressed in the matured somites and in the 

anterior PSM of chick embryo. Treatment with RA agonist induces a drastic reduction or loss of 

fgf8 levels, while, absence of RA signaling in the vitamin A deficient quail embryos leads to an 

increase in fgf8 domain and consequent formation of smaller somites. This phenotype reflects 

the results obtained upon rostrally shifted DF by FGF8 bead implantation (Dubrulle et al., 2001). 

Moreover, FGF8 soaked beads placed in the anterior PSM were able to repress Raldh2 

expression. These results indicate that there is mutual inhibition of RA and FGF signaling 

pathways and this antagonism is involved in defining the position of the DF and thus somite 

boundary formation (Diez del Corral et al., 2003). In chick PSM, WNT8c facilitates this mutual 

antagonism by ensuring activation of RA signal near the DF and provides a transition switch from 

the FGF mediated stem zone to the RA mediated differentiation zone (Olivera-Martinez and 

Storey, 2007). Thus, the molecular clock and the wavefront provide PSM cells respectively with 

the notion of time and space, enabling proper somitogenesis. Anterior-posterior somitic 

compartments are determined only when cells pass a certain threshold of FGF signaling (above 

the DF). The region of PSM below the DF is maintained in a proliferative undifferentiated state 

and called the undetermined PSM. The PSM above the DF harbouring around 3 to 4 molecularly 

determined somites is called the determined PSM. Once cells enter the determined PSM, several 

changes occur: RA signaling takes over FGF signaling, anterior-posterior polarity of somites is 

specified at the molecular level, the clock comes to a halt and mesenchymal-epithelial transition 

progressively takes place, allowing morphological somite boundaries to be gradually formed 

(Figure 2.2).   
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1.2.2. THE LIMB MOLECULAR CLOCK 
 

In 2007, after a decade of the discovery of the somitogenesis molecular clock, work from 

our lab reported the first evidence for the existence of a molecular clock functioning in the limb 

distal mesenchyme. Palmeirim and co-workers identified the cyclic expression of the 

Hairy/Enhancer of split (HES) family gene hairy2 in the chondrogenic precursor cells with a 6h 

periodicity (Pascoal et al., 2007; Figure 2.3).  

 

   

 

Figure 2.3:  Limb molecular clock. (A) Dorsal view of stage HH24 chick embryo showing hairy2 mRNA based 

molecular clock in the distal mesenchyme of forelimb bud. (B) Schematic representation of dynamic hairy2 

expression in forelimb buds belonging to the same stage embryo (HH24). Each illustration depicts different phases of 

hairy2 expression. hairy2 is always expressed in the central mesenchymal domain (CPD) and the posterior distal limb 

encompassing the ZPA (PPD). Expression of hairy2 oscillates only in the distal limb mesenchyme (DCD). During Phase 

I it is detected only in the PPD (arrow in PhaseI); in Phase II, its expression also shows an anterior expansion until the 

two third of the distal limb mesenchyme (arrow in PhaseII) and in Phase III, hairy2 is additionally expressed in the 

region between the central mesenchymal domain and the distal domain of Phase II (arrow in PhaseIII). After these 

phases, the expression again goes back to Phase I of the next cycle. Together, it takes 6h for hairy2 to complete all 

the three phases and enter into the next cycle (Pascoal et al., 2007). For every two such oscillations a new limb bone 
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element is laid down (chick forelimb second phalanx; Pascoal et al., 2007). All limbs in B are positioned anterior on 

top and proximal to the left.  

 

The expression profile of hairy2 showed that this gene is expressed during limb initiation stage 

and continues to be expressed later in its development until stage HH32. However, dynamic 

expression patterns in forelimb buds belonging to same stage embryos were prominent from 

stage HH20-HH28 (Pascoal et al., 2007b). Variable levels of hairy2 transcripts were observed 

between the central distal limb mesenchyme and the ZPA in stage HH20-22 and in HH27 and 

HH28, whereas this dynamic domain was displaced and widened in stage HH23-26 limb buds 

between the central distal mesenchyme and the AER. Interestingly, these domains correspond to 

the location of chondrogenic precursor cells during limb development (Saunders, 1948; 

Vargesson et al., 1997). In order to determine hairy2’s oscillation period, surgically ablated right 

wing buds from stage HH24-HH26 embryos were fixed immediately, while the embryo with the 

left wing bud was reincubated for different time intervals.  These experiments demonstrated that 

hairy2 in stage HH24-HH26 chick wing buds oscillates with a 6h time period (Pascoal et al., 2007). 

Furthermore, these authors experimentally showed that the second phalanx of chick wing takes 

12h to form, based on the expression of the joint marker gdf5. They also proposed a model 

where they postulate that cells in the distal limb mesenchyme (chondrogenic precursor cells) are 

undergoing several hairy2 cycles of expression and for every 12h a limb bone element is laid 

down from two subpopulation of cells that underwent n and n+1 cycles of hairy2 oscillations 

each with 6h (Pascoal et al., 2007). 

 

1.2.3. CLOCK IN NEURAL PROGENITORS AND STEM CELLS  

The experiments performed in 2002 showed that the administration of  single  serum  

shock  to  stationary  cultured  cells  could  induce  cyclic  production  of both hes1 mRNA and 

Hes1 protein in several mouse derived cell lines, such as myoblasts, fibroblasts, neuroblastoma 

and  teratocarcinoma cells.  The observed oscillations occurred with a 2h period, corresponding 

to the periodicity of cyclic gene expression observed in mouse PSM. These findings lead the 

authors to postulate that hes1 oscillations  occur  in  many  cell  types and that the  molecular  

clock  originally  identified  in  the PSM  could  be  a widespread mechanism regulating  time  in  

many  biological  systems (Hirata et al., 2002).  
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The first evidence for oscillatory gene expression in the neural progenitors located in the 

telencephalon of mouse embryos came from hes1 mRNA and Hes1 protein oscillations (Shimojo 

et al., 2008). In these cells, hes1 oscillations are not downstream of Notch signaling but driven 

through JAK-STAT pathway, which has been proposed previously to be involved in neural 

progenitor maintenance (Kamakura et al., 2004). Interestingly, JAK-STAT pathway has been 

demonstrated to activate hes1 oscillations also in cultured fibroblasts (Yoshiura et al., 2007). 

Since, Notch signaling is not implicated in neural progenitor hes1 expression, the oscillations are 

not synchronized between cells and show variable periods, making their detection difficult by 

classical methods.  Shimojo et al. (2008) used real-time imaging technique which was already 

utilized to visualize hes1 oscillations in mouse PSM (Mazamisu et al., 2006). The dynamic 

expression was reasoned to provide enough Hes1 to maintain the neural progenitor cells in an 

undifferentiated pluripotent state and block their progression through cell cycle, while low Hes1 

allows the cells that are in the G1-phase to progress through cell cycle (Shimojo et al., 2008). 

Hes1 maintains neural progenitor cells in a proliferative state and allows them to differentiate 

into diverse cell types in an organized manner (Kageyama et al., 2007).  

Recently, hes1 oscillations were identified in ESC with 3-5h duration (Kobayashi et al. 

2009). Contrary to what has been observed in neuronal progenitors, in ESC Hes1 is necessary for 

differentiation. ESC with high and low Hes1 levels differentiates into mesodermal and neural fate, 

respectively (Kobayashi et al., 2009). Furthermore, cyclic expression of hes1 has also been 

described in mesenchymal stem cells derived from human umbilical cord blood with 5h 

periodicity by quantative PCR analysis (William et al., 2007).  

 

1.2.4. SIGNALING PATHWAYS REGULATING CLOCK GENE OSCILLATIONS 

Clock genes that belong to Notch, FGF and WNT signaling pathways have been identified 

so far. However, only HES/HER gene members, considered as the effectors of Notch signaling 

(Fisher and Caudy, 1998; Rida et al., 2004), fall into the category of common cyclic genes in the 

PSM of mouse, chick and zebrafish (Krol et al., 2011). Each of these pathways has its own as well 

as interlinked functions in regulating the somitogenesis clock. However, a constant hunt to 

identify the true driving force which is responsible for inducing oscillatory gene expression is a 

key area of research in developmental biology (Aulehla and Pourquie, 2008).  

 



Chapter I  General Introduction 

57 | P a g e  
 

Notch signaling and the molecular clock 

Notch signaling is an intercellular communication pathway mediated by direct cell-cell 

interactions between the Notch receptors (Notch 1-4) and their ligands (Delta or Serrate1 & 

2/Jagged1 & 2), which results in the proteolytic cleavage of the intracellular domain of Notch 

(NICD) by multiprotein complexes containing Presinilin1/ Presinilin2 (Fortini, 2002). This allows 

the translocation of NICD into the nucleus where it activates the transcription of its target genes 

(like HES genes) in association with DNA-binding transcription factor RBPJk (Kageyama et al., 

2007). HES gene regulations are extensively studied in order to understand the molecular 

mechanism underlying their cell intrinsic oscillatory transcription. Auto-regulatory negative 

feedback loops and short half-life of HES genes mRNA and protein have been accounted for their 

dynamic expression. Accordingly, the half-life of hes1 mRNA and protein was first identified by 

Kageyama and co-workers as ~24min and ~22min respectively, (Hirata et al., 2002) owing to hes1 

dynamic expression. The mechanism for the short half-life of mRNA and proteins is distinct. The 

3´untranslated region (3´-UTR) of hes1 gene might be responsible for the short half-life of hes1 

mRNA as it has been previously reported for xenopus hairy2 mRNA stability (Davis et al., 2001; 

Hirata et al., 2002). The short half-life of HES1 protein is endowed by protein degradation 

mediated by ubiquitin-proteasome pathway (Hirata et al., 2002). The self-inhibitory property of 

HES1 protein by binding to its own promoter (Sasai et al., 1992; Takebayashi et al., 1994) in 

combination with its short life span can generate hes1 mRNA and protein oscillations (Hirata et 

al., 2002). When HES1 protein was constitutively activated by introducing an expression vector 

into C3H10T1/2 cells, hes1 mRNA synthesis was repressed by HES1´s autoregulating activity. On 

the other hand, when de novo HES1 protein synthesis was inhibited by cycloheximide treatment, 

hes1 mRNA levels enormously increased due to the absence of HES1 to repress its promoter. 

Under both conditions, hes1 mRNA failed to oscillate in the cell lines and in mouse PSM, strongly 

indicating the requirement of periodic degradation and synthesis of HES1 protein for hes1 mRNA 

and protein oscillations (Hirata et al., 2002). 

Soon after this finding, a dual module negative feedback loop functioning between HES7, 

Lfng (Lunatic fringe is a Notch target gene encoding glycosyltransferase that modulates Notch 

signaling) and Notch activity was documented by Bessho et al. (2003). In mouse PSM, HES7 

protein inhibits its own promoter and Lfng promoter as revealed by the mutual exclusive 

domains of hes7 and Lfng mRNA to that of HES7 (Bessho et al., 2003; Chen et al., 2005). Both 
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hes7 mRNA and HES7 protein are short lived, applying the same mechanisms as that of hes1 such 

as the 3´UTR and proteosome mediated degradation, respectively (Chen et al., 2005; Bessho et 

al., 2003). In order to validate the importance of the short half-life (~22min) of HES7 in its periodic 

expression, mutant mice with longer half-life (~30min) were generated and these mice exhibited 

severe segmentation defects and no hes7 oscillations (Hirata et al., 2004).   

Since Lfng is an intermediate component of the dual module negative feedback loop, its 

inhibition or overexpression perturbs somitogenesis (Evrard et al., 1998; Zhang and Gridley, 

1998; Dale et al., 2003; Serth et al., 2003). However, constitutive expression of this gene in chick 

and mouse PSM provided different results. In chick, Lfng cyclic expression in the PSM was 

abolished suggesting that overexpressed Lfng inhibits Notch activity and eventually its target 

genes, whereas in mouse, Lfng and hes7 were still dynamically expressed in the posterior PSM 

irrespective of constitutive Lfng accumulation, questioning the mechanism proposed in chick. 

Periodic Notch activity predicted by Dale et al. (2003) was experimentally proved in mouse where 

the authors showed that the oscillations of NICD in the posterior PSM come to a halt in the 

anterior PSM by Mesp2 (Meso1 in chick) induced Lfng expression (Morimoto et al., 2005). 

Interestingly, two distinct regulatory sequences controlling Lfng expression in the posterior 

(region I ) and anterior (region II ) regions of the PSM (Saga and Takeda, 2001) were identified 

and their functional relevance in somitogenesis has also been dissected (Cole et al., 2002; 

Morales et al., 2002; Shifley et al., 2008). Gene oscillations in region I and II have distinct roles in 

skeleton development. Disruption of cyclic Lfng expression in region I of PSM arrested oscillatory 

Notch activity and produced defective thoracic and lumbar skeleton, suggesting that dynamic 

Notch activity in region I is dispensable for sacral and tail skeletal development (Shifley et al., 

2008). But, total loss of Notch activity by presinilin1/ presinilin2 double KO totally abolished cyclic 

gene expression and somite formation (Ferjentsik et al., 2009), demonstrating the essential role 

of Notch signaling for vertebrate axial skeleton development.  

However, PSM specific-RBPjk or Lfng mutants present hes7 oscillations in the posterior 

PSM (Niwa et al., 2007) as observed in the PSM of mice constitutively expressing Lfng (Serth et 

al., 2003). Moreover, the cyclically expressed WNT signal antagonist axin2 still displays dynamic 

expression in the PSM of mice constitutively expressing NICD in the entire PSM (Feller et al., 

2008). These observations argue against Notch signaling as the pacemaker of segmentation clock 

(Aulehla and Pourquie, 2008). But, several lines of data from mouse, chick and zebrafish point to 



Chapter I  General Introduction 

59 | P a g e  
 

a role of Notch signaling in synchronizing gene oscillations in the PSM. In fact, notch signaling is a 

potential candidate to synchronize cells, since cell-cell communication is a basic requisite for this 

signaling (Fortini, 2002). 

 

 

 

 

Figure 2.4: Somitogenesis molecular clock regulations. (A) Representation of mouse PSM presenting hes1 gene 

expression. (B) Scheme mentioning the short half-life of HES1 protein and its autoregulatory capacity by binding to 

its own promoter. HES1 protein is ubiquitinated and degraded by proteosomal complexes in about 22 min and since 

it can repress its own expression this mechanism would generate oscillations of hes1 mRNA and HES1 protein 

(reviewed in Kageyame et al., 2007). (C) The Notch-Hes7-Lfng loop functioning as the driver of gene oscillations in 

the PSM. Upon ligand binding, NICD is cleaved (asterisk) and translocated into the nucleus where along with RBP-Jk, 

it transcribes the target genes such as hes7 and Lfng. HES7, repress its own and Lfng promoter periodically due to its 

short half-life. This generates oscillations of both hes7 and Lfng expression. Lfng being the negative regulator of 

Notch signalling, Notch activity also oscillates in the PSM (Bessho et al., 2003, reviewed in Kageyama et al., 2007b). 

(D) Cell-cell contact is crucial for Notch signalling to occur and it serves as a mechanism to synchronize PSM cells 



Molecular parallelisms between vertebrate limb development and somitogenesis C. J. Sheeba 

   

60 | P a g e  

 

cyclic gene oscillations by reducing the background noise. (E) WNT signalling´s contribution to the oscillatory gene 

network. Several negative regulators of WNT signaling display oscillatory gene expression in the PSM such as, axin2, 

dkk1 and dact1. WNT activity is reflected as a posterior-anterior gradient of β-catenin (b-catenin) in the PSM. This b-

catenin gradient is implicated in determining the position of DetF (Aulehla et al., 2008; reviewed in Dequeant and 

Pourquie, 2008). (F) SHH mediated regulation of clock gene expression and somitogenesis in chick PSM. In the 

absence of the SHH source, the notochord (No
-
), somitogenesis is delayed with perturbed hairy2 and Lfng expression 

(dotted spiral arrow in the side of the PSM No
-
+7.5h). No

-
 PSM also has reduced fgf8 (represented by blue gradient. 

Compare the gradient between the control and the No
-
 side of the PSM) and increased Gli2/Gli3 expression. After 9-

12h of incubation in the absence of the No (No
-
), somitogenesis is recovered with high RA activity provided by 

elevated Raldh2 expression (Resende et al., 2010). The ability of RA to inhibit Gli-R activity has been proposed as the 

mechanism for somitogenesis recovery (G) Signaling interactions between FGF and Notch. FGF signalling (grey shade) 

in the posterior PSM initiates dusp4 and hes7 expression which is propagated/ maintained in the anterior PSM by 

Notch signalling (red shade) through the already mentioned loops in (C). Since, Dusp4 (grey shade) is a negative 

regulator of FGF signalling, FGF activity in the form of p-ERK (brown shade) also oscillates in the PSM (Niwa et al., 

2007). (H) FGF activity (brown shade) and Notch activity (red shade) cooperate to form somites. Both p-ERK and 

NICD display different patterns of oscillation. NICD has a band propagation pattern while p-ERK has an on-off pattern 

of oscillations. Downregulation of p-ERK at S-I level is crucial for periodic somite boundary formation by Notch 

induced Mesp2 expression. Thus, NICD oscillations periodically to mark a group of synchronized PSM cells in the 

anterior PSM which are released from the PSM by the process of somitogenesis by p-ERK oscillations (Niwa et al., 

2011).  

 

Generating gene oscillations is an intrinsic property of not only the PSM tissue but also 

the individual PSM cells (Palmeirim et al., 1997; Masamizu et al., 2006). In agreement, real-time 

bioluminescence imaging technique demonstrated the presence of out of synchrony hes1 

oscillations in dissociated PSM cells, where the cells presented a varying period and amplitude of 

hes1 cycles, emphasizing the necessity of cell-cell contact for synchronized oscillations (Masamizu 

et al., 2006). The same was true in chick PSM (Maroto et al., 2005), where pieces of PSM tissue 

were able to perform hairy1 oscillations, while dissociated cells were unable to maintain 

synchronous oscillations. Delta1 mediated synchronization of hes1 cycles are evident by the 

periodic oscillations observed in mouse cell lines exposed to Delta1 expressing cells that 

otherwise present out of synchrony expression (Hirata et al., 2002). Consolidated reports about 

Notch signaling in synchronous oscillations came from zebrafish. Salt-and-pepper expression 

pattern of the zebrafish cyclic gene deltaC in Notch mutants suggests a role for Notch signaling in 

synchronizing gene oscillations between neighbouring PSM cells (Jiang et al., 2000). The curious 

observation of unaffected anterior somites and the deformed posterior somites in most of the 
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Notch component mutants might be due to desynchrony of oscillations between the PSM cells. 

Although cells begin their initial cyclic expression normally, they cannot maintain the oscillations 

in the absence of proper Notch signaling owing to abnormal posterior somitogenesis (Dequeant 

and Pourquie, 2008). Many other studies in zebrafish, either using genetic or chemical inhibition 

of Notch signaling or mathematical modelling suggested that DeltaC-Notch intercellular 

interaction synchronize PSM cells oscillations by reducing their internal noise (Horikawa et al., 

2006; Giudicelli et al., 2007; Riedel-Kruse et al., 2007; Dequeant and Pourquie, 2008). Notch 

signaling in zebrafish somitogenesis has been solely assigned to synchronize oscillations of 

neighbouring cells (Ozbudak and Lewis, 2008). More recently, disruption of Delta-Notch coupling 

delayed zebrafish segmentation clock by extending its periodicity and revealed an additional role 

of Notch signalling in clock period regulation (Herrgen et al., 2010).  

 

FGF signaling and the molecular clock 

FGF signaling components have also been identified to be a part of the somitogenesis 

molecular oscillator in chick, mouse and zebrafish (Dequéant et al., 2006; Krol et al., 2011). At 

least in mouse, Notch and FGF components oscillate in phase (Krol et al., 2011) suggesting a link 

between these pathways. Consistent with this, conditional KO of fgf8/fgf4 in mouse PSM before 

the onset of somitogenesis affected Lfng expression (Naiche et al., 2011), as reported before in 

PSM specific-FgfR1 KO mice (Niwa et al., 2007; Wahl et al., 2007). Moreover, Niwa et al. (2007) 

also showed that FGF signaling is necessary to initiate the expression of dusp4 and hes7 in the 

posterior PSM which is mandatory for their dynamic expression in the anterior PSM. Soon after 

its initiation by FGFs, HES7 starts to inhibit its own expression (Bessho et al., 2001) and dusp4´s 

expression through its autoregulatory repressor activity and generates their oscillations in the 

posterior PSM (Niwa et al., 2007). HES7 oscillations generated in this manner are essential for 

Lfng oscillation (Bessho et al., 2003). Together Niwa et al (2007) proposed a model saying that 

FGF signal initiates hes7 expression as well as oscillation (HES7 induced) in the posterior PSM 

which is propagated and maintained in the anterior PSM by Notch signaling, implementing FGF 

signaling as the base for HES7 generated oscillations (Bessho et al., 2003). On the contrary, FGF 

components (dusp6, spry2, snail1) didn’t oscillate in presenilin1/ presenilin2 double mutant 

mouse lacking NICD indicating that Notch signaling is necessary for FGF component oscillations 

(Ferjentsik et al., 2009). However, the finding of Niwa et al. (2007)   was supported by an 
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observation in zebrafish where FGF-induced her13.2 expression is necessary for the oscillation of 

her1, her7 and deltaC (Kawamura et al., 2005), the three molecules considered as the pacemaker 

of zebrafish PSM oscillator (Dequeant and Pourquie, 2008). Dusp4, being a negative regulator of 

FGF signaling, also generates oscillatory FGF activity endowed by ERK phosphorylation in mouse 

PSM (Niwa et al., 2007). Further, FGF induced oscillatory Ras/ERK activity and dynamic p-ERK´s 

capacity to induce periodic hes1 mRNA and protein expression is also reported (Nakayama et al., 

2008; Niwa et al., 2011) suggesting a p-ERK dependent novel oscillatory mechanism. 

