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ABSTRACT 

A general methodology for the dynamic modeling and analysis of planar multibody systems with multiple clearance joints is 

presented. The inter-connecting bodies that constitute a real physical mechanical joint are modeled as colliding components, whose 

dynamic behavior is influenced by the geometric, physical and mechanical properties of the contacting surfaces. A continuous contact 

force model, based on the elastic Hertz theory, together with a dissipative term associated with the internal damping, is utilized to 

evaluate the intra-joint normal contact forces. The incorporation of the friction phenomenon, based on the classical Coulomb’s friction 

law, is also included in this study. The suitable contact force models are embedded into the dynamic equations of motion for the 

multibody systems. In the sequel of this process, the fundamental methods to deal with contact-impact events in mechanical systems 

are presented. Finally, two planar mechanisms with multiple revolute clearance joints are used to demonstrate the accuracy and 

efficiency of the presented approach and to discuss the main assumptions and procedures adopted. The effects of single versus 

multiple clearance revolute joints are discussed. 
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INTRODUCTION 
Over the last few decades, the computer-aided analysis of mechanical systems has emerged as an important scientific part of the 

applied mechanics field, with important applications in several branches of engineering [1-4]. This has been made possible mainly due 

to impressive improvements of the computers at both hardware and software levels, due to the creation of robust and accurate 

computational tools, and due to the demand for analysis of complex multibody mechanical systems. Decades ago, the design of 

machines and components was based on trial and error and knowledgeable craftsmanship. Later, algebraic methods for analysis 

eliminated part of the limitations of the trial and error approach, and leaded to documented methods used in the design of mechanical 

components [5]. In today’s industry, there is little room for error and a great need for optimized and cost effective production of 

components and machines with high reliability and durability. 

In the real world, mechanical systems do not have perfect kinematic joints due to the functional tolerances between the adjacent 

segments [6]. Either due to the loads carried by the mechanical devices or the misalignments that are required for their operation, real 
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joints must be lubricated [7] or include bushings [8], generally made with metals or polymers. By using rubber bushings, a 

conventional joint is transformed into a joint with clearance allowing for the mobility of the over-constrained system in which it is 

used for [9]. Therefore, appropriate tribological models must be devised in the framework of their application in general multibody 

mechanical systems. The characterization of the normal contact forces in the non-lubricated joints is realized by using continuous 

contact force models [10], while their tangential forces are obtained by using appropriate friction force models [11]. Joints with rubber 

bushings are usually described by the methodology suggested by Park and Nikravesh [9]. However, this is a linear model which does 

not include coupling between radial and axial or bending loads. A more advanced model for rubber bushings is realized by obtaining 

the static nonlinear response of the rubber bushings using finite elements and implementing the force-displacement curves as carpet 

plots in the computational code that supports the analysis [12]. 

The undesired consequences of the clearance joints on the behavior of multibody systems have motivated various theoretical and 

experimental investigations over the last three decades [12-18]. Furthermore, mechanical systems with clearance joints can exhibit a 

predictable nonlinear dynamic response [19, 20]. This is an important feature for the design and control of these systems. 

Consequently, proper modeling of clearance joints in mechanical systems is required to achieve better understanding of the dynamic 

performance of the machines and mechanisms. This aspect has gained much importance due to the demand for the proper design of 

the real joints in many industrial applications. The general-purpose computational tools used for the design and analysis of multibody 

systems have a wide number of mechanical systems modeling features which require the description of rigid or flexible bodies for 

which the geometry, mass, center of mass, moment of inertia, and other relevant properties are defined [21, 22]. The computational 

codes also provide a large library of kinematic joints that constrain the relative degrees of freedom between connected bodies. The 

kinematic joints typically available in the commercial programs are represented as ideal joints, for which there are no clearances or 

deformations associated with them. 

Modeling the dynamics of multibody systems with clearances and imperfections is a challenging issue in mechanical design and 

much work still remains to be done to achieve accuracy of the modeling tools. The primary objective of this work is to explore the 

mathematical modeling of real joints in the context of multibody dynamics. A study of a planar mechanical system is done in order to 

quantify the influence of the main parameters on the dynamic response of mechanical systems with multiple clearances joints. For the 

numerical simulations, the computational time is evaluated in order to analyze the computational efficiency of the presented 

methodology. It should be highlighted that the clearance joint approach is more accurate and realistic than the common idealized 

revolute joint model employed by most multibody system frameworks, because it uses more realistic contact representation between 

the two bodies in the region of the joint, rather than a simple kinematic constraint. Furthermore, when a system has multiple clearance 

joints, its dynamic response is affected by the clearance, operating conditions and contact properties. In addition, with the present 

formulation, how a jointed constrained system migrates towards a joint-free unconstrained system is demonstrated in this study. Thus, 
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once the system becomes mechanical-joint force, a reduction in the chaotic behavior is observed in the response of the system. These 

particular issues have not been addressed before in the literature on planar multibody systems with clearance revolute joints. 