Controversial evidence for both positive and negative effects of FGF signal inhibition on other 

pathway gene oscillations is accumulating. Chemical inhibitors of FgfR1 failed to perturb Notch 

target gene expression in mouse and chick (Dubrulle et al., 2001; Niederreither et al., 2002; 

Delfini et al., 2005; Gibb et al., 2009), whereas Wahl et al. (2007) observed a quick disruption of 

WNT target gene axin2 and a slow but abrogated Lfng expression in mouse FgfR1 mutants. 

Despite the constitutive expression of Dusp4 in hes7 mutants, axin2 still presents dynamic 

expression, ruling out the possibility of FGF/Dusp4 signaling to be the pacemaker of gene 

oscillations (Niwa et al., 2007; Hirata et al., 2004).  

 

WNT signaling and the molecular clock 

Few WNT cluster genes, such as axin2 (Aulehla et al., 2003), dkk1, dact1 and c-myc 

(Dequéant et al., 2006) oscillate in mouse PSM. Surprisingly, none of the chick orthologs (axin2, 

dac1 and nkd1) are rhythmically expressed in chick PSM (Gibb et al., 2009). But, for the first time, 

genome-wide analysis identified new putative cycling genes of WNT components in chick: axin2, 

T, gpr177 (wnt less) and rrm2 and zebrafish: tbx16 PSM (Krol et al., 2011). As it has been already 

described, in hes7, RBPjk and NICD gain of function mutants, axin2 presents a dynamic 

expression pattern, suggesting no link between Notch signaling and WNT targets (Hirata et al., 

2004; Feller et al., 2008; Ferjentsik et al., 2009). But, when Notch signaling is completely 

abrogated from the PSM by generating presenilin1/presenilin2 double KO mutants, axin2 

oscillations were abolished (Ferjentsik et al., 2009) indicating that Notch signaling is operating 

upstream of WNT targets. On the contrary, wnt3a hypomorphic mouse mutants (vestigial tail (vt) 

with less wnt3a expression in the tailbud) display downregulated dll1 and notch1 expression as 

well as present non-dynamic Lfng and hes7 expression in the posterior PSM (Aulehla et al., 2003; 

Niwa et al., 2007). This perturbation of Notch target genes in vt mutants indicates that WNT 
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signaling is upstream of Notch. Combining these two signals, Gibb et al. (2009) observed 

reciprocal regulation of Notch and WNT pathways upon each other’s components since, chemical 

inhibition of any of these pathways disrupted both component genes, suggesting a mutual 

interaction between Notch and WNT signaling in chick as it has been previously reported in 

mouse PSM (Ishikawa et al., 2004). In fact, identification of nrarp and nkd1 whose cyclic 

expression is regulated by both Notch and WNT signaling supports this notion. While the 

transcription of nkd1 and nrarp requires WNT signal, their oscillatory expression needs Notch 

signaling in mouse (Ishikawa et al., 2004; Dequeant et al., 2006; Sewell et al., 2009). However, 

this is not the case in chick and zebrafish, in which nrarp expression is only Notch-dependent 

(Wright et al., 2009).  

WNT3a in the posterior PSM is a key ligand for WNT/β-catenin signaling. Similar to the 

mRNA decay based gradient of FGF8 in the PSM, WNT3a also establishes a posterior-anterior 

protein gradient in the PSM that is translated into its mediator, the β-catenin protein gradient 

(Aulehla et al., 2008). Constitutively stabilized β-catenin in mouse PSM restored Lfng oscillations 

in FgfR1 mutants (Aulehla et al., 2008) which is otherwise absent (Wahl et al., 2007), suggesting 

that WNT signaling is functioning downstream of FGF signal. But, this is not the case after 

restoration of canonical WNT signaling in fgf8/fgf4 double mutant KO mouse (Naiche et al., 

2011). Moreover, stabilized β-catenin does not abrogate neither WNT nor Notch target gene 

oscillations (Aulehla et al., 2007), questioning the possibility of a WNT/β-catenin based clock 

pacemaker.  

 

SHH regulates the pace of the clock and timely somite formation 

 The long-time perception of somitogenesis and the underlying molecular clock´s 

independent operation from the axial structures (neural tube and notochord) was revisited by 

Resende et al. (2010). They found a strong requirement of the notochord and SHH produced 

therein for the timely formation of somites and for proper oscillations of the clock genes (hairy2 

and Lfng) in chick PSM. When the PSM was isolated from its SHH source, the notochord, only 3-4 

somites were formed at a normal pace and further somitogenesis was perturbed. Further 

analysis has revealed that this is due to a delay in somitogenesis and the periodicity of the clock 

gene hairy2 expression. This phenotype was recapitulated upon SHH signal inhibition and 

rescued by exogenous SHH supplementation accounting notochord-SHH in the timely formation 
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of somites (Resende et al., 2010). The clock periodicity was altered to 2h 45min-3h in the absence 

of SHH, instead of the regular 90min (Resende et al., 2010). In the absence of notochord, fgf8 

expression in the tailbud was downregulated while Raldh2, Gli2 and Gli3 were upregulated, 

suggesting a possible role of SHH in determining the position of the DF and involvement of Gli´s 

in SHH mediated delayed somitogenesis (Resende et al., 2010). Interestingly, this delay in 

somitogenesis recovered automatically after 9h of incubation with a concomitant increase in 

Raldh2 expression. Accordingly, exogenous RA supplementation rescues notochord ablation 

effects on somitogenesis. In the end, the authors propose a model where the absence of SHH 

upon notochord ablation upregulates Gli2/Gli3 in the PSM, which will be processed to the 

respective repressor forms. High Gli-R activity inhibits molecular clock oscillations and causes a 

delay in somitogenesis. Upon longer (9h) incubation without SHH source, fgf8 expression is 

downregulated in the caudal PSM and enables expanded Raldh2 expression facilitating the 

recovery of somitogenesis rate. This should be through the previously described functions of RA 

to modulate Gli-R activity and Gli2 transcription (Goyette et al., 2000; Ribes et al., 2009). Overall, 

this work provides evidence for the role of SHH in DF establishment by warranting the absence of 

Gli3-R in the PSM and so ensuring the tempo of somitogenesis (Resende et al., 2010). 

 

1.2.5. INTEGRATED CLOCK AND WAVEFRONT IN THE PSM 
 

 During somitogenesis, the temporal periodicity provided by the PSM molecular oscillator 

is translated into the segmental blocks by the posterior-anterior graded wavefront activity. The 

wavefront is established by the posterior-anterior graded WNT and FGF signaling in the PSM 

(Dubrulle et al., 2001; Sawada et al., 2001; Aulehla et al., 2007; Dunty et al., 2008), both of which 

also have their components expressed in a rhythmic manner in mouse, chick and zebrafish, 

integrating the wavefront and the clock (Aulehla et al., 2003; Dale et al., 2006; Dequeant et al., 

2006; Niwa et al., 2007; Krol et al., 2011). Since many of these oscillating genes are modulators of 

the pathway, negative feedback mechanisms cause periodic pulses of FGF or WNT activity in the 

PSM (Niwa et al., 2007; Niwa et al., 2011; Aulehla and Pourquie, 2010). Initiation of hes7 and 

dusp4 expression in the posterior PSM by FGF signaling in combination with the autoregulatory 

effect of HES7 generates hes7, Lfng, dusp4 and FGF activity (p-ERK) oscillations. These initial 

oscillations are maintained/propagated by Notch signaling in the anterior PSM (Niwa et al., 2007; 
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Niwa et al., 2011) making a link between the wavefront FGF signaling and the clock oscillations. 

Even though, HES7 drives the oscillations of NICD and p-ERK, they present different dynamics: 

NICD propagates as a band from the posterior PSM to S0 level and p-ERK displays an on/off 

oscillatory pattern in the posterior PSM to S-II level (Niwa et al., 2011). It is shown that at the DF 

level, the clock slows down (Niwa et al., 2011) and the graded FGF/WNT signaling regress 

allowing the expression of mesp2 and subsequent somite boundary formation (Aulehla and 

Pourquie, 2010; Niwa et al., 2011). Expression of mesp2 is positively and negatively regulated by 

oscillatory Notch signaling and regressing FGF/WNT signaling, allowing a periodic and permissive 

state for mesp expression, respectively (Oginuma et al., 2008; Aulehla and Pourquie, 2010). The 

concomitant requirement of band propagation and on-off dynamics of Notch and FGF signaling 

activity in the anterior PSM is shown to be necessary for periodic mesp2 expression at the S-I 

level (Niwa et al., 2011). These authors have shown that NICD oscillations in the anterior PSM are 

1.5 fold slower compared to the posterior PSM. This enables a sharp segregation of NICD positive 

cells in the rostral PSM that are freed by the off phase of FGF signaling which allows mesp2 

expression at this level. Lfng mediated PSM cell synchrony is necessary for sharp segregation of 

Hes7 and NICD domains in the middle and anterior PSM (Niwa et al., 2011). This finding is 

interesting because FGF signaling (FgfR1-FGF4/FGF8) has been shown to be the sole mediator in 

positioning DF and acts upstream of WNT and Notch pathways to regulate clock gene oscillations 

(Wahl et al., 2007; Naiche et al., 2011).     

 Although Naiche et al. (2011) excluded WNT signaling from being the mediator of DF 

activity, compelling evidence suggests a role for WNT/β-catenin signaling in axis elongation, 

determining the size of oscillatory field and PSM maturation (Aulehla et al., 2007). The 

importance of the posterior-anterior gradient of β-catenin protein was studied by selectively 

deleting or stabilizing β-catenin in mouse PSM. Early deletion for β-catenin resulted in severe axis 

truncation with few abnormally formed anterior somites. Constitutively stabilized β-catenin 

produced embryos with no significant morphological somite boundaries along the axis except for 

four irregular anterior somites in some cases (Aulehla et al., 2007). Thus, β-catenin, the mediator 

of WNT signaling in mouse PSM cause axis truncation upon deletion and form longer PSM with 

delayed maturation upon stabilization, proposing a possible role for graded β-catenin in 

establishing DF. Under the influence of β-catenin, WNT and NOTCH signal dependent oscillatory 

genes present dynamic expression for an extended period of time and the somite boundary 
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defining gene mesp2 expression was shifted anteriorly (Aulehla et al., 2007). This suggests that β-

catenin maintains clock oscillations and its regression in the anterior PSM is necessary to slow 

down the clock and for the induction of mesp2 expression (Aulehla et al., 2007) as it has been 

shown for FGF/p-ERK signaling (Niwa et al., 2011).  

 

2. AIMS AND THESIS LAYOUT  

The vertebrate limb is a structure that develops from the lateral plate mesoderm (LPM) 

and the myotome. Myotome cells give rise to the muscle components while lateral plate cells 

produce the segmented skeletal portions of the limb which grow in three dimensions to make a 

complete arm or leg. Somites are transient segmented structures that develop from the 

presomitic mesoderm (PSM) and organize the segmental pattern of vertebrate embryo. They 

eventually give rise to the vertebrae, ribs, dermis of the dorsal skin, skeletal muscles of the back 

and the skeletal muscles of the body wall and limbs. One of the important features of 

somitogenesis (formation of somites) is the evolutionarily conserved species specific periodicity 

and its underlying molecular clock. In 2007, a limb hairy2 based molecular clock with 6h 

periodicity that is reminiscent to the somitogenesis clock was identified by our lab. This finding 

raised the possibility of establishing similarities between the limb development and 

somitogenesis. Although, vertebrate limb and somites differ in morphology and in their 

embryonic development, they share many common features.  

 

GLOBAL AIM 

The work developed throughout this thesis is aimed at finding similarities between limb 

development and somitogenesis and to constitute new parallelisms. 

 

SPECIFIC AIMS 

To attain our goal, we pursued the following specific aims: 

1. To establish the putative role of the AER-FGFs and ZPA-SHH in the expression of the limb 

molecular clock gene hairy2 

The limb molecular clock gene hairy2 has been reported to be dynamically expressed in 

the distal limb mesenchyme that is in close proximity to the major limb signalling centers the AER
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and the ZPA whose secreted morphogens are the FGFs and the SHH, respectively. In the recent 

past, FGF and SHH signalling have been reported to control the expression of HES genes in many 

systems. We intended to study the putative role of the limb signalling centers and their main 

signalling molecules in hairy2 expression. This was essentially done by a series of ablation and 

bead implantation experiments. The results were assessed at the level of mRNA and protein 

expression. 

2. To determine if a wavefront is travelling along the distal limb mesenchyme. 

 Our second approach to reach the primary aim of this thesis is to determine if a similar 

mechanism to the PSM wavefront could be functioning during forelimb development. To address 

this question, we altered the limit of the two primary signalling molecules of limb PD axis 

development, FGF8 and RA in the limb field. The effect caused by these manipulations was 

detected by measuring the size of limb bone elements and by analysing the alterations caused in 

the expression pattern of important genes.  

3. To determine the functional relevance of the limb molecular clock. 

hairy2 is the only limb molecular clock gene identified so far. hairy2 mRNA is oscillating in 

the distal limb mesenchyme corresponding to the chondrogenic precursor cells and interestingly 

its expression ceases in the differentiating cartilage. This expression suggests a role for hairy2 in 

limb bone patterning. Hence, we went to study the functional relevance of hairy2 in limb 

development. We utilized the retrovirus mediated limb mesenchymal delivery of hairy2 gene and 

siRNA to address this task.  

 

THESIS LAYOUT  

The present PhD thesis is organized into six different chapters. In Chapter I, just before 

the Aim of this thesis work, a General introduction describing the important molecular events 

occur during vertebrate limb development and somitogenesis has been presented. The review of 

literature cited in this section will be utilized to establish literature based parallelisms in later 

chapters. Chapter II presents the first article published from the scope of this work in a peer 

reviewed journal: ``Comprehensive analysis of fibroblast growth factor receptor expression 

patterns during chick forelimb development´´. In Chapter III, the research manuscript entitled: 

``Limb hairy2 expression is a temporal and spatial output of AER/FGF and ZPA/SHH signaling´´ 



Molecular parallelisms between vertebrate limb development and somitogenesis C. J. Sheeba 

   

68 | P a g e  

 

which has been submitted to a peer reviewed journal is attached. Materials and methods and 

unpublished/preliminary results from the on-going work concerning the limb wavefront, Hairy2 

functional relevance and signaling pathways regulating limb hairy2 expression are organized in 

Chapter IV. A compendium of the most relevant discussion on the parallelisms between limb and 

trunk development that has been established from this PhD work and the literature reviewed in 

Chapter I are presented in the form of a general discussion in Chapter V. All the major 

conclusions drawn from this work is presented as a model along with the future perspectives in 

Chapter VI. In the end of the thesis all the references from the entire write up are presented in 

alphabetical order. 

 

  



 

 

  



 

 

  



 

 

 

 

 

 

CHAPTER II:  FIBROBLAST GROWTH FACTOR RECEPTOR 

 EXPRESSION PATTERNS DURING CHICK   
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The results presented in this chapter were published in an international peer reviewed journal: 

 

Sheeba , C. J., Andrade, R.P., Duprez, D and Palmeirim, I. (2010). Comprehensive analysis of 

fibroblast growth factor receptor expression patterns during chick forelimb development. Int. J. 

Dev. Biol. 54: 1515-1524.  
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Results presented in this chapter constitute a manuscript that is submitted to a peer reviewed 

journal: 

Limb hairy2 expression is a temporal and spatial output of AER/FGF and ZPA/SHH signaling  

Caroline J. Sheeba, Raquel P. Andrade and Isabel Palmeirim.  
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ABSTRACT  

Embryo limb development is governed by the combined action of the limb signaling centers AER 

and ZPA. These influence the distal limb mesenchyme through the production of the FGF and 

SHH morphogenes, respectively. Graded AER/FGF signaling promotes proximal-distal (PD) limb 

outgrowth and patterning, while a gradient of ZPA-produced SHH activity patterns the anterior-

posterior (AP) axis. The distal limb mesenchyme has been reported to present oscillatory 

expression of the hairy2 gene, a component of the embryonic molecular clock (EC) operating in 

somitogenesis. The EC gene expression is strictly dependent on FGF and SHH-mediated regulation 

in the presomitic mesoderm. In the present work, we evaluated the dependence of limb hairy2 

expression on AER/FGF and ZPA/SHH signaling in the chick wing. We report that hairy2 

expression results from the cooperative action of both AER/FGF and ZPA/SHH signaling, mediated 

by Erk/Akt and Gli3 activation, respectively. FGFs act as instructive signals on hairy2 and present 

a short-range and short-term mode of action. Moreover, FGFs can only induce hairy2 expression 

when the tissue is in a permissive state, previously established by ZPA/SHH signaling, which acts 

on hairy2 in a long-term and long-range fashion. Overall, our work evidences that hairy2 is an 

output of coordinated ZPA/SHH and AER/FGF signaling in both space and time, which suggests 

that hairy2 could be coupling limb outgrowth and patterning along AP and PD limb axes. 
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INTRODUCTION 

Multiple human congenital disorders present limb malformations, with significant 

implications on individual health and overall life quality. The developmental biology field has 

greatly contributed to elucidate the mechanisms underlying human developmental disorders, 

significantly improving diagnosis and treatment of these conditions (Grzeschik, 2002). Short-

limbed dwarfism, Apert and Greig syndromes are examples of such cases, where mutations in 

genes crucial for limb development (fgfr3, fgfr2 and gli3, respectively) result in short and/or 

malformed limbs (Grzeschik, 2002; Eswarakumar et al., 2005). 

Crosstalk between several key signaling pathways, such as FGF, RA and SHH is essential for 

correct limb bud initiation, outgrowth and patterning (Zeller et al., 2009). The limb develops 

along three orthogonal axes: anterior-posterior (AP), proximal-distal (PD) and dorsal-ventral (DV), 

orchestrated by key molecules produced in the limb signaling centres. The AP axis is governed by 

the zone of polarizing activity (ZPA), located at the posterior distal margin of the limb bud, 

through the production of Sonic Hedgehog (SHH). A ZPA-derived SHH gradient is established from 

the posterior to anterior limb tip, and regulates Gli activity levels essential for correct AP digit 

specification (Zeller et al., 2009).  

The apical ectodermal ridge (AER) formed by an ectoderm thickening at the distal tip of 

the limb bud, drives development along the limb PD axis. Fibroblast growth factors (FGFs) 

mediate AER activity, as beads soaked in different FGFs are able to rescue limb truncations 

caused by AER ablation (Niswander et al., 1993; Fallon et al., 1994). Distal-to-proximal AER-

derived FGF signaling is counteracted by an opposing proximal–to-distal gradient of Retinoic Acid 

(RA), from very early stages of development. As a result, limb bud cells positioned along the limb 

PD axis are under the influence of two opposing gradients, which underlie the Two-Signal Model 

proposed to explain the intricate PD patterning of the developing limb (Mercader et al., 2000; 

Tabin and Wolpert, 2007; Mariani et al., 2008). According to this model, the counteracting 

gradients of RA and FGF signaling activities overlap in the early limb bud, due to the tissue’s 

reduced dimensions. Over time, proximal-RA and distal-FGF gradients become increasingly 

separated as the limb grows. This results in three separate domains, expressing distinct markers 

which denote the progenitors of the limb segments (stylopod, zeugopod and autopod). 

Combining in vitro primary culture of limb distal mesenchymal cells and the recombinant limb 
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approach, Cooper et al. clearly established the requirement of RA for the specification of the 

stylopod (proximal-most limb skeletal element) and of FGF8/WNT3a for the sequential 

specification of zeugopod and autopod (distal structures) (Cooper et al., 2011). A parallel study 

conducted by Rosello-Diez and collaborators also confirmed these results, by transplanting distal 

limbs to embryonic regions with differing RA content and employing recombinant limb 

experimental approaches (Rosello-Diez et al., 2011).   

The Two Signal model does not contemplate the requirement of a time-counting 

mechanism for correct PD limb patterning. However, RA and FGF counteracting gradients have 

been described to co-operate with an embryonic molecular clock (EC) in control of somite 

segmentation along the embryo AP body axis, both temporally and spatially (Aulehla and 

Pourquie, 2010; Niwa et al., 2011). The EC has been described in several species, where cyclic 

expression of multiple genes belonging to the Notch, FGF and WNT signaling pathways operates 

(Dequeant et al., 2006; Krol et al., 2011). Cycles of Hes1 gene expression have also been 

described in human mesenchymal stem cells (William et al., 2007), mouse neural progenitor cells 

(Shimojo et al., 2008) and, more recently, in embryonic stem (ES) cells (Kobayashi et al., 2009). 

Furthermore, the avian Hes1 homolog gene hairy2, which is cyclically expressed during 

somitogenesis (Jouve et al., 2000), also presents cycles of expression in the limb distal 

mesenchyme, namely in chondrogenic precursor cells. Here, waves of hairy2 expression 

periodically propagate along the posterior/distal to anterior/proximal axes with a 6h periodicity 

(Pascoal et al., 2007b; Aulehla and Pourquie, 2008).  

In PSM, EC gene expression depends on FGF, RA and SHH (Aulehla and Pourquie, 2010; 

Resende et al., 2010). The distal limb mesenchyme, where hairy2 is cyclically expressed, is in 

close proximity with the FGF-producing AER and the ZPA, a SHH source. Studies on how each one 

of these morphogenes contributes to hairy2 expression in the developing limb, however, have 

been lacking and may bring great insight to the field. Herein, we demonstrate the involvement of 

the two major limb signaling centers the AER and the ZPA and their signaling morphogens, FGFs 

and SHH, respectively, in the regulation of distal limb hairy2 expression in the chick wing. 

ZPA/SHH acts as a long-term and long-range signal, creating a permissive state for hairy2 

expression along the tissue by building up a proper ratio of Gli activities, defined by Gli3A/Gli3-

R≥1. High levels of AER/FGF signaling, mediated by Erk and Akt pathway activation, are 
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instructive signals for hairy2 expression, with short-term/short-range characteristics. 

Importantly, hairy2 expression is a simultaneous readout of AER/FGF and ZPA/SHH and reflects 

their spatial and temporal signaling activities in the distal limb bud. 

RESULTS 

Limb hairy2 expression depends on AER-derived FGF signaling 

The developing limb presents distinct domains of hairy2 expression, clearly visible from 

stages HH20 to HH28 (Pascoal et al., 2007b): hairy2 is persistently expressed in the central 

muscle mass (Fig. 1A, CPD) and in the posterior/distal limb mesenchyme, including the ZPA (PPD, 

posterior positive domain). Contrastingly, hairy2 transcripts are absent from the proximal 

posterior region (PND, posterior negative domain) and from the anterior limb (AND, anterior 

negative domain). In the distal-most limb mesenchyme (DCD, distal cyclic domain) hairy2 is 

cyclically expressed, with a 6h periodicity, and, for sake of simplicity, this can be represented by 

three distinct phases (Fig. 1Ai-iii).  

In order to evaluate if AER-derived signaling is involved in the regulation of distal limb 

hairy2 expression, AER tissue was microsurgically ablated from the right-side forelimb (-AER) of 

stage HH22-24 chick embryos in ovo, while the contralateral limb was untouched (control). 

Complete AER ablation was confirmed upon random in situ hybridization for fgf8 (Fig. 1Bi,ii). 

Operated embryos were further incubated for 4h, after which hairy2 expression was 

simultaneously evaluated in control and -AER limbs by in situ hybridization. We found that in the 

absence of the AER, hairy2 expression was abolished in both the DCD and PPD, revealing a crucial 

role for AER signaling on hairy2 expression in these domains (Fig. 1Biii,iv; n=13/13).  

As FGFs are key signaling molecules produced by the AER, we sought to interrogate if the 

observed effect was through AER-produced FGF signaling. Beads soaked in recombinant FGF8 or 

FGF2 were implanted in the DCD immediately following AER ablation, and hairy2 expression was 

assessed after 4h of incubation. Both FGF2 and FGF8 were able to induce hairy2 expression 

around the beads (Fig. 1Bv,vi; FGF8: n=4/5; FGF2: n=3/3), indicating the importance of FGFs for 

hairy2 expression in the distal limb mesenchyme. Accordingly, treating the distal limb field with 

FGF inhibitor SU5402 (n=12) downregulated (n=7/12) or even abolished (n=4/12) hairy2 

expression (Fig. 1Bvii,viii). We further assessed FGF-mediated hairy2 regulation by implanting 

FGF8-soaked beads in different distal limb domains. hairy2 expression was enhanced in DCD and 

PPD domains (Fig. 1Ci-iv; DCD: n=10/12; PPD: n=9/9). FGF beads also induced ectopic hairy2 
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transcription in the hairy2 negative domain, PND (Fig. 1Cv,vi; n=25/27). Contrastingly, FGF8 was 

unable to induce hairy2 in the AND (Fig. 1Cvii,viii; n=20/20), even after 20h of incubation and 

with increased amounts of FGF8 (Fig. S1), suggesting the requirement of an additional signal 

which is present throughout the distal limb mesenchyme, except in the AND. 

Together, our results indicate that AER-derived FGFs are absolutely required for hairy2 

expression in the PPD and DCD. Moreover, FGF can induce ectopic hairy2 in the distal limb, 

suggesting that FGF plays an instructive role in hairy2 expression. This is not so in the AND, 

revealing a divergence of hairy2 regulation mechanisms operating in the posterior and anterior 

region of the distal limb.  

 

Distal limb hairy2 expression is regulated by ZPA-derived SHH 

The posterior limb tissue presents high SHH levels produced by the ZPA. hairy2 is 

persistently expressed in the PPD, overlapping the ZPA and is absent in the AND which is 

deprived of SHH signaling. These observations suggest a role for ZPA/SHH gradient in the 

regulation of hairy2 expression along the AP limb axis. Accordingly, we found that distal hairy2 

expression was abrogated following 6h of in ovo ZPA ablation, while AER-fgf8 was unaffected 

(Fig. 2Ai-iv; fgf: n=4/4; hairy2: n=22/27), strongly suggesting the requirement of ZPA-mediated 

signaling for hairy2 expression. We then replaced the ZPA by QT6 cells constitutively secreting 

SHH. Upon incubation, QT6-SHH was able to rescue hairy2 (Fig. 2Av,vi; n=7/7), indicating that 

SHH is the ZPA-derived signal controlling hairy2 expression. Supporting these results, chick 

forelimbs treated with the Hedgehog inhibitor cyclopamine no longer exhibited hairy2 transcripts 

in the distal limb (Fig. 2Bi,ii; n=5/6). In these conditions, SHH-target patched1 expression was 

abolished while AER-fgf8 was unaffected (Fig. S2). Finally, SHH-soaked beads positioned in the 

AND resulted in an anterior expansion of hairy2 towards the bead (Fig. 2Biii,iv; n=11/15). These 

results clearly indicate that ZPA-derived SHH is essential for hairy2 expression in the distal limb 

mesenchyme. However, SHH-bead in the AND induced hairy2 only along the tissue adjacent to 

the AER, suggesting the involvement of AER/FGFs in this induction.  

 

Intracellular signal transduction pathways mediating distal limb hairy2 expression  

Erk/MAPK and Akt/PI3K are two predominant intracellular pathways functioning 

downstream of AER/FGF signaling in the chick limb (Kawakami et al., 2003). The activation levels 
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of each pathway upon implantation of FGF8-soaked beads in either forelimb AND or PND were 

assessed by western-blot analysis, after 4.5h of incubation (Fig. 3A,B). Experimental and 

contralateral control limbs were surgically ablated and divided along the proximal-distal axis prior 

to protein extraction and the untreated halves were discarded. Upon FGF8-bead implantation in 

the PND, p-Erk levels were increased by 77% and p-Akt by 37% (Fig. 3Ai,ii), suggesting that hairy2 

induction in the PND in response to FGF signaling (Fig. 1Cv,vi) can be mediated by both Erk/MAPK 

and Akt/PI3K pathways. To further clarify these results, beads soaked in specific MAPK or PI3K 

inhibitors (UO126 and LY294002, respectively) were co-implanted with a FGF8-bead and hairy2 

pattern was analyzed. The tissue under the direct influence of either MAPK or PI3K inhibitors no 

longer exhibited ectopic hairy2 (Fig. 3Aiii; U0126: n=4/4; LY294002: n=5/6), further supporting an 

important role for Erk/MAPK and Akt/PI3K pathways in mediating FGF-induced hairy2 expression 

in the posterior limb. These results suggest that the FGF instructive role on hairy2 activation is 

through Erk/MAPK and Akt/PI3K pathways.  

The implantation of FGF8-beads in the AND did not significantly impact Erk/MAPK or 

Akt/PI3K activation (Fig. 3B) and also failed to induce ectopic hairy2 expression (Fig. 1Cvii,viii). 

This observation indicates that the AND tissue is not competent to respond to FGF8 instructive 

action on hairy2, further suggesting the need for an additional signal. SHH is a good candidate, 

since it is absent from the AND and FGF8 was able to induce hairy2 in all regions containing SHH 

signaling activity. Gli3 is a major signal transducer of SHH signaling, so we evaluated Gli3 activity 

levels by western-blot analysis, upon FGF8 treatment, as described above, or after 6h of SHH-

bead implantation in the AND. In agreement with previous reports (Wang et al., 2000; Bastida et 

al., 2004), we found that there is higher Gli3-R activity in the anterior limb than in the posterior 

region (Fig. S3). The implantation of a FGF-bead in the AND further enhanced Gli3-R levels, while 

a SHH-bead greatly decreased the amount of Gli3-R (Fig. 4A,B; Fig. S3). These findings indicate 

that Gli3-R could be responsible for inhibiting hairy2 expression in this limb region. The fact that 

FGFs induced Gli3-R form in the PND (Fig. 4A,B; Fig. S3) concomitantly with ectopic hairy2 (Fig. 

1Cv,vi), shows that hairy2 expression is not solely dependent on the presence/absence of Gli3-R, 

but must rely on balanced Gli3-A/Gli3-R activities.  

We analyzed the correlation between the experimental conditions leading to hairy2 

expression and Gli3-A/Gli3-R levels (Fig. 4C). FGF8 in the PND increased the levels of Gli3-A and 

Gli3-R to the same extent, thus balancing the overall Gli3-A/Gli3-R ratio. Moreover, the Gli3-
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A/Gli3-R ratio in the control is higher in the posterior than in the anterior limb region (Fig. 4C), 

which coincides with the presence and absence of hairy2 expression, respectively. This suggests 

the existence of a Gli3-A/Gli3-R threshold for hairy2 expression along the limb AP axis. A FGF8-

bead in the AND significantly decreased the Gli3-A/Gli3-R ratio and failed to induce hairy2 (Fig. 

4C) On the contrary, when a SHH-soaked bead was implanted in the AND, an accumulation of 

Gli3-A was obtained (up to 76% increase), at the expense of Gli3-R form, as its levels drastically 

dropped. This resulted in high Gli3-A/Gli3-R activity (Fig. 4C) and ectopic hairy2 expression (Fig. 

2Biii,iv). Collectively, there is a straight correlation between hairy2 expression and a Gli3-A/Gli3-R 

ratio equal or higher than 1. This clearly shows that SHH-mediated Gli3 activity levels regulate the 

tissue’s ability to respond to FGF instructive signal for hairy2 expression. Moreover, we find that 

FGF could only induce hairy2 when Gli3-A/Gli3-R≥1, thus unveiling this condition as a permissive 

state for hairy2 expression. 

Our work suggests that limb hairy2 expression requires a permissive state provided by 

ZPA/SHH signaling, defined as Gli3-A/Gli3-R≥1, as well as an instructive signal provided by 

AER/FGFs through Erk/MAPK and Akt/PI3K pathway activation in the developing limb bud. These 

data evidence the existence of a cooperative action of AER and ZPA in limb hairy2 expression. 

 

AER/FGF and ZPA/SHH cooperate in distal limb mesenchyme hairy2 expression  

In the above sections, we have shown that AER/FGF and ZPA/SHH are individually 

required for hairy2 expression regulation in the distal limb. An interesting observation was that 

FGF8 could not induce ectopic hairy2 expression in the AND (Fig. 1Cvii,viii), while SHH expanded 

hairy2 anteriorly along the AER-adjacent tissue (Fig. 2Biii,iv). However, SHH was no longer 

capable of inducing hairy2 upon AER ablation (Fig. 5Ai-vi; AND: n=3/3; DCD: n=4/4; PPD: n=3/3). 

These results indicate that ZPA/SHH is not sufficient per se, as AER/FGF is also necessary for 

hairy2 induction. FGF beads implanted immediately upon ZPA ablation were capable of locally 

inducing hairy2 expression (Fig. 5Bi,ii; n=5/5), since this tissue is still in a permissive state due to 

the remaining SHH graded signaling. When FGF beads were implanted after 6h of ZPA removal, 

hairy2 was no longer induced by FGF in either PND or DCD (Fig. 5Biii-vi PND: n=6/6; DCD: n=4/4), 

supporting the requirement of ZPA for FGF-induced hairy2 expression.  

Our results strongly suggest that ZPA/SHH and AER/FGF signaling are jointly required for 

hairy2 expression (see also Fig. S4). To further test this concept, FGF8 and SHH beads were 
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concomitantly implanted in the AND. In these conditions, the levels of hairy2 induction attained 

(Fig. 5Ci,ii; n=5/5) were indistinguishable from those obtained with a SHH-bead alone (Fig. 

2Biii,iv).  But if the FGF-bead was implanted in a limb previously incubated for 6h with SHH, it 

now greatly induced ectopic hairy2 in the AND (Fig. 5Ciii,iv; n=6/6). This set of experiments shows 

that the AER/FGFs and ZPA/SHH act cooperatively in hairy2 expression. Moreover, it is clear that 

SHH is a permissive signal, while FGFs play an instructive role on hairy2 expression. 

 

Different temporal and spatial requirements of AER/FGF and ZPA/SHH in the maintenance of 

distal limb hairy2 expression 

To further understand the dynamics of hairy2 dependence on AER/FGF and ZPA/SHH, a 

detailed study of the temporal response of hairy2 expression to the removal of each limb 

signaling centre was performed. In the absence of the AER, hairy2 was down-regulated as soon as 

in 40min (Fig. 6Ai-ii; n=2/2) and totally abolished after 1h of incubation (Fig. 6Aiii-iv; n=5/5). 

Contrastingly, hairy2 expression was not affected even after 2h of ZPA ablation (Fig. 6Av-vi; 

n=9/10), and cyclopamine-mediated SHH signaling inhibition for 4h also only mildly down-

regulated hairy2 expression (Fig. 6Aix,x; n=4/4). In fact, longer incubation periods were required 

for total hairy2 depletion in the distal mesenchyme after ZPA ablation (Fig. 6Avii-viii; n=22/27) or 

cyclopamine treatment (Fig. 2Bi,ii; n=5/6). This was not a consequence of cell death as revealed 

by TUNEL assay (Fig. S5). In these conditions, AER/FGF inductive signals are present as revealed 

by the intact fgf8 expression detected after ZPA ablation and cyclopamine treatment (Fig. 2Ai,ii; 

S2), but failed to induce hairy2. This further supports a role for SHH signaling in creating a 

permissive state for hairy2 expression in the distal limb tissue. Together, these data evidence 

very different temporal responses of hairy2 to both limb signaling centers: a short-term response 

to AER/FGF and a long-term response to ZPA/SHH.  

To further characterize AER-mediated regulation of hairy2 expression, we ablated solely 

the posterior- or anterior-AER and analyzed hairy2 expression pattern. Partial AER ablations were 

randomly confirmed upon fgf8 staining (Fig. 6Bi,ii,ix,x). Upon posterior-AER ablation, hairy2 was 

rapidly abolished in the PPD (Fig. 6Bv,vi; n=4/4), while shh expression was still present (Fig. 

6Biii,iv; n=2/2), further supporting an instructive role for FGF8 on hairy2. This was a spatially 

restricted effect, since hairy2 expression in the DCD remained unperturbed (Fig. 6Bvii,viii; n=2/2). 

Similarly, when the anterior-AER was ablated, hairy2 was unperturbed in the posterior limb and 
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abolished in the DCD (Fig. 6Bxiii-xvi; Phase1: n=2/2; Phase2: n=5/5). As expected, shh expression 

was present in these conditions (Fig. 6Bxi,xii; n=2/2). Together, these results show a restricted 

spatial response of hairy2 expression to local absence of AER signaling. 

Altogether, our data propose ZPA- and AER-mediated signaling as distinct regulatory 

mechanisms acting on distal limb hairy2 expression, both temporally and spatially. ZPA/SHH acts 

at a long-range and has a long-term permissive effect on hairy2, whereas the AER/FGF effect is of 

a short-term, short-range instructive nature.  

 

Discussion 

The limb signaling centers AER and ZPA govern hairy2 expression 

The chick limb mesenchyme displays distinct hairy2 expression patterns (Fig. 1A) which 

are cyclically recapitulated in the sub-ridge mesenchyme (Pascoal et al., 2007b; Aulehla and 

Pourquie, 2008). hairy2 transcripts are persistently present in the posterior limb encompassing 

the ZPA (PPD), dynamically expressed in the distal limb region (DCD) and absent in the anterior 

limb mesenchyme (AND). The proximity of hairy2 expression domains to the two limb signaling 

centers, the AER and the ZPA, suggests their potential role in hairy2 regulation. In fact, our results 

clearly show that upon AER or ZPA ablation hairy2 was lost in the distal limb mesenchyme (Fig. 

1B, 2A), evidencing an indispensable role for both AER and ZPA signaling centers in hairy2 

expression.  

 

FGFs from the AER and ZPA-derived SHH are regulating limb hairy2 expression 

Dynamic hairy2 expression is regulated by both FGF8 (Dubrulle et al., 2001) and SHH 

(Resende et al., 2010) in the presomitic mesoderm (PSM). The distal limb mesenchyme is under 

the influence of AER-derived FGFs and expresses appropriate FGF receptors (Sheeba et al., 2010), 

and it also presents PA graded ZPA/SHH signaling. We found that FGF-bead implantation could 

induce ectopic hairy2 expression in the distal mesenchyme, even upon AER ablation (Fig. 1B). An 

FGF inhibitor produced the contrary effect (Fig. 1B), evidencing an instructive role for FGF in 

hairy2 regulation in the limb. Substantiating these findings, HES genes have been reported to be 

induced by FGFs in multiple systems, such as in somitogenesis (Dubrulle et al., 2001; Kawamura 

et al., 2005; Niwa et al., 2007), inner ear development (Doetzlhofer et al., 2009) and neural 

progenitor cells (Sanalkumar et al., 2010). We further identified Erk/MAPK and Akt/PI3K as the 
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effectors of FGF-mediated hairy2 regulation in the limb (Fig. 3). This result is supported by a clear 

correlation between FGF-mediated Erk phosphorylation and hairy2 homolog hes1 expression in 

C3H10T1/2 cells (Nakayama et al., 2008).  

The consistent absence of hairy2 in the AND, despite of the exposure to AER/FGF 

signaling, indicates that FGF is not sufficient for hairy2 expression. The hairy2-negative AND 

tissue coincides with the region of the limb that is deprived of SHH signaling (Wang et al., 2000; 

Harfe et al., 2004). On the contrary, hairy2 is persistently expressed in the PPD, which presents 

continuous high levels of SHH (Wang et al., 2000; Harfe et al., 2004), which suggests an important 

role for ZPA/SHH in limb hairy2 regulation. There are previous reports of a regulatory action of 

SHH on HES genes (Ingram et al., 2008; Wall et al., 2009; Resende et al., 2010) and shh null 

mouse limb buds present downregulation of hes1 expression (Probst et al., 2011). Accordingly, 

ZPA ablation or treatment with cyclopamine abolished hairy2, while QT6-SHH cells replacing the 

ZPA, rescued hairy2 expression throughout the distal limb (Fig. 2A). We further show that hairy2 

expression is mediated by fine-tuned Gli3-A/Gli3-R activity levels (Fig. 4). hairy2 expression in the 

chick PSM is also proposed to be regulated by fine-tuned levels of Gli-A/Gli-R activity (Resende et 

al., 2010). In our experimental conditions, hairy2 was persistently expressed when Gli3-A levels 

were higher than Gli3-R (Gli3-A/Gli3-R>1), hairy2 was cyclically expressed when both Gli3 forms 

were present in equivalent amounts (Gli3-A/Gli3-R tending towards 1), and was absent in the 

limb region where Gli3-R activity prevailed (Gli3-A/Gli3-R<1). These results evidence a SHH-

induced permissive state for hairy2 expression in the distal limb that can be defined as Gli3-

A/Gli3-R≥1.  

A gradient of ZPA-derived SHH signaling governs digit specification along the limb AP axis 

(Zeller et al., 2009). We find that the spatial distribution of hairy2 expression recapitulates the 

SHH gradient, mediated by balanced Gli3 activity. Strikingly, a proper balance between the Gli3-A 

and Gli3-R activities have been proposed to underlie the specification of limb digit number and 

identity (Wang et al., 2007), which leads us to hypothesis that hairy2 could be involved in limb AP 

patterning.  

 

hairy2 expression is at the intersection of AER/FGF and ZPA/SHH signaling 

 As discussed above, in the AND, FGF signaling was unable to induce hairy2 expression, 

since this tissue is not in a SHH-mediated permissive state. Accordingly, when a non-permissive 
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state was imposed on either the PND or DCD by total deprivation of ZPA/SHH signaling, FGF-

beads failed to induce hairy2 expression (Fig. 5B), contrarily to what had been observed in the 

presence of ZPA/SHH (Fig. 1C). The observation that FGF-bead implantation immediately upon 

ZPA ablation was still capable of locally inducing hairy2 (Fig. 5B), further reveals the requirement 

of SHH-mediated tissue permissiveness for the instructive FGF signal to act on hairy2 expression. 

This was clearly shown by treating the AND with SHH to induce a permissive state on the tissue, 

followed by implantation of FGF beads, which now ectopically induced hairy2 expression (Fig. 

5C). 

Furthermore, we found that SHH alone was not sufficient for hairy2 induction, as SHH-

beads were unable to induce hairy2 upon AER ablation, in all tested limb domains (Fig. 5A). 

Moreover, hairy2 is also not expressed in the PND, a SHH-signaling rich region, but distanced 

from the AER/FGF source (Fig. 1A). These observations clearly reveal a mutual dependency 

between AER/FGF and ZPA/SHH for hairy2 induction. In fact, SHH-bead implantation in the AND, 

which is under AER/FGF influence, resulted in hairy2 misexpression along the limb mesenchyme 

beneath the AER, indicating the requirement for a cooperative action between instructive-FGF 

and permissive-SHH signaling in this event. Having performed a detailed time-lapse study, we 

found that hairy2 and shh are simultaneously induced upon FGF-bead implantation (Fig. S4). This 

observation strongly suggests that hairy2 induction mechanism does not involve a relay of FGF 

and/or SHH molecular signals, but results from a parallel convergence of signaling pathways, in 

both time and space, i.e. both signals are required at the same time, in the same tissue. Such 

unique mode of combinatory requirement of FGF and SHH signaling has been previously reported 

for Twist expression (Tavares et al., 2001; Hornik et al., 2004).  

 

Hairy2 presents distinct temporal and spatial responses to AER/FGF and ZPA/SHH  

We observed a clear difference in the temporal response of hairy2 levels to FGF and SHH 

signaling, strikingly consistent with what would be expected for an instructive/permissive 

behavior, respectively. FGF8-beads induced hairy2 within 45 min of implantation (Fig. S4) and 

AER ablation significantly downregulated hairy2 in a similar short-term fashion (Fig. 6A). Quite 

contrarily, ZPA ablation or SHH-inhibition took at least 5h to impact hairy2 expression to the 

same extent (Fig. 6A; 2B), suggesting that the influence of ZPA-derived SHH signaling on hairy2 

has a long-term nature. Accordingly, the distal limb remains in a permissive state for a long 
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period of time even after ZPA removal, evidenced by the fact that FGF beads could induce hairy2 

when implanted immediately upon ZPA ablation and 6h were required to revert this 

permissiveness (Fig. 5B). In a parallel experiment, 6h of AND incubation with SHH were required 

to build up the Gli3-A/Gli3-R≥1 ratio, allowing the FGF inductive effect on hairy2 (Fig. 5C). These 

results support the previously described memory of SHH exposure in limb mesenchymal cells 

(Harfe et al., 2004). They also showed that SHH-bead implantation in the anterior limb 

diminished Gli3-R levels only after 4-8h. Besides a similar observation, we also report a 

concomitant increase in Gli3-A (Fig. 4), supporting that SHH long-term permissive signaling is 

mediated by balanced Gli3-A/Gli3-R activities. 

  AER/FGF and ZPA/SHH further exerted differential regulation on limb hairy2 expression in 

space in the experimental conditions tested. It has been previously reported that FGFs present a 

short-range mode of action due to their interaction with heparin or heparan sulfate 

proteoglycans (Ornitz, 2000). By performing meticulous partial AER ablations, we showed that 

hairy2 is lost solely in the region adjacent to the ablation site, while unaffected in the rest of the 

limb (Fig. 6B), indicating that hairy2 expression directly depends on juxtaposed AER/FGF tissue. 

Additionally, FGF-beads induced hairy2 strictly around the bead (Fig. 1C), further suggesting that 

FGF acts as a short-range signal on hairy2. Contrastingly, ZPA/SHH regulates hairy2 at a distance. 

It is well known that SHH patterns the limb AP axis through long-range diffusion from the ZPA 

(Harfe et al., 2004), mediated by Gli3 processing (Wang et al., 2000). In fact, ZPA-ablation 

abolished hairy2 in the whole distal mesenchyme, and QT6-SHH cells rescued hairy2 expression 

along the entire AP limb axis (Fig. 2Avi), indicating that SHH regulates hairy2 at a long-range.  

Altogether, hairy2 expression in the distal limb field results from short-range/short-term 

instructive AER/FGF signaling in a permissive-state tissue, ensured by long-range/long-term 

ZPA/SHH signaling. This means that hairy2 expression is a simultaneous readout of both limb 

signaling centers and reflects the temporal and spatial dynamics of AER and ZPA signaling. 

 

Proposed model for the regulatory mechanisms underlying the distinctive patterns of hairy2 

expression in the distal limb 

We describe a strict regulation of hairy2 in limb distal mesenchyme by appropriate 

combination of signaling activities, which occur in a domain-dependent fashion (Fig. 7). High 

levels of FGF signaling emanated from the AER and a ratio of Gli3A/Gli3-R≥ 1 established by the 
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ZPA/SHH, defines the required conditions for hairy2 expression. These conditions are met in the 

PPD, where steady expression of hairy2 is observed. The DCD possesses moderate levels of SHH, 

mediated by balanced Gli-A/Gli-R activity (above, but close to 1) and high AER-FGF signal. This 

combination may allow the dynamic hairy2 expression observed in the DCD. The AND contains 

Gli3-A/Gli3-R<1, which is a non-permissive state and defines this region as a hairy2-free limb 

domain. On the other hand, although the PND experiences high levels of ZPA/SHH signaling (Gli-

A/Gli-R≥1, permissive state), it does not present hairy2 expression due to the fact that it is 

distanced from the ARE/FGF source.  

An inter-dependency of AER/FGFs and ZPA/SHH for limb outgrowth and patterning is well 

established, as a feedback loop between these two signaling centers is known to function 

throughout limb development (Zeller et al., 2009). To our knowledge, hairy2 is one of the very 

first molecular targets laying at the intersection of both limb signaling centers, AER and ZPA, 

acting as readout of their spatial and temporal signaling activities. The dynamics of hairy2 

expression along both AP and PD limb axes suggests that hairy2 may be coupling limb outgrowth 

and patterning in both time and space, thus underlying coordinated AP and PD limb 

development.  

 

MATERIALS AND METHODS  
Detailed materials and methods can be found in SI Materials and Methods. All 

experiments were performed in stage HH22-24 (Hamburger and Hamilton, 1951) forelimb buds. 

In situ hybridizations were performed as described (Henrique et al., 1995), using antisense 

digoxigenin-labeled RNA probes for shh (Riddle et al., 1993), hairy2 (Jouve et al., 2000), fgf8 

(Crossley et al., 1996) and patched1 (Marigo and Tabin, 1996). AER or ZPA were microsurgically 

ablated from the right wing bud in ovo and the contralateral limb served as control. In SHH-graft 

experiments, clumps of either QT6-ctrl or QT6-Shh cells (Duprez et al., 1998) were juxtaposed to 

the ZPA-ablated region. Beads soaked in FGF8 or FGF2 (1µg/µl; R&D Systems) or SHH (4µg/µl; 

R&D Systems) in PBS were implanted into the mesoderm of the right limb in ovo. For chemical 

treatments, beads were soaked in SU5402 (10mM, Calbiochem), U0126 (10mM; Calbiochem) or 

LY294002 (20mM; Sigma) in DMSO. Cyclopamine solution (1mg/ml, Calbiochem) was applied on 

the right limb. Treated embryos were re-incubated in ovo for different time periods. Western-

blots were probed with the antibodies: p44/42 MAPK, phosphor-p44/42 MAPK, Akt, phosphor-

Akt primary (Cell signaling), β-tubulin (Abcam) and Gli3 (Wang et al., 2000).  
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FIGURE LEGENDS 

Fig. 1. AER-derived FGF signaling is required for limb hairy2 expression  

(A) Schematic representation of limb hairy2 expression domains. (Ai,ii,iii) hairy2 expression 

phases in HH24 chick forelimbs, cyclically recapitulated with a 6h periodicity (Pascoal et al., 

2007b). hairy2 is permanently present in the central positive domain (CPD) and in the posterior 

positive domain (PPD), overlapping the ZPA. It is not expressed in neither anterior negative 

domain (AND) nor posterior negative domain (PND). hairy2 is cyclically expressed in the distal 

cyclic domain (DCD), presenting different intensity in each phase of expression. (Bi,ii) Evidence 

for the presence/absence of AER in control and experimental (-AER 4h) limb buds, respectively, 

by in situ hybridization for fgf8. (Biii-viii) Representative results of hairy2 downregulation (DCD, 

arrow; PPD, arrowhead) upon AER ablation or SU5402-bead implantation in AER-containing 

limbs, and hairy2 induction by FGF8-bead in the absence of AER. (C) hairy2 expression observed 

after implantation of FGF8-beads in different limb domains. FGF8 upregulated hairy2 in all limb 

domains (Ci-vi), except the AND (Cvii,viii). Dorsal view; anterior to the top. Beads represented by 

asterisks. 

 

Fig. 2. ZPA/SHH regulates hairy2 expression in the distal limb  

(Ai,ii) In situ hybridization for fgf8 and shh revealing ZPA ablation and unaffected AER/fgf8 

expression. (Aiii-vi) Distal hairy2 expression is lost upon ZPA ablation and rescued by SHH-

secreting QT6-SHH cells. (Bi,ii) Shh inhibition by cyclopamine abolished hairy2 expression in the 

distal limb (arrowhead). (Biii,iv) SHH-bead implantation in the AND ectopically expanded hairy2 

expression. Dorsal view; anterior to the top. Beads represented by asterisks. 

 

Fig. 3. Activation of Erk/MAPK and Akt/PI3K pathways mediates FGF-induced hairy2 

expression.  

Immunoblots for Erk, p-Erk, Akt, p-Akt and β-tubulin (loading control) using total protein extracts 

from posterior (Ai) or anterior (Bi) FGF8-bead implanted limb halves and their contralateral 

controls, as schematically represented above each lane. (Aii, Bii) Quantification of the fold change 

levels obtained in FGF-treated tissues. In the posterior limb, FGF8 significantly increases both p-

Erk and p-Akt levels, whereas in the anterior domain, p-Erk is only slightly elevated and p-Akt is 

downregulated. (Aiii) Inhibition of FGF8-induced hairy2 expression upon treatment with U0126 
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or LY4002, MAPK and PI3K inhibitors, respectively (arrowheads depict inhibition sites). Dorsal 

view; anterior to the top. FGF8 beads are represented by asterisks. 

 

Fig. 4. SHH establishes a permissive state for hairy2 expression in the distal limb, defined by 

balanced Gli3-A/Gli3-R levels.  

(A) Immunoblots for Gli3-A, Gli3-R and β-tubulin (loading control) using total protein extracts 

from posterior FGF8-bead (asterisks) implanted limb halves, anterior FGF8- or SHH-bead (circle) 

treated limb halves and their contralateral controls, as schematically represented above each 

lane. (B) Fold change in the levels of Gli3-A and Gli3-R obtained in treated tissues. FGF8 increased 

both Gli3-A and Gli3-R to the same extent in the posterior limb (P-FGF8), whiles it only elevated 

Gli3-R in the anterior domain (A-FGF8). Here, SHH greatly increased Gli3-A, downregulating Gli3-R 

(A-SHH). (C) Comparison of varying hairy2 expression responses (+, present; -, absent) to 

different treatments and the underlying ratio of Gli3-A/Gli3-R levels. Note that hairy2 was 

expressed only when the tissue presented Gli3-A/Gli3-R≥1 (dark line), defining the SHH-mediated 

permissive state for hairy2 expression.  

 

Fig. 5. Limb hairy2 expression requires cooperative AER/FGF and ZPA/SHH signaling. 

Representative results of hairy2 expression obtained upon implantation of SHH-beads in AER-

ablated limbs (A) and FGF8-beads in ZPA-ablated limbs (B). SHH was unable to induce hairy2 

expression upon AER ablation (A). Implantation of FGF8-bead immediately after ZPA ablation 

induced local hairy2 expression (Bi,ii, arrowhead). However, after 6h of ZPA ablation FGF8 failed 

to induce hairy2 (Biii-vi). Beads represented by asterisks. (Ci,ii) hairy2 expression observed after 

co-implantation of FGF8 and SHH beads in the AND. Only previously observed SHH-mediated 

expansion of hairy2 expression is obtained. When FGF beads were implanted following 6h of SHH 

treatment (Ciii,iv), FGF8 was capable of inducing ectopic hairy2 expression around the bead 

(arrowheads). S, SHH-bead; F, FGF8-bead. Dorsal view; anterior to the top.  

 

Fig. 6. AER/FGFs and ZPA/SHH present distinctive temporal and spatial modes of action on 

hairy2 expression 

(A) Representative results of hairy2 expression obtained upon AER ablation, ZPA removal and 

cyclopamine treatment. AER ablation results in a drastic, short-term downregulation of hairy2 



Molecular parallelisms between vertebrate limb development and somitogenesis C. J. Sheeba 

 

110 | P a g e  

 

(Ai-iv), while removal of the ZPA (Av-viii) or SHH inhibition with cyclopamine (Aix,x) only impact 

hairy2 expression in a long-term fashion. Mild effects on hairy2 expression could be observed at 

earlier time points (arrows). (B) AER/FGF signaling is shown to act at a short-range on hairy2. 

Upon partial ablation of either the posterior-AER (Bi-viii) or the anterior-AER (Bix-xvi), hairy2 is 

downregulated only in the tissue immediately adjacent to the ablation site (arrows), while shh 

expression remains in the ZPA. Partial ablations were confirmed by in situ hybridization for fgf8 

(Bi,ii,ix,x). Dorsal view; anterior to the top.  

 

Fig. 7. Proposed model for the regulatory mechanisms underlying the distinctive patterns of 

hairy2 expression in the distal limb 

The developing distal limb is under the concomitant influence of two signaling gradients, derived 

from the limb signaling centers: distal-proximal AER/FGF and posterior-anterior ZPA/SHH.  hairy2 

is expressed in the distal mesenchyme, adjacent to the AER and presents three distinct 

expression domains, positioned along the AP axis. In the posterior-most region, hairy2 is 

persistently expressed, overlapping the ZPA (PPD), hairy2 is absent from the anterior limb (AND) 

and is cyclically expressed in the intermediate DCD. We describe that AER/FGF, acting through 

Erk/MAPK and Akt/PI3K, is an instructive signal for hairy2 induction, acting at short-range, and in 

a short-term fashion throughout the entire distal limb mesenchyme. However, a permissive state 

mediated by ZPA/SHH signaling is required for the tissue to respond to FGF inductive signal. SHH 

permissive signal acts at long-range and in a long-term manner, patterning hairy2 expression 

along the distal limb AP axis. In fact, the PPD and DCD present a ratio of Gli3-A/Gli3-R activities 

which are higher or proximal to one (yellow dots), allowing sustained and oscillatory hairy2 

expression respectively. In the AND, Gli3-A/Gli3-R<1 (grey dots), thus AER/FGFs can no longer 

induce hairy2. Importantly, hairy2 expression is a simultaneous readout of AER/FGF and ZPA/SHH 

and reflects their spatial and temporal signaling activities in the distal limb bud. 
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SI MATERIALS AND METHODS  

Eggs and embryos. Fertilized Gallus gallus eggs were incubated at 37.8oC in a 49% humidified 

atmosphere and staged according to Hamburger and Hamilton (HH) classification (Hamburger 

and Hamilton, 1951). All the experiments have been performed in stage HH22-24 forelimb buds.  

 

RNA probes. Antisense digoxigenin-labelled RNA probes were produced as previously described: 

shh (Riddle et al., 1993), hairy2 (Jouve et al., 2000), fgf8 (Crossley et al., 1996) and patched1 

(Marigo and Tabin, 1996).  

 

Microsurgical ablation of AER and ZPA tissue. A window was cut in the shell of incubated eggs 

and the vitelline membrane was carefully removed. AER or ZPA was microsurgically ablated from 

the right wing bud of embryos using a tungsten needle. As a control, AER or ZPA extirpated 

embryos were randomly selected for direct fixation and hybridization with fgf8 or shh, 

respectively. Operated embryos were re-incubated for different time periods (as long as 22h or 

as less as 15-30min), collected in PBS and fixed for in situ hybridization.  

 

TUNEL assay. Apoptosis was analyzed using the Cell Death De-tection Kit (Roche) in limb sections 

with or without AER or ZPA after 2h or 6h, respectively. Ablated limbs were fixed overnight in 4% 

para-formaldehyde (PFA) in PBS, dehydrated, imbibed in paraffin and longitudinally sliced into 

6μm sections. Sections were rehydrated, permeabilized with Proteinase K treatment for less than 

7.5min at room temperature, and washed in PBS. Positive control embryos were incubated with 

DNase at 37 °C for 30min. Embryos and explants were incubated 2-4h at 37°C with the TUNEL 

solution mix and washed at least three times in PBS before visualization. 

 

Cell graft experiments. The potential effect of SHH on the molecular clock was evaluated by 

grafting clumps of either QT6 quail fibroblasts stably transfected with an empty vector or with a 

construct carrying the SHH-coding region (QT6-SHH) (Duprez et al., 1998) in the posterior margin 

of the limb mesenchyme following ZPA ablation. Grafted embryos were re-incubated for 4-8h 

and processed for in situ hybridization.  
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Bead implantation experiments. Heparin acrylic beads (Sigma, H5263) and Affigel blue beads 

(Bio-Rad) were soaked for at least 1h at room temperature in recombinant human FGF8 or FGF2 

(1µg/µl; R&D Systems) and SHH (4µg/µl; R&D Systems) protein solutions in PBS, respectively. The 

beads were implanted in-ovo into the mesoderm of chick wing buds, in the position and for the 

time, desired. For all experiments, beads soaked in PBS served as control. AG1-X2 beads (Bio-

Rad) were incubated in SU5402 dissolved in DMSO (10mM, Calbiochem). The MAPK inhibitor, 

U0126 (10mM; Calbiochem) or the PI3K inhibitor, LY294002 (20mM; Sigma) in DMSO was applied 

using Affigel blue beads as carrier. Respective beads soaked in DMSO served as control. Both the 

PBS and DMSO control beads did not have any effect on gene expressions. 

 

In ovo treatments. As described previously (Scherz et al., 2007), 5 µl of 1mg/ml cyclopamine 

(Calbiochem) dissolved in 45% HBC (Sigma) in PBS was applied on top of the limb to specifically 

antagonize SHH signaling.  

 

In situ hybridization and imaging. In situ hybridization was performed as previously described 

(Henrique et al., 1995). Limbs processed for in situ hybridization were photographed using an 

Olympus DP71 digital camera coupled to an Olympus SZX16 stereomicroscope. 

 

Immunoblot analysis. We performed western blot to analyze the two important intracellular 

pathways namely the ErK/MAPK and Akt/PI3K downstream of FGF signaling. We also assessed 

Gli3 activator and repressor levels downstream of SHH signaling.   

Either FGF or SHH bead implanted forelimb buds were ablated and dissected along the 

distal-proximal axis into two halves in cold PBS. The bead implanted portions (either anterior or 

posterior limb) and its respective contralateral unmanipulated control limbs were collected 

separately. Portions from at least 10 different limbs were collected and the protein was extracted 

from each pool of limbs as per Kling et al. (Kling et al., 2002). 10 µg of protein extracts from FGF 

bead implanted limbs and the respective controls were loaded per well of a 12% SDS-PAGE 

minigel, subjected to electrophoresis at 100V (room temperature) and transferred to Hybond-C 

extra membrane (Amersham Pharmacia Biotech, Inc., Piscataway, NJ). Blots were probed with 

p44/42 MAPK, phosphor- p44/42 MAPK, Akt, phosphor-Akt primary antibodies (Cell signaling) 

over night at 4oC. β-tubulin (Abcam) antibody was used to probe the blots as loading control. 



Chapter III Limb molecular clock´s dependence on major limb signaling centers 
 

113 | P a g e  

 

Blots were incubated with anti-rabbit secondary antibody (Abcam) for 45 min at room 

temperature, developed with Super Signal West Femto Substrate (Pierce Biotechnology, Inc., 

Rockford, IL) and exposed in Chemidoc (Bio-Rad). Full length (activator) and the short form 

(repressor) of Gli3 were determined from protein extracts obtained from PND-FGF-bead 

implanted limb halves; AND-FGF or SHH-bead implanted limb halves and their respective controls 

as described above. 70 µg of protein extract was loaded per well in a 7% SDS-PAGE gel and the 

immunoblot was performed using a polyclonel antibody against Gli3 kindly gifted by Dr. Wang 

(Wang et al., 2000) and all procedures were carried out as described above. Each set of 

experiments for both FGF and SHH downstream pathways were performed twice, each treatment 

with the limb halves from at least 10 limbs. Bands were quantified using Quantity one (Bio-Rad), 

normalized with loading control (β-tubulin) and plotted in Excel file. 
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 Figure S1: FGF8 bead is unable to induce hairy2 in the AND. 

(i-vi) Representative results of hairy2 expression obtained upon implantation of FGF8-bead 

implantation in the AND of HH23-24 forelimb buds. hairy2 expression was never induced in the 

AND even upon higher dosage (iii,iv) and longer incubations (v,vi).  Dorsal view; anterior to the 

top. FGF8 beads are represented by asterisks.  

 

Figure S2: Effects observed upon cyclopamine treatments are exclusively through SHH signal 

inhibition. 

(Ai,ii) In situ hybridization for fgf8 and patched1 revealing unaffected AER/fgf8 expression and 

impaired ZPA/SHH signal shown by patched1 downregulation in the treated limb. Dorsal view; 

anterior to the top.  

 

Figure S3: Balanced Gli3-A and Gli3-R activities are required for ZPA/SHH-mediated limb hairy2 

expression.  

Fold change in the levels of Gli3-A and Gli3-R levels detected in the untreated and FGF8 or SHH 

treated limb tissues in reference with the posterior control limb. Note that the anterior limbs (A-

Ctrl) possess higher levels of Gli3-A and Gli3-R compared to the posterior control limb (P-Ctrl). 

FGF8 increased both Gli3-A and Gli3-R to the same extent in the posterior limb (P-FGF8), while it 

only elevated Gli3-R in the anterior domain (A-FGF8) compared to A-Ctrl. Here, SHH greatly 

increased Gli3-A and downregulating Gli3-R (A-SHH). This mode of Gli3 activity suggests the 

requirement of a balanced Gli3-A and Gli3-R levels rather than the presence or absence of any 

one form for limb hairy2 expression. 

 

Figure S4: A cooperative action of FGF8 and SHH signaling is required for hairy2 induction in the 

limb 

FGF8 beads can expand shh expression proximally when implanted near the ZPA (Yang and 

Niswander, 1995), which coincides with the PND, where FGF8-bead induces hairy2 expression 

(refer Fig. 1Cvi). FGF8-induced ectopic shh expression was obtained within the time frame of 

15min (vi,viii; 30min: n=2/2, 45min: n=3/3). (i-iv) Concomitantly, FGF8 also induced ectopic hairy2 

within the same time frame of 15min as observed by its expression between 30 and 45min of 

FGF8-bead implantation (30min: n=2/2, 45min: n=4/4). These observations strongly support the 
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requirement of a cooperative action of FGF8 and SHH signaling for hairy2 expression induction in 

the limb. In addition this further supports the short-term action of FGF signal for hairy2 

induction. Dorsal view; anterior to the top. FGF8 beads are represented by asterisks. (1) Yang Y & 

Niswander L (1995) Interaction between the signaling molecules WNT7a and SHH during 

vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell 80(6):939-

947. 

 

Figure S5: Downregulation of hairy2 expression observed after AER or ZPA ablation is not due 

to cell death. 

Cell death was assessed by performing TUNEL assay in longitudinal limb sections with and 

without the AER or ZPA. (i,iv) Positive control limb buds treated with DNase displaying apoptosis 

in the entire limb mesenchyme and ectoderm. (ii,v) Internal control limb buds without any 

manipulation showing normal pattern of apoptosis in the ectoderm and the proximal limb, 

respectively. (iii) Stage HH22 limb didn’t show elevated cell death in the distal limb mesenchyme 

after 2h of AER ablation. (vi) Normal level of cell death observed after 6h of ZPA ablation in stage 

HH23 limb. Longitudinal limb sections are positioned such that the distal side toward the right 

and anterior to the top. 
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Figure S1 

 

 

 

 

Figure S2 
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Figure S3 

 

 

 

 
 

Figure S4 
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Figure S5 
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This chapter constitutes the unpublished and preliminary results obtained from the ongoing 

work: 

``Hairy2 based limb molecular clock and confronting RA and FGF signal established 

Determination Front underlie the limb patterning machinery´´ 
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Hairy2 based limb molecular clock and confronting RA and FGF signal established 

Determination Front underlie the limb patterning machinery 

 
 

The vertebrate tetrapod limb PD axis is denoted by three limb bone elements, the 

proximal stylopod, middle zeugopod and the distal autopod. Growth and patterning of the PD 

axis has been a subject of intensive investigation for more than three decades. So far three 

models are proposed to explain the limb PD axis development: the PZ model, the ES model and 

the TS model (Towers and Tickle, 2009). At present the ``TS model´´ (Tabin and Wolpert, 2007) is 

prevailing with experimental evidence (Mercader et al., 2000; Roselló-Díez et al., 2011, Cooper et 

al., 2011). Although, this model argues against an intrinsic time counting mechanism that was 

proposed by the PZ model (Mackem and Lewandoski, 2011), the discovery of the limb molecular 

clock strongly suggests that hairy2 oscillations provide a notion of time to the chondrogenic 

precursor cells (Pascoal et al., 2007). Cycles of HES gene expression are a crucial component of 

the somitogenesis program which functions along with the opposing FGF and RA signal based 

DetF in the PSM (Diez del Corral and Storey, 2004;  Niwa et al., 2011). It is clear that a confronting 

singling gradient of AER-FGFs and flank-RA exists in the limb mesenchyme which defines the DF 

(Tabin and Wolpert, 2007). Thus, the limb possess hairy2 based clock and RA/FGF signal based DF 

in the mesenchyme similar to the mechanisms operating in the PSM. Here, we went to analyze 

the function of the limb clock and limb DF during chick forelimb development. This work is still 

ongoing and here we present the preliminary results so far obtained from this set of experiments. 

HES genes are widely considered as the target of Notch signal (Fisher and Caudy, 1998; 

Vasiliauskas et al., 2003; Rida et al., 2004). Co-expression of Notch receptors and its ligands 

(Notch2/Serrate1) in the distal limb mesenchyme (Pascoal and Palmeirim, 2007; Dong et al., 

2010) where hairy2 is dynamically expressed (Pascoal et al., 2007) makes Notch a plausible 

regulator of limb hairy2 expression. In the light of our analysis to study limb hairy2 regulation, we 

have also evaluated the role of Notch, RA and BMP signaling for its distal mesenchymal 

expression. Our data suggests that Notch signaling regulates hairy2 expression more prominently 

in the DCD than in the PPD. By bead implantation studies, we have demonstrated RA as a positive 

regulator and BMP4 as an inhibitor of limb hairy2 expression.  
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MATERIALS AND METHODS 

Eggs and embryos 

Fertilized Gallus gallus eggs were incubated at 37.8ºC in a 49% humidified atmosphere 

and staged according to Hamburger and Hamilton (HH) classification (Hamburger and Hamilton, 

1951).  

 

Bead implantation 

Heparin acrylic beads (Sigma) were incubated with recombinant FGF8b (1 mg/ml; R&D 

Systems) or BMP4 (0.1µg/µl; R&D Systems) or Noggin (0.1µg/µl; R&D Systems) protein solutions 

in phosphate buffered saline (PBS). Control beads were incubated in PBS. AG1-X2 beads (Bio-Rad) 

were soaked in SU5402 (a drug known to specifically block the kinase activity of FGF receptors, 

10mM; Calbiochem) or all-trans RA (5mg/ml, Sigma) or citral (20mM; SAFC) dissolved in DMSO. 

Control beads were incubated in DMSO. DAPT (gamma-secretase inhibitor, 2mg/ml; Calbiochem) 

was applied using Affigel blue beads as carrier. Same beads soaked in DMSO serves as control. 

Both the PBS and DMSO control beads did not have any effect on gene expression or limb bone 

size. Beads soaked in FGF8 and PBS was microsurgically implanted in the proximal limit of mkp3 

expression of stage HH22-23 right forelimb buds. Beads soaked in SU5402 and DMSO was 

implanted just underneath the AER. AGI-X2 beads with RA, citral and DMSO were implanted in 

the distal limit of RA signaling based on meis1 expression. Embryos were incubated for 4-6h and 

processed for in situ hybridization or incubated until digit formation stages and stained for 

skeleton to permit cartilage analysis.  

 

Perturbation of the limb molecular clock using retrovirus 

Hairy2 cDNA and an appropriate hairy2-siRNA, were cloned into a RCAS(BP)A and SD1241: 

pRNA-H1.1/Retro (GenScript) viral expression vectors, respectively. To produce retroviral 

particles, O-line cells (Charles River Laboratories) were transfected with expression vectors 

containing the construct and the encapsulated virus released to the culture medium was 

harvested, concentrated by high speed ultracentrifugation and stored at -80oC until injected in 

the embryo (Logan and Tabin, 1998). The same procedure was also carried out using empty 

vectors as control. The virus solutions were injected at the level of the prospective limb field in 

stage HH13-15 embryos by a micro-injector (Narishige, Japan). The re-incubated embryos were 
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collected, fixed and analyzed for gene expression and/or for limb elements size by whole mount 

in situ hybridization and skeletal staining, respectively.  

 

Whole mount in situ hybridization 

  Embryos or dissected limbs were fixed overnight at 4ºC in a solution of 4% formaldehyde 

with 2mM EGTA in PBS at pH 7.5, rinsed in PBT (PBS, 0.1% Tween 20), dehydrated in methanol 

series and stored at –20°C in 100% methanol. Whole mount in situ hybridization was performed 

as previously described (Henrique et al., 1995).  Digoxigenin-labelled RNA probes for mkp3 

(Kawakami et al., 2003), hairy2 (Jouve et al., 2000) and sox9 were synthesized using linearized 

plasmids, according to standard procedures. 

 

Skeletal staining 

In brief, limbs were dissected, washed in PBS and fixed in a solution containing the 

cartilage specific dye Alcian blue (Sigma). This step was followed by dehydration in ethanol and 

Alzarine Red (Sigma) treatment (for 100ml of solution: 10mg Alzarine Red+ 1g KOH in H2O). Then, 

limbs were rinsed in 80ml H2O+ 20ml Glycerol + 1g KOH solution, until the tissue become 

completely transparent and finally dehydrated in a series of glycerol solution. 

 

Imaging and statistical analysis 

Embryos processed for in situ hybridization were photographed in PBT-azide (0.1%), using 

a Olympus DP71 digital camera coupled to a Olympus SZX16 stereomicroscope equipped with 

Cell^B software. Bone length was measured using image-J software and analyzed in Excel.  

 

 

RESULTS 

Notch signal regulates limb hairy2 expression in a domain specific manner 
 

To test the influence of Notch signaling in limb hairy2 expression, we implanted beads 

soaked in the potent gamma-secretase inhibitor DAPT in all the three hairy2 positive limb 

domains and processed the limbs for hairy2 in situ hybridization after 5h. Our results clearly show 

the dependence of hairy2 transcription on Notch signaling in the DCD (Figure 4.1iii-vi; n=12/15) 
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unlike the CPD where hairy2 expression was never affected by DAPT bead implantation (Figure 

4.1i,ii; n=4/4). Interestingly, DAPT beads show higher probability of abolished hairy2 expression 

in the DCD compared to the PPD even when the beads were implanted in the PPD, although 

slight downregulation could be observed in PPD expression of hairy2 (Figure 4.1v,vi; n=7/9)  

suggesting Notch is not the only regulator of hairy2 expression in the PPD.  

 

 

 

Figure 4.1: Notch signaling regulates limb hairy2 expression in the distal mesenchyme: All the implantations were 

performed in stage HH23-24 chick forelimb buds (i,iii,v) Control forelimb buds without manipulations. (ii) 

Implantation of DAPT bead in the CPD of hairy2 did not have any effect on its expression. (iv) DAPT bead 

implantation in the DCD of hairy2, considerably downregulated its expression in the DCD while maintaining its 

expression in the PPD (vi) DAPT implantation in the PPD also resulted in DCD-hairy2 transcript´s downregulation 

compared to the PPD. In all images, name of the gene and the domain of manipulation are represented in the left 

and right side panels. All limbs are orientated anterior to the top; dorsal side facing upward. All beads are 

represented with a white asterisk. 

 

RA and BMP signaling regulates limb hairy2 expression 

In mouse limb, hes1 has been reported as a target of RA signaling (Ali-Khan and Hales, 

2006). Moreover, recently our lab has evidenced a role for RA in timely somite formation and 
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suggested that this involves Gli2/3 activity modulation (Resende et al., 2010). Since our data in 

Chapter II shows that balanced Gli3-A/Gli3-R levels are crucial for hairy2 expression, we 

hypothesized that RA could also play a role in hairy2 regulation in limb. To assess this, RA-soaked 

beads were implanted in different distal limb domains and hairy2 was assessed.  

 

         

Figure 4.2: RA signaling positively regulates limb hairy2 expression in all limb domains:  (Ai-viii) RA-bead induced 

ectopic hairy2 expression in the DCD, PPD, PND and AND of stage HH23-24 chick forelimb bud. (Bi,ii) RA-induced 

hairy2 expression in the PND is unaffected by the absence of ZPA. (Biii-vi) RA-induced PND or AND-hairy2 expression 

is not through shh induction. In all images, name of the gene and the domain of manipulation are represented in the 

left and right side panels. All limbs are orientated anterior to the top; dorsal side facing upward. All beads are 

represented with a white asterisk. 

 

 

This manipulation resulted in hairy2 upregulation in the DCD, PPD and PND (Figure 4.2Ai-

vi; DCD: n=11/11; PPD:  n=6/6; PND: n=9/9). This was independent of the ZPA, as well as of RA-

mediated shh induction (Figure 4.2Bi-iv). Quiet strikingly to what had been observed for FGF and 

SHH-bead implantations in the AND (results in Chapter II shows that FGF-beads were unable to 
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induce ectopic hairy2 in the AND and SHH-beads were only capable of expanding hairy2 

expression towards this tissue), RA-beads were able to locally induce ectopic hairy2 when 

implanted in this limb region (Figure 5.2Avii,viii; AND: n=6/7). This hairy2 expression is also not 

through RA-mediated shh induction (Figure 4.2Bv,vi). 

 

      

Figure 4.3: RA signaling modulates Gli3 activity and creates a permissive state for hairy2 expression:  (Ai,ii) RA-

bead implantation in the AND resulted in a decrease in Gli3-R levels and increased Gli3-A. This alters the otherwise 

present ratio of Gli3-A/Gli3-R˂1 in the AND into Gli3-A/Gli3-R≥1, building a permissive state for hairy2 expression. 

(Bi,ii) RA-induced hairy2 expression in the AND is unaffected by SHH-bead co-implantation. (Biii,iv) Co-implantation 

of RA and FGF8 bead in the AND enabled FGF8-bead to induce local hairy2 expression (arrow). This effect was 

unaltered by SHH-bead (Bv,vi). In all images, name of the gene and the domain of manipulation are represented in 

the left and right side panels. All limbs are orientated anterior to the top; dorsal side facing upward. Inside the image 

each bead is represented as the following: RA-beads: R; SHH-bead: S; FGF8-bead: F. 

 

 

In fact, in accordance with our results in chapter III, RA-bead implantation in the AND, 

altered the Gli3-A/Gli3-R ratio in such a way, it attains above 1 (Gli3-A/Gli3-R≥1), creating a 

permissive state for hairy2 expression (Figure 4.3Ai,ii). Moreover, we also found that the ectopic 

hairy2 induced in the AND by RA-bead was unaltered by co-implantation of a SHH-bead which 

concomitantly induced anterior expansion of hairy2 (Figure 4.3Bi,ii; n=5/5). The presence of RA 
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further allowed FGF-induced ectopic hairy2 in the AND (Figure 4.3Biii-iv; n=4/4), while FGFs alone 

had not been able to do so (see Fig.1Cvii,viii in chapter II). Again, SHH did not affect FGF+RA-

induced hairy2 expression (Figure 4.3Av,vii; n=5/5). Overall, RA is positively regulating hairy2 in 

all the tested domains possibly by modulating Gli activity levels.  

The anterior hairy2 negative domain, AND, clearly matches the expression domain of 

Bmp4 in chick limb (Geetha-Loganathan et al., 2006). Moreover, both SHH and RA signals are 

reported to counteract BMP4 signaling (Tumpel et al., 2002; Thompson et al., 2003; Sheng et al., 

2010; Lee et al., 2011). Thus, we sought to evaluate the effect of BMP4 signaling on limb hairy2 

expression. As expected, BMP4 bead inhibited hairy2 expression in the DCD (Figure 4.4i,ii; n=6/7). 

Further emphasizing the inhibitory role of BMP4 on hairy2 was demonstrated by the FGF8-

mediated ectopic local hairy2 induction obtained upon pretreatment with a Noggin-bead (Figure 

4.4iii,iv; n=5/5). 

 

                              

Figure 4.4: BMP4 signaling negatively regulates limb hairy2 expression:  (i,ii) BMP4-bead implantation in the DCD 

resulted in downregulation of hairy2 expression. (iii,iv) Pretreatment with a Noggin-bead allowed FGF8 to induce 

ectopic hairy2 around the bead. In all images, name of the gene and the domain of manipulation are represented in 

the left and right side panels. All limbs are orientated anterior to the top; dorsal side facing upward. Inside the image 

each bead is represented as the following: BMP4-bead: B; FGF8-bead: F. 

 

Collectively, our data suggest an important role for RA in limb hairy2 regulation. RA is 

capable of inducing ectopic hairy2 in the AND, possibly by counteracting BMP4-mediated 

inhibition and by creating a permissive state through Gli3 activity modulation. We show that 

BMP4 is able to repress hairy2 and suggest that it could be one of the signaling molecules 

defining the limb hairy2 AND.   
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Could there be a DF in limb distal mesenchyme? 

Our manipulations with FGF signaling alterations were performed using recombinant FGF8 

protein and FgfR1 specific inhibitor, SU5402 soaked bead implantations. As per the fate map 

analysis performed by Dudley et al. (2002), the zeugopod cells complete their expansion between 

stages HH22-HH23 at which our implantations were carried out. FGF8-bead was implanted in the 

proximal limit of mkp3 expression in order to extend the limit of FGF signal proximally. This 

boundary expansion was evaluated by mkp3 expression analysis which presented a proximal 

expansion (Figure 4.5i). Since, mkp3 was shown to be transcribed only in the mesenchymal tissue 

adjacent to the AER (Pascoal et al., 2007a), SU5402 bead was implanted just beneath the AER. 

This resulted in downregulation of mkp3 expression domain (Figure 4.5iv). Since we performed 

our implantations in the time frame of zeugopod expansion (stage HH22-HH23), we only 

analyzed the size of zeugopod elements: ulna and radius. Both bead- manipulations affected 

chondrogenesis and the size of the limb bone elements formed (Figure 4.5ii,iii,v-vii). FGF8 bead 

resulted in overall reduction of the limb (Figure 4.5iii- 90% of the cases). This is evident at the 

level of sox9 expression, the earliest chondrogenic marker (Figure 4.5ii) and skeletal staining 

(Figure 4.5iii). On the contrary, bones formed after FGF signal inhibition by SU5402-bead 

implantations were not consistently shorter or longer, instead they produced 40% longer and 

60% shorter limb bones as visualized by sox9 expression (Figure 4.5v,vi) and skeletal staining 

(Figure 4.5vii).  

 

 

Figure 4.5: AER/FGF signaling determines limb bone size in chick forelimb. (i) mkp3 expression pattern in the 

control (left) and expanded mkp3 expression domain in the right forelimb 5h after implantation of a FGF8-soaked 
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bead. (ii) sox9 expression of the FGF8-bead implanted limb and the contralateral control limb. The zeugopod size is 

reduced (circled in red). (iii) Bone staining performed in FGF8-bead implanted limb buds after 4 days of incubation. 

The overall skeletal pattern is complete and digit patterning occurred normally but bones (radius and ulna) are 

smaller (red bracket) compared to the control forelimb (up). (iv) mkp3 expression is downregulated in the right 

forelimb 5h after incubation with an SU5402-soaked bead. (v) sox9 expression of the SU5402 bead implanted limb 

showing longer zeugopod (circled in red) compared to the control. However, early implantations caused severe 

reduction in limb development (vi). (vii) Bone staining performed in SU5402 bead implanted limb buds after 4 days 

of incubation. The overall skeletal pattern is complete and digit patterning occurred normally, however the radius 

and ulna were slightly longer (red bracket) compared to the control forelimb (up). All beads are represented by 

asterisk. 

The same manipulations were carried out with all-trans RA and citral bead to displace the limits 

of RA signaling. RA and FGF signals are known to have mutual inhibitory regulation in limb 

(Mercader et al., 2000). So, after manipulating the limits of RA signaling in limb mesenchyme, we 

assessed the alterations in FGF signaling boundaries through mkp3 expression. Surprisingly, RA-

bead caused proximal expansion of mkp3 expression (Figure 4.6i) despite of the distal expansion 

of RA-signal as evidenced by meis1 expression (Figure 4.6ii). Here, the limb bone elements were 

mostly shortened (Figure 4.6iii,iv-80%). RA-signal inhibitor, citral-beads also expanded mkp3 

expression proximally as expected (Figure 4.6v) but the limb elements were elongated in most of 

cases (Figure 4.6vi,vii-80%).Although, not conclusive, our preliminary results suggest that both 

the AER/FGF and flank-RA signals participate in limb bone size determination. 

 

 

Figure 4.6: Flank-RA signaling participates in limb bone size determination. (i,v) mkp3 expression expanded upon 

RA-bead or Citral-bead implantation in 5h. (ii) Expansion of meis1 expression observed after 5h of RA-bead 

implantation in the distal limit of RA-signaling (iii) sox9 expression revealing short zeugopod in the RA-bead 
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implanted limb (red circle) compared to the untreated control (iv) Bone staining performed in RA-bead implanted 

limb buds after 4 days of incubation. The overall skeletal pattern is complete and digit patterning occurred normally 

but radius and ulna are smaller (red bracket) compared to the control forelimb (up). (vi) sox9 expression of the Citral-

bead implanted limb showing stronger expression in the zeugopod (red circle) compared to the control. (vii) Bone 

staining performed in Citral-bead implanted limb buds after 4 days of incubation. The overall skeletal pattern is 

complete and digit patterning occurred normally, however the radius and ulna were slightly longer (red bracket) 

compared to the control forelimb (up). All beads are represented by asterisk. 

 

Retrovirus production 

In order to assess the functional relevance of hairy2 expression/oscillations, we wanted to 

downregulate or overexpress Hairy2 in the limb mesenchyme by retrovirus mediated construct 

delivery. 

                                        

 

Figure 4.7: Production of retrovirus containing Hairy2 overexpression and downregulation constructs. Scheme of 

the pRNAT-H1.4/Retro construct used to produce siRNA for hairy2 containing retrovirus (ii) Transfection efficiency 

observed in GP2-293 cells after transfecting with pRNAT-H1.4/Retro-siRNA hairy2 construct (iii) Transfection 

efficiency observed in CEF cells after transfecting with RCAS BP (A) ires GFP-hairy2 construct.  

 

The siRNA containing retrovirus was produced by co-transfection of the GP2-293 cell lines 

with pVSV-G envelop and pRNAT-1.4/Retro-siRNA hairy2 constructs (vector map is provided: 
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Figure 4.7i). Similarly, O-line cell lines (chick embryonic fibroblasts) were co-transfected with 

hairy2 c-DNA inserted RCAS-BP(A) and pVSAFP plasmid in order to evaluate transfection 

efficiency. Moreover, the viral expression vector used in our study has GFP as a fusion protein 

with our protein of interest and so all the cells that are infected with the virus will eventually 

express GFP. Virus production greatly depends on the efficiency of tranfection which was 

evaluated by GFP expression. Transfection efficiency of the siRNA-hairy2 containing virus and 

hairy2-possessing virus displayed high efficiency (Figure 4.7ii,iii). Thus, retroviruses containing 

hairy2-siRNA and hairy2-ORF have been produced and stored at -80oC. These viruses will be used 

for Hairy2 functional analysis. 
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5. PARALLELISMS BETWEEN LIMB DEVELOPMENT AND SOMITOGENESIS 
 

           The chief aim of this thesis is to establish parallelisms between the two distinct 

developmental processes the limb development and somitogenesis. While limb development has 

served as a wonderful paradigm to study pattern formation from a mass of mesenchymal cells 

(Tabin and Wolpert, 2007), somitogenesis is predominantly known for its striking species 

conserved periodicity underlined by PSM molecular clock (Andrade et al., 2007). The 

identification of a similar molecular oscillator in chick distal limb mesenchyme (Pascoal et al., 

2007) suggests that many parallelisms between limb development and somitogenesis might exist. 

The work performed throughout this thesis has further substantiated this possibility and allowed 

us to establish the similarities between these two systems based on the existing literature and 

our work.  

5.1. COMPARISON AT THE LEVEL OF MORPHOLOGY 

 

           The somites and limb are two prominent structures formed during embryogenesis. 

Emphasizing this, the widely used Hamburger and Hamilton method of chick embryo 

classification has utilized the morphological features of somite number and limb shape to 

characterize different developmental stages of chick embryo (Hamburger and Hamilton, 1992). 

The limb is a segmented structure, denoted by its PD axis specifying bone elements: the stylopod, 

zeugopod and autopod. This resembles the segmented pattern of the somites, formed in an AP 

sequence of the embryo through the process of somitogenesis. Moreover, these two structures 

share common mesodermal germ layer as precursors, namely, the LPM and the PSM tissues for 

limb bones and axial skeleton bones, respectively.  The PD axis of limb development is 

comparable with the AP axis of vertebrate embryo in such a way that the maturation of limb 

bone elements and somites follows limb PD and body AP axis, respectively (Summerbell et al., 

1973; Dudley et al., 2002; Christ and Ordahl, 1995). The PD sequence of limb bone determination 

has been determined by fate map studies as per which the proximal stylopod territory is defined 

between stage HH19-20; the middle zeugopod between stage HH22-23 and the distal autopod 

progenitors continue to expand even after stage HH26 (Dudley et al., 2002). On the other hand, 

in somitogenesis, somite formation relies on strict periodicity (1.5h in chick and 2h in mouse) 

underlined by the PSM clock (Palmeirim et al., 1997). However, there might be a slight variation 
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in this expected duration along the AP axis in such a way that the formation of the first somites 

my need less time (Tam, 1981) and the last few somites need more time (150 min) compared to 

the usual 90 min in chick (Tenin et al., 2010). Although, the precursor cells in both systems are 

provided by the mesoderm, surface ectoderm has also been demonstrated to be absolutely 

necessary for proper limb and somite formation (Yang and Niswander, 1995; Rifes et al., 2007).  

 

5.2. COMPARISON AT THE LEVEL OF GENE EXPRESSION  

 In order to compare the expression pattern of important genes in developing limb and 

PSM, a stage HH24 forelimb bud, longitudinally cut along the AP axis without splitting it into two 

separate pieces is compared with a  the caudal part of stage HH13 embryo containing the PSM, 

tail bud and the last few somites (Figure 5.1). 

 

5.2.1. PARALLELISMS IN RA SIGNALING COMPONENTS 
 

The two principal signaling gradients known to pattern the limb mesenchyme and the 

PSM are the RA and FGFs. RA can be visualized either through mRNA expression of its 

synthesizing enzyme, Raldh2 or by assessing its activity. Raldh2 is expressed at the limb flank 

which is comparable with its expression in the anterior PSM immediately posterior to the 

recently formed somite (Swindell et al., 1999; Blentic et al., 2003; Diez del Corral et al., 2003). 

This pattern of expression was further confirmed by RA activity visualized in transgenic mice 

having RA signaling responsive element (RARE) driven by a reporter promoter construct. This 

analysis revealed that RA activity is present in the proximal forelimb region, somites and the 

anterior most PSM while absent from the distal limb mesenchyme, posterior PSM and tail bud 

(Rossant et al., 1991; Mic et al., 2004). However, Raldh2 expression at later developmental stages 

(from stage HH21) in chick tailbud has been recently reported (Tenin et al., 2010) which is similar 

to its late expression observed in stage HH25-27 distal limb mesenchyme (Berggren et al., 2001). 

On the other hand, the RA degrading enzyme, Cyp26 has the opposing gradient in both systems: 

in the PSM Cyp26A1 is expressed in the tail bud (Sakai et al., 2001) and in the limb, it is expressed 

in the distal limb mesenchyme with a mild variation in chick and mouse. In mouse, Cyp26B1 is 

initially expressed in the outer epithelium and then also in the distal mesenchyme (MacLean et 
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al., 2001), whereas, in chick, Cyp26A1 is always expressed in the ectoderm (Swindell et al., 1999; 

Blentic et al., 2003) and Cyp26B1 in the distal mesenchyme (Reijntjes et al., 2003).  

 

5.2.2. PARALLELISMS IN FGF SIGNALING COMPONENTS 
 

Other crucial factor functioning in an opposing gradient to that of RA in both the limb as 

well as in the PSM is the FGFs. Being a growth factor, it is required to maintain the stemness of 

the limb distal mesenchyme and the tail bud cells of an embryo. Facilitating this function, fgf8 is 

expressed in the distal most structure of limb, the AER (Crossley et al., 1996) and in the 

prospective PSM (P-PSM) region (Dubrulle et al., 2001). In the PSM, the tailbud transcribed fgf8 

establishes a caudo-rostral gradient based on mRNA decay (Dubrulle and Pourquie, 2004). 

However, in the limb, the distal-proximal FGF signaling gradient is not formed by graded fgf8 

expression itself, sincefgf8 is solely expressed in the entire AER, but, its effector mkp3 has a 

distal-proximal mesenchymal gradient (Kawakami et al., 2003). Interestingly, this gradient of 

mkp3 is also established through mRNA decay (Pascoal et al., 2007a), the same mechanism which 

produces fgf8 gradient in the caudal PSM. In this mode of establishment, the limb mkp3 and the 

PSM fgf8 are only transcribed in the mesenchymal tissue adjacent to the AER and in the tailbud, 

respectively. Due to continuous proliferation and outgrowth, cells that actively produce these 

molecules are progressively displaced either proximally or rostrally resulting in a gradient of limb-

mkp3 and PSM-fgf8 mRNA expression (Dubrulle and Pourquie, 2004; Pascoal et al., 2007a). FGF 

signaling gradient created in this manner has to be sensed by appropriate FgfR to activate the 

downstream pathways. In the PSM the only FgfR to be expressed is FgfR1 (Patstone et al., 1993; 

Wahl et al., 2007), which is strongly expressed in the anterior PSM (Dubrulle et al., 2001). 

Interaction of the FGF ligand with FgfR1 in the PSM activates downstream pathways such as: 

Erk/MAPK in chick and zebrafish (Delfini et al., 2005; Sawada et al., 2001) or Akt/PI3K pathway in 

mouse (Dubrulle and Pourquie, 2004). In the limb, although FgfR1 is the predominant FgfR 

expressed in limb mesenchyme, other FgfRs are also expressed in distinct domains (Sheeba et al., 

2010). Among them, FgfR1 and FgfR2 are the two potential receptors mediating the AER derived 

FGF signaling during limb initiation and patterning stages (Revest et al., 2001; Yu and Ornitz, 

2008). We recently observed FgfR1 transcripts in the AER of stage HH17 and HH24 chick limb for 

the first time (Sheeba et al., 2010) making it an equally important candidate as that of FgfR2 for 
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autocrine and paracrine FGF signaling. Consistent with the variation in downstream pathway 

activations observed in mouse and chick PSM, Akt/PI3K has been shown to be active in chick limb 

mesenchyme (Kawakami et al., 2003) and Erk/MAPK in mouse (Corson et al., 2003). However, the 

AER of chick limb expresses p-Erk (Kawakami et al., 2003).  

 

5.2.3. PARALLELISMS IN WNT, BMP AND SHH SIGNALING COMPONENTS 
 

WNT, BMP and SHH are other important signaling pathways functioning during embryo 

development. The P-PSM expresses wnt3a, which is steadily degraded, establishing a caudo-

rostral PSM gradient of its transcripts by RNA decay, such as the case for fgf8 (Aulehla et al., 

2003; Aulehla and Herrmann, 2004). Upon ligand binding, β-catenin gets translocated into the 

nucleus and transcribes its target genes thus serves as the key mediator of canonical WNT 

signaling (Church and Francis-West, 2002). The PSM oriented caudo-rostral wnt3a mRNA 

gradient is translated into a β-catenin activity gradient, although β-catenin mRNA is ubiquitously   

expressed in the PSM (Aulehla et al., 2008). In the limb, several WNT ligands are distinctly 

expressed (Loganathan et al., 2005) and, similarly to fgf8, wnt3a expression is also confined to 

the AER tissue (Kengaku et al., 1998; Soshnikova et al., 2003). It is reported that in E10.5 mouse 

forelimb bud, β-catenin mRNA is ubiquitously expressed in the entire limb mesenchyme and 

ectoderm including the AER (Hill et al., 2006). However, in stage HH22 chick forelimb, β-catenin 

mRNA is expressed in a distal-proximal gradient in addition to its expression in the AER (Schmidt 

et al., 2004). These expression patterns support a potential equivalent role of WNT signaling in 

somitogenesis and limb development (Aulehla and Herrmann, 2004; Church and Francis-West, 

2002).  

During body axis elongation, Bmp4 signaling is restricted to the LPM tissue through active 

inhibition by its antagonist Noggin, which is expressed at the LPM/PSM border ((Capdevila and 

Johnson, 1998; McMahon et al., 1998; Tonegawa and Takahashi, 1998). Many BMPs are 

expressed during limb development (Geetha-Loganathan et al., 2006). Among them, Bmp4 

presents a strong AER and anterior-mesenchymal expression (Geetha-Loganathan et al., 2006; 

Bastida et al., 2009). Although, noggin is only expressed in the ventral proximal mesenchyme 

(Capdevila and Johnson, 1998), the distal mesenchymal located germlin1, another antagonist of 

BMP signaling is crucial for early limb development (Zeller et al., 2009). Bmp4 expression pattern 
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during somitogenesis and limb development nicely resemble each other in a way, the LPM 

expressed Bmp4 in somitogenesis is comparable with its expression in the anterior limb 

mesenchyme (Figure 5.1). 

 

 

              

Figure 5.1.Comparative analysis of limb development and somitogenesis at the level of morphology and gene 

expression. (A) Caudal part of a stage HH13 chick embryo focusing the PSM, tail bud and the last few somite pairs. 

(B) Stage HH24 chick forelimb bud longitudinally cut through the AP boundary from the anterior until the posterior 

edge without splitting it into two separate pieces. The PSM is placed anterior to the top and the limb is positioned 

proximal to the top. The distal portion of the limb can be compared to the caudal end of the embryo. FGF8 is actively 

produced in the AER of the limb and in the tailbud of the growing body axis (Red graded triangles in the PSM) 

(Dubrule and Pourquie, 2004; Crossley et al., 1996). The FGF effector mkp3 is expressed as a distal-proximal gradient 

in the limb mesenchyme (Kawakami et al., 2003) similar to the posterior-anterior fgf8 gradient in the PSM. In both 

systems, a graded FGF signal is translated into an activity gradient (either p-Erk or p-Akt depending on the species 

and tissue) (Dubrule and Pourquie, 2004; Delfini et al., 2005; Sawada et al., 2001). The same regions are also 

endowed with a WNT signal gradient mainly through WNT3a and its signal transducer β-catenin (blue graded 

triangle). In limb, wnt3a is expressed only in the AER (Kengaku et al., 1998; Soshnikova et al., 2003), whereas in the 

PSM it is expressed in a caudal-rostral gradient (Aulehla et al., 2003). Both FGF and WNT signals keep the caudal PSM 

(Naichi et al., 2011) and distal limb in a undifferentiated proliferative state (ten Berge et al., 2008) and allow the 

structures to grow (PSM: AP direction as mentioned by axis elongation; Limb: Distal outgrowth). AP graded RA 

activity is a consequence of Raldh2 expression in the somites and anterior PSM (Diez del Corral et al., 2003) which is 
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analogous to its flank oriented expression in limb (Mercader et al., 2000) (yellow graded triangles). Cyp26 presents a 

complementary expression to that of Raldh2 in limb and PSM (not mentioned in the figure). The opposing RA and 

FGF gradients establish the Differentiation Front (DF) (dashed black line) in limb at the proximal boundary of the FGF 

signaling and the Determination Front (DetF) in more or less the anterior one third level of the PSM (dashed black 

line) from where cells will be committed to be a part of a segment (limb bone or axial skeleton element). The region 

distal to the DF is called the undifferentiated zone (UZ) and the PSM tissue caudal to the DetF is known as the 

undetermined PSM. Bmp4 is exclusively expressed in the LPM (brown bar) through noggin mediated antagonism 

from the lateral part of the PSM (LPM is represented only in the left side of the PSM in this schematic 

representation) (Tonegawa and Takahashi, 1998). In limb mesenchyme, Bmp4 is predominantly expressed in the 

anterior region (brown domain) (Loganathan et al., 2006). The black spiral arrows in the PSM and limb distal 

mesenchyme indicate cyclic gene expression (hairy2 in limb (Pascoal et al., 2007) and somitogenesis molecular clock 

genes in the PSM (Andrade et al., 2007). hairy2 is no longer expressed in the differentiating chondrogenic cells of 

limb. In the PSM, the clock is functional in the PSM precursors at the tailbud (spiral arrow at the tailbud). Regulator 

of HES gene expression, Notch signaling also oscillates in the PSM (green spiral arrow). The Notch receptor (Notch2) 

and its ligand (serrate1) are co-localized with hairy2 in the distal limb. ZPA in the middle of the mesenchymal limb 

longitudinal halves expresses shh (violet oval fill), while in the PSM shh is produced by the Notochord (No) (violet 

long bar in the middle of the neural tube).  

 

shh is an important morphogen needed in all stages of limb development (Zeller et al., 

2009) and it is expressed in the ZPA (Riddle et al., 1993).  Although, it was long believed that 

somitogenesis is totally independent of the body axial structures (notochord and neural tube) 

recent data from our lab clearly point to the requirement of notochord and therein produced 

SHH (Teillet et al., 1998) for timely somite formation (Resende et al., 2010). In our comparative 

way of representing the limb bud and caudal embryo, shh expressing ZPA falls in the middle of 

the two limb sides and shows its resemblance to shh expression in the axially located notochord 

(Figure 5.1).  

 

5.2.4. PARALLELISMS IN NOTCH SIGNALING COMPONENTS 
 

The PSM molecular clock genes controlling somitogenesis are expressed in a periodic 

kinematic wave that propagates from the tail bud  until the anterior PSM where it slows-down 

and finally become persistently expressed in the posterior or anterior somite compartments, as it 

is the case for hairy1 and hairy2, respectively (Palmeirim et al., 1997; Jouve et al., 2000; 

Rodrigues et al., 2006). These genes oscillate with a species specific periodicity which is 90 min in 
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chick (Andrade et al., 2007). Ten years after the discovery of the somitogenesis molecular clock, a 

comparable limb molecular clock was identified, based on hairy2 mRNA expression (Pascoal et 

al., 2007b). Limb clock displays hairy2 mRNA expression cycles of 6h periodicity in the distal limb 

mesenchymal tissue where limb chondrogenic precursor cells are located (Vargesson et al., 1997; 

Pascoal et al., 2007). HES genes are traditionally referred as downstream effectors of Notch 

signaling pathway (Vasiliauskas et al., 2003; Rida et al., 2004). In the limb, Notch1/Serrate2 

(jagged2 in mouse) receptor/ligand pair are exclusively expressed in the AER while 

Notch2/Serrate1 (jagged1 in mouse) are expressed in the distal mesenchyme and thus, could be 

controlling limb clock expression in the distal limb region (Pascoal and Palmeirim, 2007; Dong et 

al., 2010). Whereas in the PSM,  Notch1/delta1 (dll1) pair is co-expressed from very early stages 

of chick gastrulation (Caprioli et al., 2002). 

The aforementioned comparisons describe the resemblances existing between limb 

development and somitogenesis at the level of spatial expression of key signaling molecules. How 

these systems could relate with each other at the functional level is compared in the next 

section.   

 

5.3. PARALLELISMS AT THE FUNCTIONAL LEVEL 

5.3.1. ``STEMNESS´´ OF THE DISTAL LIMB MESENCHYME AND TAILBUD 
 

 Limb development begins as a bundle of mesenchymal cells encompassed into an 

ectodermal hull. Eventually, this mesenchymal tissue forms all the distinct limb elements, except 

limb muscles and tendons, indicating the multipotent progenitor nature of the early limb 

mesenchyme (Dong et al., 2010). During limb outgrowth, the distal limb mesenchyme is 

maintained in an undifferentiated proliferative state by the AER produced FGFs and WNTs 

(Dudley et al., 2002; ten Berge et al., 2008; Cooper et al., 2011. One of the classical models to 

explain the limb PD patterning, the PZ model, proposes that the cells from the distal limb 

mesenchyme progressively acquire more distal positional values as they spend longer time in the 

distal limb (Summerbell et al., 1973) and emphasize the ability of the distal limb tissue to 

generate the entire limb. When endowed with right signals, the distal limb mesenchyme of early 

limb bud has the intrinsic ability to form the entire limb. This has been clearly demonstrated 

through molecular analysis of stage HH19-20 distal limb mesenchyme derived recombinant limbs 
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(Dudley et al., 2002; Cooper et al., 2011; Roselló-Díez et al., 2011) and limbs generated from 

distal limb transplantation studies (Summerbell et al., 1973; Roselló-Díez et al., 2011). However, 

the responsiveness of the distal most ~200μm limb mesenchymal cells (along with the AER) to the 

PD patterning signaling molecules is progressively lost along the limb developmental stages 

(Roselló-Díez et al., 2011). Due to the combinatory influence of the AER produced FGFs and 

WNTs, the distal limb mesenchymal cells present high proliferation compared to all other limb 

regions and enable the limb to grow out in the PD direction (ten Berge et al., 2008).  

The tail bud region could be comparable with the distal limb mesenchyme, namely for its 

“stemness”. As the PSM generates somites from its rostral tip, it is posteriorly replenished with 

new cells that ingress from the PS and tailbud (Pourquie, 2004). Here, the PS and tailbud not only 

serves as a  route for cells to ingress during gastrulation, but also  provide positional information 

along the AP and medio-lateral axis of somites (Selleck and Stern, 1991; Schoenwolf et al., 1992; 

Iimura et al., 2007), parallel to the ability of the distal limb to provide PD positional values 

(Summerbell et al., 1973). The positional identity possessed in the PS cells situated along its AP 

axis could be altered by grafting them to another location (Garcia-Martinez et al., 1997).   

Nevertheless, this plasticity is progressively lost as the embryo matures (Garcia-Martinez and 

Schoenwolf, 1992). As a consequence of the addition of new cells in the tailbud, the AP axis of 

the embryo elongates (Benazeraf et al., 2010).  

Analogous to the limb mesenchyme´s intrinsic ability to form the entire limb in right 

sequence, (Summerbell et al., 1973; Dudley et al., 2002), classical experimental data has 

suggested the segmental autonomy and pre-pattern present in the PSM tissue (Pourquie, 2004). 

However, now we know that the PSM has two distinct domains: the determined rostral PSM 

where segmentation is determined at the molecular level and the undetermined caudal PSM 

where cells present segmental plasticity (Dubrulle et al., 2001).  

 

5.3.2. THE TIME COUNTING MECHANISM OPERATING IN THE LIMB AND THE PSM  
 

The somitogenesis molecular clock was first discovered in chick PSM based on the cyclic 

expression of hairy1, a Notch target HES family member (Palmeirim et al., 1997). Since then, a 

cyclic transcription behavior of many other genes from Notch, FGF and WNT pathways has been 

identified in different species (Andrade et al., 2007; Krol et al., 2011) and different developmental 
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systems (Hirata et al., 2002; William et al., 2007; Shimojo et al., 2008; Kobayashi et al., 2009) 

including the distal mesenchyme of chick forelimb (Pascoal et al., 2007). Six hour period pulses of 

hairy2 (HES member) expression in the limb chondrogenic precursor cells underlie the limb 

molecular clock (Figure 2.3; Pascoal et al., 2007b; Vargesson et al., 1997). hairy2 or its 

mammalian homolog hes1 also display cyclic gene expression in the PSM (Figure 2.1; Jouve et al., 

2000). The PSM oscillator provides a notion of time to the PSM cells and each oscillation (90 min 

in chick) culminates in a somite pair formation (Palmeirim et al., 1997; Aulehla and Pourquie, 

2010). Accordingly, the limb molecular clock has also been proposed to deliver the concept of 

time to the chondrogenic precursor cells where hairy2 is oscillating. Experimentally, it was 

demonstrated that the second phalanx of chick forelimb takes 12h to be formed and n and n+1 

cycles of hairy2 is required to make one limb bone element (Pascoal et al., 2007). This finding 

supports the intrinsic time counting mechanism proposed by PZ model (Summerbell et al., 1973).  

 

5.3.3. CONFRONTING GRADIENTS OF FGF/WNT AND RA SIGNALING IN LIMB AND PSM  
 

 Another parallel mechanism operating along with the clock to control the differentiation 

status of the PSM and limb field is the confronting signaling gradients of RA and FGFs. In the limb, 

the flank region expresses Raldh2, an RA synthesizing enzyme and creates a proximal-distal RA 

signaling gradient. The distal limb domain expresses the RA catabolizing enzyme Cyp26 which 

creates a RA free distal domain (Niederreither and Dolle, 2008; Probst et al., 2011). The distal 

limb structure, AER, produces many fgfs in which fgf8 is the predominant one in terms of 

duration and domain occupation (Martin, 1998; Mariani et al., 2008). The distal-proximal 

AER/FGF8 signaling gradient is counteracted by the proximal-distal RA signaling gradient 

(Mercader et al., 2000; Tabin and Wolpert, 2007). These graded signaling activities correspond to 

the opposing gradients that are functional for somitogenesis.  

In the PSM, fgf8 is expressed in a caudo-rostral gradient, which is opposed by the rostro-

caudal RA signaling gradient established by Raldh2 expression (Diezdel Corral et al., 2003). In 

both systems, the graded fgf8 signaling is a consequence of mRNA decay (Dubrulle and Pourquie, 

2004; Pascoal et al., 2007b). The limb and PSM FGF8 signaling is translated into an activity 

gradient by phosphorylation of Erk or Akt depending on the species (Dubrulle and Pourquie, 

2004; Delfini et al., 2005; Sawada et al., 2001; Kawakami et al., 2003; Corson et al., 2003), further 
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emphasizing their functional similarity. This activity gradient proportionally influences PSM cell 

movement. Cells that are located in the caudal part of the PSM (high FGF8 activity) are more 

dynamic compared to the slow moving cells in the anterior PSM which enable the cells above the 

DetF to get integrated into a somite segment (Delfini et al., 2005; Benazeraf et al., 2010). 

Similarly, in the chick, the distal limb mesenchyme equivalent to the caudal PSM, also presents 

high cell dynamics. It has been reported that the distal limb mesenchymal cells constantly change 

their neighbors possibly through action of the AER produced FGF2 and FGF4 (Li and Muneoka, 

1999). Thus generated opposing RA and FGF gradients position the DetF between somite –IV and 

–V in the PSM (Olivera-Martinez and Storey, 2007). This divides the PSM into the rostral 

Determined Region (DR) and the caudal Undetermined Region (UR) (Dubrulle et al., 2001; Aulehla 

and Pourquie, 2010). Similarly, the confronting flank-RA and AER-FGF signals are patterning the 

PD axis of limb as proposed by the TS model (Tabin and Wolpert, 2007). Moreover, the distal 

mesenchyme under the direct influence of the AER derived FGFs is maintained in a 

undifferentiated state and defines the Undifferentiated Zone (UZ) whose proximal limit marks 

the Differentiation Front (DF) after which cells start their chondrogenic differentiation (Tabin and 

Wolpert, 2007). This entire perception resembles the PSM oriented UR and DetF. Recent studies 

has provided compelling evidence in support of the TS model (Mercader et al., 2000; Mariani et 

al., 2008; Roselló-Díez et al., 2011, Cooper et al., 2011) and argues against the presence of an 

internal clock (Mackem and Lewandoski, 2011). This argument against the limb autonomous 

mechanism  is mainly based on two experiments (Mackem and Lewandoski, 2011): 1) the 

formation of recombinant limbs derived from stage HH18 limb mesenchymal cells cultured in the 

presence of WNT3a, FGF8 and RA and 2) the ectopic limbs generated from transplants of distal 

limb to endogenous RA containing or deprived domains (Roselló-Díez et al., 2011, Cooper et al., 

2011). Although these authors have clearly proved the requirement of the opposing RA and 

FGF/WNT gradients for proper PD axis formation, no evidence was provided to rule out the 

participation of an internal clock in this process. Our results presented in previous chapters has 

clearly showed the indispensable requirement of AER/FGF and ZPA/SHH for proper hairy2 

expression. We have also demonstrated the ability of RA-bead to induce hairy2. Thus, it is most 

plausible that when the cells are packed inside an ectodermal hull, the ectodermally produced 

FGFs might be turning on hairy2 expression in the mesenchymal cells. Since the recombinant 

limbs form all the three limb segments, there must have been a posterior mesenchyme 
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associated SHH signal functioning in the packed cells (Roselló-Díez et al., 2011, Cooper et al., 

2011) which could have created a permissive state for the inductive AER/FGF signal to turn on 

the hairy2 clock (as described in chapter III). Thus, an intrinsic oscillator could be providing the 

positional informations to the packed mesenchymal cells and facilitated their allocation to each 

limb segment.  

Our preliminary results from displacing the limits of FGF and RA signals suggest the 

importance of these gradients in the determination of limb bone size (Figure 4.5; 4.6). We 

followed the bead implantation strategy of Dubrulle et al. (2001) to shift the limits of FGF signal 

either proximally or distally. This was attained as evidenced by the proximally expanded or 

distally confined mkp3 expression (Figure 4.5). We only evaluated the size of the zeugopod 

elements (radius and ulna) since our bead implantations were performed between stage HH22-

23 during which the zeugopod is established (Dudley et al., 2002). Similar to the small somites 

obtained in the PSM (Dubrulle et al., 2001), short limb bones (90%) were obtained upon FGF8 

bead implantation (Figure 4.5). Reduction in bone size could be explained by the extended period 

of time the distal limb cells were under the influence of the AER/FGF signal. As it has been 

described that the distal limb mesenchymal cells acquire positional information based on the 

time they spend in the UZ (Summerbell et al., 1973) or based on the segment specific marker 

they express while they exit the UZ (Tabin and Wolpert, 2007), not enough cells would have 

exited the UZ to form proper sized zeugopod. Conversely, application of FgfR1 inhibitor (SU5402) 

caused bigger somites as a result of the allocation of more cells than normal to form the somites 

(Dubrulle et al., 2001). But our SU5402 bead implantations didn’t produce consistent results 

concerning limb bone size (60% short and 40% long limbs), although FgfR1 is the major receptor 

expressed in the limb mesenchyme (Sheeba et al., 2010). This inconsistency might be due to the 

functional redundancy existing between FGFs and WNTs in the maintenance of the distal limb 

mesenchymal cells in an undifferentiated proliferative state (ten Berg et al., 2008; Cooper et al., 

2011). Accordingly, the PSM-DetF is believed to be set also by WNT signaling (Aulehla et al., 2008; 

Aulehla and Pourquie, 2010). However, a recent study has reported that WNT and FGF signaling 

maintain each other in the caudal PSM while only FGF signal positions the DetF (Naiche et al., 

2011).  In fact in limb, several WNT members are responsible for the proper expression of fgf8 in 

the AER. Among which wnt3a is co-expressed along with fgf8 in the AER and shown to maintain 

its expression in this tissue (Kawakami et al., 2001). In addition to the maintenance of fgf8 
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expression, WNT3a is also necessary for UZ cell proliferation and it co-operates with FGF signal to 

begin UZ cells differentiation program (ten Berg et al., 2008). This suggests that WNT3a might 

indeed be positioning the DF along with FGF8 in the limb mesenchyme. 

Alternatively, we pushed the limits of the proximal-RA signal either proximally or distally 

by implanting RA or citral beads. As expected, when RA signal limit was pushed proximally, FGF8 

signal effector, mkp3 domain expanded proximally supporting the opposing effect of RA on FGF 

signaling (Tabin and Wolpert, 2007). But, this mutual inhibition was not evidenced when RA bead 

was implanted in the distal limit of meis1 expression (RA signal read out) since, this manipulation 

failed to push mkp3 domain distally (Figure 4.6). Although citral bead implantation caused 

proximal expansion of mkp3 expression, it produced longer limb elements compared to the 

control (Figure 4.6). This is contradicting with the short limbs formed after the proximal 

expansion of mkp3 upon FGF8 bead implantation. However, these results implement FGF and RA 

signaling in limb bone size determination, although, more experiments are needed to derive a 

conclusion.   

Following the patterning stages, cells begin their differentiation program, during which 

several changes occur at the cellular level including gene expression and cell type. In the PSM, 

one of the prominent gene to be expressed just before boundary formation is Mesp2 (Evrard et 

al., 1998; Zhang and Gridley, 1998; Aulehla et al., 2008; Oginuma et al., 2008; Oginuma et al., 

2010; Niwa et al., 2011). Moreover, mesenchymal cells maintained by FGF and WNT signals from 

the caudal PSM will enter epithelial transition until they form well defined epithelial somites 

(Dubrulle and Pourquie, 2004a; Martins et al., 2009). During limb development, when cells 

escape the influence of the AER-FGF/WNT signals, cell cycle is withdrawn and they start to 

express the early chondrogenesis marker, sox9 and begin to differentiate in a PD sequence. In the 

periphery, cells that are out of FGF signaling range, but still under the influence of ectodermal 

WNT signal will differentiate into connective tissue (ten Berge et al., 2008).  

 

5.4. COMPARISON OF HES GENE EXPRESSION REGULATIONS BETWEEN LIMB AND 
PSM 

5.4.1. ROLE OF NOTCH SIGNALING IN HES GENE EXPRESSION 

Our work with chick forelimb aiming to understand limb hairy2 expression regulation has 

brought more similarities between somitogenesis and limb development. HES genes are 
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generally considered as effectors of Notch signaling (Fisher and Caudy, 1998; Rida et al., 2004). In 

chick forelimb, hairy2 is expressed in three distinct domains namely CPD, DCD and PPD, being 

dynamically expressed in DCD and PPD (Figure 2.3).  When we assessed the role of Notch signal 

inhibition on limb hairy2 expression by applying DAPT beads in the two distal limb hairy2 positive 

domains (Posterior Positive Domain: PPD; Distal Cyclic Domain: DCD), we obtained results that 

infer different degrees of hairy2 downregulation. DAPT prominently downregulated hairy2 in the 

DCD compared to the PPD (Figure 4.1) suggesting that Notch is not the only regulator of hairy2 in 

the PPD. This kind of domain-specific effect of Notch signaling has been previously reported 

during murine neurogenesis based on Notch ligand expression patterns (Marklund et al., 2010). 

Actually, chick and mouse limb displays distinct domain specific expression of receptor/ligand 

pairs, where Notch1/serrate2 is expressed in the AER and Notch2/Serrate1 is expressed in the 

limb distal mesenchyme (Pascoal and Palmeirim, 2007; Dong et al., 2010). In the PSM, the sole 

dependency of HES genes on Notch signaling was questioned by studies where NICD nuclear 

partner RBP-jk was mutated. In the absence of Notch signaling, hes7 expression was still 

observed in the PSM suggesting the participation of other signaling pathways in its regulation 

(Aulehla and Herrmann, 2004; Niwa et al., 2007; Aulehla and Pourquie, 2008). Eventually, it was 

identified that Notch signaling is only necessary for the anterior propagation or maintenance of 

hes7 oscillations while FGF signaling initiates its oscillations in the posterior PSM (Niwa at al., 

2007).  Moreover, Notch based synchronization of PSM cells (through Lfng expression) is crucial 

for robust hes7 and NICD oscillations (Niwa et al., 2011). Our results in chapter III have strongly 

illustrated the requirement of AER/FGF signaling for limb distal mesenchymal hairy2 expression. 

Additionally, the observation that chemical inhibition of Notch signaling had profound effect on 

DCD-hairy2 expression compared to the PPD is tempting us to speculate a similar role for Notch 

in limb hairy2 expression. Like in the PSM, hairy2 expression initiated by AER/FGF signaling might 

be propagated proximally by Notch through its involvement in cell synchronization.  

 

5.4.2. ROLE OF FGF SIGNALING IN HES GENE EXPRESSION 

 

Notch independent HES gene regulations through other signaling pathways are beginning 

to be uncovered in different systems (Nakayama et al., 2008; Ingram et al., 2008; Wall et al., 

2009; Sanalkumar et al., 2010; Niwa et al., 2007; Gibb et al, 2009; Resende et al, 2010). Inability 
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of DAPT beads to completely abolish hairy2 expression in the PPD and the close proximity of 

hairy2 dynamic domain to the major limb signaling centers, the AER and the ZPA, urged us to 

study the involvement of AER/FGFs and ZPA/SHH in limb hairy2 regulation. Our findings clearly 

show that the AER-produced FGFs and ZPA-derived SHH are absolutely required for the 

physiological expression of limb hairy2 expression (Chapter III).  

We found that hairy2 expression is extremely sensitive to AER-FGF signaling. It took only 

less than an hour to abolish distal limb hairy2 expression upon AER ablation or to induce hairy2 

by FGF bead implantation. In the PSM, FGF dependent HES gene expressions are reported and 

demonstrated to have significant biological value (Kawamura et al., 2005; Niwa et al., 2007). In 

zebrafish, her13.2 (zebrafish HES gene member) expression is shown to be induced by FGF 

signaling in an Notch independent manner and Her13.2 protein is necessary for Notch mediated 

oscillations of her1 and her7 and for proper somite segmentation (Kawamura et al., 2005). 

Nevertheless, the initiation of Hes7 oscillation in the posterior PSM is regulated by FGF signaling 

and maintained in the anterior PSM by Notch signaling in mouse (Niwa et al., 2007). Hes7 is 

required for the cyclic expression of hes7, Lfng and periodic notch activity in mouse PSM (Bessho 

et al., 2003; Kageyama et al., 2007). By a series of AER ablation (anterior and/or posterior AER), 

bead implantation and time lapse experiments, we showed that AER-FGFs exert a short range, 

short-term inductive signal for hairy2 expression in distal limb (Figure 5.2). This effect is mediated 

through Erk/MAPK and Akt/PI3K pathway activations. Intracellular signaling pathways 

downstream of FGFs such as c-Jun N-terminal kinases (JNK) (Curry et al., 2006; Sanalkumar et al., 

2010) and Ras/Erk/MAPK pathways (Stockhausen et al., 2005; Nakayama et al., 2008) have been 

implicated in the regulation of Notch-independent hes1 transcription. Interestingly, chick PSM 

presents graded p-Erk in response to FGF8 signaling (Delfini et al., 2005). Emphasizing the 

importance of p-Erk levels, Nakayama et al. (2008) has demonstrated a correlation between Erk 

phosphorylation and hes1 expression under in vitro conditions. In limb, AER-FGFs enable ZPA-shh 

expression through Erk/MAPK pathway activation in chick forelimb (Bastida et al., 2009) making 

Erk phosphorylation a crucial regulatory mechanism during limb development. Our immunoblot 

analysis also exhibited up to 77% elevation in p-Erk levels upon FGF8 bead implantation. In 

addition, we also found a 37% increase in p-Akt levels and both MAPK as well as PI3K pathway 

inhibitors interfered with FGF8 induced ectopic hairy2 induction. Thus, we propose that 
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activation of Erk/MAPK and Akt/PI3K pathways downstream of FGF signaling is necessary for limb 

hairy2 expression.  

5.4.3. ROLE OF SHH SIGNALING IN HES GENE EXPRESSION 
 

The ability of SHH to regulate HES gene expression has so far been reported in very few 

studies (Ingram et al., 2008; Wall et al., 2009; Resende et al., 2010). In the PSM, the direct role of 

Notochord (No) derived SHH in timely somite formation and hairy2 expression through Gli2/Gli3 

transcriptional modulation was recently exemplified by Resende et al. (2010). Our analysis of ZPA 

derived SHH signaling on limb hairy2 regulation suggests a long-term, long-range permissive 

effect as revealed from the results of both ZPA ablation and ectopic SHH application experiments. 

Upon ZPA ablation, the complete abrogation of hairy2 from the entire distal limb mesenchyme 

took around 5-6h unlike the quick response (within 1h) observed after AER ablation. 

Furthermore, the absence of the ZPA, situated in the posterior distal limb margin enabled 

downregulation of hairy2 even from the distanced DCD. On the other hand, AER tissue ablation 

presented a very restricted hairy2 expression loss, in a way only in the mesenchyme just adjacent 

to the ablation site. Moreover, grafting SHH secreting  QT6-cells immediately after ZPA ablation 

rescued hairy2 expression in the entire limb distal mesenchyme while FGF bead implantation 

following AER extirpation only induced local hairy2 expression. These observations reveal a long-

term, long-range nature of ZPA/SHH signaling on hairy2 expression (Figure 5.2). The positive role 

of ZPA/SHH on limb hairy2 expression is in agreement with the recent report on the 

transcriptome analysis of shh null mouse limb buds (Probst et al., 2011). In their analysis of down 

or upregulated genes in shh null mouse limb buds, hes1 (the mouse homolog of hairy2) is placed 

among the genes that are downregulated in the absence of limb SHH signaling which supports 

our results.  

Through western blot analysis, we further found that the ZPA/SHH-mediated balance 

between Gli3-A and Gli3-R determines the permissive state for limb hairy2 expression. Based on 

the conditions that induced ectopic hairy2 and therein created Gli3-A/Gli3-R ratio, we define 

Gli3-A/Gli3-R≥1 as the permissive state for limb distal mesenchymal hairy2 expression. The distal 

limb is known to display high Gli3-R activity in the anterior than in the posterior region (Wang et 

al., 2000; Ahn and Joyner, 2004). Since SHH inhibits the processing of the whole Gli3 protein into 

its short repressor form (Wang et al., 2000), there established a posterior to anterior gradient of 
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Gli3-A/Gli3-R ratio. Accordingly, hairy2 is persistently expressed in the PPD which presents higher 

Gli3-A/Gli3-R ratio and the anterior limb with lower Gli3-A/Gli3-R ratio is negative for hairy2 

expression. hairy2 oscillatory domain, the DCD contains moderate SHH signaling via balanced Gli-

A and Gli-R levels compared to the most posterior and anterior limb.  

 

 

          

 

Figure 5.2.Schematic representation of PSM and limb showing multiple signaling pathways regulating HES gene 

expression. A stage HH13 chick PSM (A) and a stage HH24 chick forelimb bud (B) are placed next to each other for 

comparison. A well-known regulator of HES genes, Notch signaling is cyclic in the PSM (red spiral arrow) and 

regulates the cyclic HES gene expression (Bessho et al., 2003). Correspondingly in limb, the distal mesenchyme 

presents Notch signaling (through Notch2/Serrate1 pair) and regulates hairy2 expression (results from the present 

study; Visiliauskas et al., 2003). In both systems, FGF signaling regulates HES gene expression: in the PSM, caudally 

produced FGF8 initiates hes7, which has essential biological functions (Niwa et al., 2007) and in the limb, AER derived 

FGFs exert a short range, short-term inductive signal to regulate hairy2 expression (our result). The caudal PSM also 

transcribes wnt3a which is engaged in a positive loop with fgf8 (Naiche et al., 2011). WNT3a also positively regulates 

HES genes in the PSM (Gibb et al., 2009). This mechanism has not yet been analyzed for limb hairy2 (blue line with 

question mark). The SHH produced from the Notochord (violet bar in the middle of the neural tube) and ZPA (violet 

circle in the posterior-distal margin of limb) also regulates hairy2 expression in the PSM and limb, respectively. 

Although SHH positively regulates fgf8 expression in the posterior PSM (Resende et al., 2010), high FGF signaling in 

this region inhibits shh (Diezdel Corral et al., 2003; Ribes et al., 2009). This could results in elevated Gli-R 

accumulation in the posterior PSM (orange graded triangle in the PSM). Low level of FGF signaling above the DetF 
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(dashed line in the PSM), and the graded ptc1 expression (dark blue graded triangle; Resende et al., 2010) enables 

SHH signaling to be active in the anterior PSM (above the DetF: violet graded triangle on top) which maintains high  

Gli-A gradient (green graded triangle). In fact, this region of the PSM expresses Gli1-3 (Borycki et al., 2000; Resende 

et al., 2010). There might be a counteracting regulation between SHH signal in the anterior PSM and BMP4 signal 

from the LPM as it is observed in somite differentiation (reviewed in Stockdale et al., 2000). RA signal inhibits Gli-R 

activity above the DetF (Goyette et al., 2000; Resende et al., 2010). Parallel to these mechanisms, limb hairy2 is also 

regulated by ZPA derived SHH in a long-range, long-term manner (our work). Limb distal mesenchyme is endowed by 

SHH mediated (violet graded triangle in the limb) Gli-A (green graded triangle in the limb) opposed by a Gli-R 

gradient (orange graded triangle in the limb) (Wang et al., 2000; Ahn and Joyner, 2004). The balance between Gli3-A 

and Gli3-R establish a Gli3-A/Gli3-R ratio gradient from the posterior-anterior limb which creates a permissive state 

defined as Gli3-A/Gli3-R≥1 for hairy2 expression (our work). BMP4 signaling inhibits hairy2 from being expressed in 

the anterior limb domain (our work). RA positively regulate hairy2 expression in the anterior limb by neutralizing 

BMP4 and Gli3-R signaling (Goyeet et al., 2000; Thompson et al., 2003; Sheng et al., 2010; Lee et al., 2011). ZPA/SHH 

and AER/FGFs maintain each other in a positive feedback loop (Niswander et al., 1993; Fallon et al., 1994). Grey lines 

indicate interactions from existing literature and black lines represent interactions identified from the present work. 

Solid and dotted lines denotes respectively the transcriptional and activity levels of interactions. Arrows represents 

transcriptional activation, blunt bars represent inhibitions and dotted lines with black round ends indicates the 

proposed Gli-A and Gli-R gradients in the PSM (refer the text for more details).  

 

Our study also revealed the mutual dependency of AER/FGF and ZPA/SHH for limb hairy2 

expression.  This is evident from the inability of SHH-bead to misexpress hairy2 in the absence of 

AER and the failure of FGF bead to act as an inductive signal when ZPA/SHH signaling was 

completely eliminated from the tissue. Strikingly, FGF-bead implanted in the AND that do not 

possess SHH signaling, never induced hairy2 even after longer incubations. Whereas, in the 

presence of an imposed permissive state build by previous SHH-bead implantation in the AND, 

enabled FGF bead to induce hairy2. These experiments clearly suggest the permissive nature of 

ZPA/SHH signaling on hairy2 expression in chick limb.   

The long term effect observed upon ZPA ablation to eliminate hairy2 expression in the 

distal limb mesenchyme suggests that there might be a temporal threshold to disturb the well-

established GLI-A/GLI-R ratio in this limb region. In fact, Harfe et al. (2004) found that SHH bead 

implantation in the anterior limb require at least 4h to begin Gli3-R downregulation. 

Interestingly, the duration of ~5h to abolish limb hairy2 expression after ZPA ablation closely 

coincides with the time of 4.5h until which normal somitogenesis rate was maintained in No 

ablated (No-) chick PSM explants (Resende et al., 2010). Although, the authors reasoned the 
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initial unaltered somite formation as the consequence of the predetermined somites present 

above the DetF, it is so suggestive that it may need around 4.5-6h to destabilize the balance 

between Gli-R/Gli-A ratios. While no distinct Gli-A and Gli-R gradients are reported in the PSM, 

indirect evidence suggests that an anterior-posterior Gli-A gradient above the DetF and a 

posterior-anterior Gli-R gradient in the caudal end of the PSM might exist. This speculation is 

derived from two previous studies (Borycki et al., 2000; Resende et al., 2010). Gli1, Gli2 and Gli3 

are expressed in the somites and the anterior most region of the PSM (Borycki et al., 2000; 

Resende et al., 2010), in addition Gli3 is also expressed in the posterior PSM (Borycki et al., 2000).  

Since the inhibition of shh by the caudal FGF signaling (Diez del Corral et al., 2003; Ribes et al., 

2009) would be relieved in the anterior PSM (above the DetF), Gli1-3 proteins produced here 

should be in an activator form. Expression of ptc1 in this domain supports this notion (Resende et 

al., 2010). The lack of ptc1 or ptc2 receptors (Borycki et al., 2000; Resende et al., 2010) and 

low/residual SHH signaling caused by high FGF activity below the DetF might generate a 

posterior-anterior Gli3 based repressor gradient in the posterior PSM. However, this hypothesis 

needs to be verified experimentally.  

 

5.4.4. POSSIBLE ROLE OF RA AND BMP4 SIGNALS ON HES GENE EXPRESSION 
 

In developing mouse limb, hes1 has been identified as a target of RA-signaling (Ali-Khan 

and Hales, 2006). Our bead implantation studies performed in all limb domains including the AND 

(PPD, DCD, PND and AND) revealed RA as a positive regulator of limb hairy2 expression (Figure 

4.2). Results from immunoblot analysis suggest that a permissive condition (Gli3-A/Gli3-R≥1) was 

created in the AND, upon RA-bead implantation (Figure 4.3). In agreement, RA signaling has been 

reported to inhibit Gli3-R activity (Goyette et al., 2000) and it rescued somitogenesis delay 

caused by the absence of Notochord/SHH signals in the PSM (Resende et al., 2010). Yet another 

interesting observation in our study is the local ectopic hairy2 expression induced around FGF-

bead that was co-implanted with a RA-bead in the AND.  

The AND also coincides with the intense expression of Bmp4 in chick wing bud (Geetha-

Loganathan et al., 2006). Thus we went to analyze the effect of BMP4 signaling on hairy2 

expression. As expected, BMP4-bead inhibited hairy2 expression in the DCD (Figure 4.4). 

Moreover, implantation of FGF-bead in the AND following a Noggin-bead also enabled FGF-bead 
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to induce local hairy2 expression (Figure 4.4). This clearly suggests BMP4 as a negative regulator 

of limb hairy2 expression. From the literature, it is known that both the RA and SHH signaling 

could inhibit BMP4 activity. Thus in the AND, BMP4 might have been neutralized by RA signal as 

shown in other systems (Thompson et al., 2003; Sheng et al., 2010; Lee et al., 2011). Similarly, 

SHH also inhibits Bmp4 expression in the anterior limb upon implantation of SHH-soaked bead 

(Tumpel et al., 2002). Thus the ectopic hairy2 expression brought in the AND by the application of 

either RA or SHH-bead could have been a combinatory inhibition of both Gli3-R and BMP4 

activities.  During somitogenesis, Bmp4 is expressed in the LPM tissue and it is inhibited from 

being expressed in the PSM by noggin expressed in the lateral PSM (IM) (Tonegawa and 

Takahashi, 1998; Capdevila and Johnson, 1998). When Bmp4 expression in the LPM was inhibited 

by Noggin misexpression, ectopic somites were formed by respecification of LPM into PSM tissue 

(Tonegawa and Takahashi, 1998). This proposes the possible inhibition of clock genes by BMP4 

signaling in the PSM, although this phenomenon was not evaluated in this study.  

The limb also exhibits mutual antagonism between ZPA-SHH and BMP signals. Recently, 

Bastida et al. (2009) revealed the necessity of BMP signal mediated inhibition for the 

confinement of shh transcripts to the ZPA. SHH signaling also inhibits BMP signal through Grem1 

induction (Zuniga et al., 1999; Michos et al., 2004) which is an integrated component of the 

ZPA/SHH-AER/FGF positive feedback loop. In parallel, we postulate that a mutual inhibition 

between anterior PSM-SHH and LPM-BMP4 signals might exist similar to the one implemented in 

somite differentiation (Stockdale et al., 2000).  

Although, the above mentioned RA- mediated regulation of hairy2 expression might not 

be functional during stage HH22-24 (the stage frame of this study), at early stages, RA could be 

co-operatively regulating hairy2 along with the inductive AER/FGF signal (Figure 5.3). The 

presumptive limb mesenchyme expresses Raldh2, Bmp4 and hairy2 at stage HH14-HH15 

(Swindell et al., 1999; Berggren et al., 2001; Blentic et al., 2003; Nimmagadda et al., 2005; Pascoal 

et al., 2007b) and the nascent limb is pre-patterned by high Gli3-R activity in the anterior 

mesenchyme before shh is initiated at stage HH17 (Marigo et al., 1996; Schweitzer et al., 2000; te 

Welscher et al., 2002). The entire early limb mesenchyme displays hairy2 transcripts despite of 

the presence of its inhibitory signals, BMP4 and Gli3-R. This co-expression might be due to the 

joint role of flank-RA signals capacity to suppress BMP4 and Gli3-R mediated hairy2 inhibition and 

AER/FGF hairy2 inductive signal. At the early stages of limb development both the AER/FGF and 
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flank-RA signals influence the nascent limb mesenchyme (Tabin and Wolpert, 2007). Once shh is 

initiated at stage HH17, opposing gradients of Gli-A and Gli-R will be established in the limb 

mesenchyme (Wang et al., 2000; Ahn and Joyner, 2004; Harfe et al., 2004). Concurrently, from 

stage HH18 onwards, hairy2 shows posterior-positive and anterior-negative limb domains 

(Pascoal et al., 2007). The co-existence of hairy2 in the presumptive and nascent limb along with 

its inhibitory signals (BMP4 and Gli3-R) and its domain distinction after ZPA-shh establishment 

validates our finding of the involvement of AER/FGF, ZPA/SHH and RA signals in limb hairy2 

expression.  

 

 

 

 

Figure 5.3: Possible role of RA signaling mediated hairy2 regulation at limb initiation stages. (A) Scheme 

representing somite level 14-20 of a stage HH14/15 chick embryo. Here, the Intermediate mesoderm 

(IM)/Nephrogenic mesoderm (NM) exhibit the expression of hairy2 (Pascoal et al., 2007b), Gli3 (Gaisha ID: 42Q) and 

fgf8 (Crossley et al., 1996). Bmp4 (Nimmagadda et al., 2005) and Raldh2 (Swindell et al., 1999; Blentic et al., 2003) 

are expressed both in the IM and in the LPM. The SE and the posterior mesenchyme are yet to express fgf8 and shh, 

respectively, at this stage (Crossley et al., 1996). (B) Scheme representing somite level 14-20 of a stage HH16 chick 

embryo. By this stage of development, fgf8 is already expressed in the SE (partially); hairy2 is expressed in the LPM 

but not in the IM (Pascoal et al., 2007b) and Gli3 occupies the LPM in addition to its IM expression. Raldh2 and Bmp4 

are maintained in the same domains (Blentic et al., 2003; Bastida et al., 2009). shh is yet to be expressed in the 

posterior mesenchyme (Crossley et al., 1996). (C) Scheme representing somite level 15-20 of a stage HH17 chick 
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embryo.  Three important changes occur at this stage: a visible nascent limb bud (NLB) is formed; fgf8 expression 

spreads to the entire SE and the posterior mesenchyme begins to express shh (Crossley et al., 1996). Bmp4 

transcripts inhabit the entire limb mesenchyme (Bastida et al., 2009). Raldh2 expression begins to withdraw 

proximally (Swindell et al., 1999; Berggren et al., 2001; Blentic et al., 2003) but, the entire limb mesenchyme will be 

under the influence of confronting RA and FGF signaling (reviewed in Tabin and Wolpert, 2007). hairy2 still occupies 

the whole of the limb mesenchyme (Pascoal et al., 2007b) (D) Scheme representing somite level 15-20 of a stage 

HH18/19 chick embryo. Expression of shh gets stronger in the ZPA (Crossley et al., 1996) and Gli3 is still expressed in 

the entire limb mesenchyme (Marigo et al., 1996; Schweitzer et al., 2000). Presence of SHH signaling will establish 

opposing gradients of Gli-A and Gli-R across the AP axis (Wang et al., 2000; Harfe et al., 2004; Ahn and Joyner, 2004). 

Concomitantly, hairy2 display domain specificity: the anterior limb domain that is free of its transcripts and a 

posterior positive domain encompassing the ZPA (Pascoal et al., 2007b). By now, Bmp4 expression is anteriorized 

(Geetha-Loganathan et al., 2006; Bastida et al., 2009); Raldh2 expression is proximilized (Swindell et al., 1999; Blentic 

et al., 2003) and the PD axis controlling flank-RA and AER/FGF signals begins to get apart gradually (reviewed in Tabin 

and Wolpert, 2007). Panel of each color representing different molecule/signals is provided in the right side of the 

scheme. This scheme is derived based on the existing literature and our results on the RA signal-mediated hairy2 

regulation. 

 

All the aforementioned experiments with DAPT bead implantation, AER and ZPA ablation 

did not alter hairy2 expression in the CPD suggesting that an independent mechanism other than 

those described here takes part in the regulation of CPD-hairy2 expression. Overall, we show that 

limb distal mesenchymal hairy2 is positively regulated by multiple signaling pathways, namely: 

Notch, AER/FGFs, ZPA/SHH and RA, whereas  this gene is negatively regulated by BMP4 and Gli3-

R activities suggesting an immense similarity with HES gene regulation in the PSM in which all 

these signaling pathways are also implicated (Figure 5.2). 
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6.1. MAIN CONCLUSIONS 
 

In this thesis, we have established parallelisms between limb development and 

somitogenesis at the level of their morphology, gene expression patterns and gene function, 

using the findings of our work and existing literature. We have primarily studied the signaling 

pathways regulating the expression of limb molecular clock gene, hairy2, in the distal 

mesenchyme. The main achievements derived from this study are listed below. 

1. We have identified the involvement of the two renowned limb signaling centres, the AER 

and ZPA, and their key mediators, the FGFs and SHH, for limb hairy2 expression.  

2. We have determined that the activation of Erk/MAPK and Akt/PI3K pathways in response 

to FGF signaling and SHH-mediated Gli3-A/Gli3-R balance is vital for hairy2 expression.  

3. We further demonstrated AER/FGF as a short-term, short-range inductive signal and 

ZPA/SHH as a long-term, long-range permissive signal of limb hairy2 expression. 

4. We showed that the permissive state of Gli3-A/Gli3-R≥1 built by ZPA/SHH is crucial for the 

AER/FGF instructive signal to induce hairy2. Similarly, in the absence of AER/FGF signal 

ZPA/SHH cannot induce hairy2 expression. 

5. We have demonstrated RA as a positive regulator of limb hairy2 expression and BMP4 as 

a negative regulator.  

6. We suggest that RA mediated hairy2 induction is possibly through counteracting BMP4 

and Gli3-R activities as  previously described in other systems (Goyette et al., 2000; 

Thompson et al., 2003; Sheng et al., 2010; Lee et al., 2011). We propose that this 

mechanism might be facilitating hairy2 expression in the presumptive and nascent limb 

during early stages of limb development.  

7. Thus, each domain of limb hairy2 is defined by the combinations of different signals:  the 

PPD is defined by high SHH signal-mediated Gli3-A/Gli3-R≥1 ratio (higher than one) and 

high FGF signal; DCD by moderate SHH signaling (balanced GLI-A and GLI-R levels 

presenting Gli3-A/Gli3-R≥1 tending towards 1) and high FGF signaling; finally AND by less 

SHH signaling-mediated Gli3-A/Gli3-R≥1 (less than 1) and high BMP4 activity. 

8. We show that the regulation of hairy2 by AER/FGF and ZPA/SHH is not a relay but a 

convergence. Thus hairy2 functions as a temporal and spatial readout of the AER/FGF and 

ZPA/SHH signaling.   
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9. Finally, we propose that Hairy2 might be acting as a node that co-ordinates patterning 

along the limb PD and AP axis through its strict transcriptional regulation by both the PD 

pattern instructor AER-FGF and AP axis organizer ZPA-SHH signals.  

 

It is interesting that the positive regulator of hairy2, ZPA/SHH inhibits Gli3 processing into its 

repressor form (our results; Wang et al., 2000; Harfe et al., 2004; Bastida et al., 2004) and inhibits 

Bmp4 transcription (Tumpel et al., 2002; Bastida et al., 2004) as well as its activity through Grem1 

expression (Zuniga et al., 1999; Michos et al., 2004). On the other hand, the negative regulator of 

hairy2, Gli3-R, positively regulates BMP4 signaling directly (Bastida et al., 2004) or through Grem1 

inhibition (Lallemand et al., 2009). All the interactions specified above are summarized in Figure 

6.1. 

 

            

Figure 6.1: Schematic representation of signaling network regulating limb hairy2 expression. Stage HH23 chick 

forelimb bud displaying the regulatory network of limb distal mesenchymal hairy2 expression identified from our 

work. hairy2 is positively regulated by AER/FGFs in a sort-term, short-range inductive manner (thick green arrow) 

and by ZPA/SHH in a long-term, long-range permissive fashion (represented by thick violet arrow). Inhibition of Gli3 

processing proportional to ZPA/SHH signaling establishes a ratio between Gli3-A and Gli3-R along the posterior-

anterior axis (maroon graded triangle). When this ratio is Gli3-A/Gli3-R≥1, the tissue is in a permissive state to 

express hairy2 in the presence of the AER/FGF inductive signal. AND presents Gli3-A/Gli3-R˂1 and so do not express 

hairy2. Bmp4 expressed in the anterior limb mesenchyme negatively regulates hairy2 and along with the Gli3-A/Gli3-

R˂1, it defines the AND. SHH prevent BMP4 transcription (Bastida et al., 2004; Tumpel et al., 2002) and signaling in 

the distal limb through Grem1 induction, which is a BMP antagonist (Zuniga et al., 1999; Michos et al., 2004). SHH 

also inhibits Gli3 processing to its repressor form (our work; Wang et al., 2000; Ahn and Joyner, 2004). Gli3-R 
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positively regulates Bmp4 expression (Bastida et al., 2004) and activity (Lallemand et al., 2009). Ectopic RA inhibits 

Gli-R activity (Goyeet et al., 2000) and BMP4 signaling (Sheng et al., 2010; Lee et al., 2011) as well as Bmp4 

transcription (Thompson et al., 2003) in the AND. Grey lines indicate interactions from existing literature all other 

color lines represent interactions identified from our work. Solid lines and dotted lines denote transcriptional and 

activity level interactions, respectively. Arrows represent transcriptional activation and blunt bars represent 

inhibitions.  

 

The conclusions derived from this work clearly suggest the importance of limb hairy2 

expression through its tight regulation in the multi-potent distal limb mesenchymal cells (Dong et 

al., 2010) mediated by  almost all the major signaling pathways.  This region of the limb is very 

important to determine a complete limb through patterning and differentiation events (Pearse et 

al., 2007). The FGFs and WNTs from the AER and non-ridge ectoderm are known to maintain the 

juxtaposed cells in an undifferentiated state and allow them to enter their fate, once they escape 

their signaling influence (ten Berge et al., 2008). Being a HES family member, hairy2 expression in 

the distal mesenchyme might be maintaining these cells in the undifferentiated state as 

proposed for neural progenitor cells (Kageyama et al., 2007). Moreover, hairy2 regulations 

identified in our work suggest that Hairy2 might be coordinating limb development along PD and 

AP axes. During later developmental stages, HES genes take part in the formation of proper limb 

bone elements in terms of their size and mass (Vasiliauskas et al., 2003; Zanotti et al., 2011). In 

general, embryogenesis is a highly organized timely process and a mechanism that gives the 

notion of time to the cells is crucial for which somitogenesis is the best example.  We strongly 

suggest that a hairy2 based molecular clock is operating in the limb reminiscent to the PSM clock. 

However, whether the limb clock is purely hairy2 based needs to be evaluated by functional 

studies, which is under way in our lab. Our preliminary results to assess the concept of DF in the 

limb suggest that the confronting gradients of RA and FGF signaling determine the size of limb 

bone elements.  

We believe that our perception of making the parallelisms between limb development 

and somitogenesis has highlighted the similarities existing between these two systems at the 

level of gene expression and their functions. Furthermore it has provided the possibility of 

utilizing the knowledge from one system to the other in order to understand the systems better.   
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6.2. FUTURE PERSPECTIVES 
 

Our detailed study on the parallelisms between limb and trunk development suggests 

that both systems can benefit from each other’s literature. Some of the important concepts 

generated from our comparative study are presented here for future exploration.  

The only identified limb clock gene, hairy2 will be characterized better at its regulation by 

analyzing the role of WNTs since WNT signaling is regulating Notch target clock genes in the PSM 

(Gibb et al., 2009). The molecular hierarchy involved in hairy2 regulation and intracellular 

pathways will also be evaluated. It has already been reported that cyclic gene expression is cell-

autonomous and depends on negative auto-regulation based on ubiquitin/proteasome-mediated 

protein degradation and rapid mRNA depletion (Hirata et al., 2002). These mechanisms will be 

evaluated for Hairy2 during limb development to check whether it is operational in limb to 

generate hairy2 oscillations. In fact, we expect a variation in this mechanism since the limb clock 

oscillates with longer periodicity. Moreover, the role of RA signaling in early limb hairy2 

expression will be thoroughly investigated, which might provide additional insights in limb 

initiation program. 

 Importantly, our ongoing work to assess the functional relevance of hairy2 will be 

continued. Perturbation of hairy2 cycles can be achieved either by constitutively producing 

Hairy2 protein or by abolishing its production. We are utilizing retrovirus mediated gene delivery 

system to express both hairy2 coding sequence to overexpress Hairy2 and a specific hairy2 siRNA 

to downregulate its expression by injecting the virus in stage HH12-14 forelimb bud 

mesenchyme. In somitogenesis, loss of cyclic gene expression or Notch activity has resulted in 

somitogenesis defects and shift in axial identities (Cordes et al., 2004; Feller et al., 2008; 

Ferjentsik et al., 2009). Since limb molecular clock is linked to skeletal element positional 

information, a careful study of limb phenotype upon hairy2 misexpression will be performed by 

assessing the expression of limb segment specific markers and skeletal preparations. Special 

emphasis will also be given to AP axis patterning.  

We also aim to assess the possibility of other Notch, FGF and WNT components known to 

be cyclically expressed in chick PSM for dynamic limb expression by performing in ovo 

microsurgery and whole-mount in situ hybridization techniques. Moreover, we aspire to assess if 

the limb molecular clock is a phylogenetically conserved by searching for a putative mouse limb 
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molecular clock. In this row, we first wish to document real time imaging of HES1 expression in 

mouse limb utilizing the transgenic mice containing a highly unstable luciferase reporter driven 

by Hes1 promoter (Masamizu et al., 2006).  

Compared to somitogenesis, role of SHH and BMP signaling are better characterized in 

limb development. For instance, the opposing Gli-A and Gli-R activities participation in 

somitogenesis will be elucidated in detail. Similarly, the cross talk and mutual positive and 

negative loops between SHH, BMP, FGF and RA signaling may add great insights to PSM 

segmentation. Limb outgrowth termination mechanisms involving SHH, FGF and GREM1 can be 

assessed in the tailbud since fgf8 expression is ceased after stage HH20 in chick (Tenin et al., 

2010); shh in the No is known to positively regulate PSM-fgf8 expression (Resende et al., 2010) 

and high FGF signaling inhibits shh (Diez del Corral et al., 2003; Ribes et al., 2009). Additionally, as 

it has been mentioned in the general discussion, analysis of PSM clock in the presence of ectopic 

RA will be performed to see if RA positively or negatively regulates HES genes in the PSM.  This 

study will be carried out in PSM explants and under in-vivo conditions. 
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