 

 

METHODS TO DEAL WITH CONTACT-IMPACT EVENTS 
The classical problem of the contact mechanics is still an open issue in engineering applications. In particular, the contact-impact 

modeling and analysis in multibody dynamics has received a great deal of attention over the past few decades and still remains an 

active field of research and development [23-26]. Contact events happen frequently in multibody systems and in many cases, the 

performance of mechanical systems is highly dependent on them [11, 27]. In simple terms, the contact mechanics problem must be 

studied when two bodies that are initially separated come into contact. For this, either the finite element method or the multibody 

systems approach can be utilized. On one hand, there is no doubt that the finite element analysis is the most powerful and accurate 

method to solve contact problems [28-30]. On the other hand, the method of multibody systems is the most efficient approach for the 

dynamic analysis of the gross motion of mechanical systems [31-33]. 

Regardless of the method used to describe the contact problems of the colliding bodies, it is necessary to model and analyze the 

contact process. This issue involves two main steps, (i) the contact detection and (ii) the evaluation of the contact forces, which are the 

result of collisions between bodies. The contact detection is an important issue in contact modeling of moving bodies, which deals 

with the determination of when, where and which points are in contact. The most significant task of contact detection is to check 

whether the potential contact points or surfaces are in contact or not, and allowed the relative interpenetration of the bodies. The 

efficiency and accuracy of this step depend on the complexity of the contacting surfaces [34], the number of potential colliding bodies 

[35] and the kinematics of the bodies [36]. In turn, the evaluation of the contact forces can be performed by using different approaches 

introduced over the last few decades [10, 37, 38]. In the present work, several continuous contact force models are used, for which the 

local deformations and normal contact forces are treated as continuous events and introduced into the equations of motion of the 

multibody systems as external generalized forces [1]. 

It is eminently difficult to find methods and algorithms which can model the highly complex phenomenon of contacting bodies 

realistically and efficiently enough for multibody systems simulations. From the modeling methodology point of view, several 

different methods have been introduced to model the contact response in multibody systems. As a rough classification, they can be 

divided into contact force based models and methods based on geometrical constraints, each of them showing advantages and 

disadvantages for each particular application [39]. In other words, there are two main approaches to model multibody systems with 

contact-impact events, namely the regularized models and non-smooth dynamics formulation [10, 11]. 

Contact force approaches, commonly referred as penalty or compliant methods, own their importance in the context of multibody 

systems with contacts due to their computational simplicity and efficiency [10]. In these methods, the contact force is expressed as a 

continuous function of penetration between contacting bodies. This approach is quite simple, very straightforward to implement and 
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presents also a good computational efficiency. In addition, in the regularized approach, there are no impulses at the instant of contact. 

Therefore, there is no need for impulsive dynamics calculations and the contact loss can easily be determined from position and 

velocity data. One of the main drawbacks associated with these force models is the difficulty to choose contact parameters such as the 

equivalent stiffness or the degree of nonlinearity of the penetration, especially for complex contact scenarios and nonmetallic 

materials. Another disadvantage associated with this formulation is that it can introduce highly-frequency dynamics into the system, 

due to the presence of stiff springs in compliant surfaces. If these dynamics require the integration algorithm to take smaller steps, 

then the speed of simulation will be strongly penalized. The penalty formulations can be understood as if each contact region of the 

contacting bodies is covered with some spring-damper elements scattered over their surfaces. The normal force, including elastic and 

damping, prevents penetration; i.e., no explicit kinematic constraint is considered but simply force reaction terms are used. The 

magnitudes of stiffness and deflection of the spring-damper elements are computed based on the penetration, material properties and 

surface geometries of the colliding bodies. In the work by Khulief and Shabana [40], the required parameters for representing contact 

force laws are obtained based on the energy balance during contact. This formulation uses a force-displacement law that involves 

determination of material stiffness and damping coefficients. In the work by Lankarani and Nikravesh [41], two continuous contact 

force models are presented for which the unknown parameters are evaluated analytically. In their first model, the internal damping of 

bodies represents the energy dissipation at low impact velocities. However, in their second model, the local plasticity of the surfaces in 

contact becomes the dominant source of energy dissipation. Dias and Pereira [42] described the contact law using a continuous force 

model based on the Hertz contact law with hysteresis damping. Furthermore, the effect and importance of structural damping schemes 

in flexible bodies were also considered. Hunt and Crossley [43] obtained a model for computing the stiffness coefficient from the 

energy balance relations. The effect of friction in the continuous approach is often taken into consideration by using a regularized 

Coulomb friction model. An overview of different models of friction together with fundamentals can be found in Oden and Martins 

[44] and Feeny et al. [45]. 

An alternative method to treat the contact-impact problems in multibody systems is to use the non-smooth dynamics approach, 

namely the Linear Complementarity Problem (LCP) [11, 46] and Differential Variational Inequality (DVI) [35, 47]. The 

complementarity formulations associated with the Moreau’s time-stepping algorithm for contact modeling in multibody systems have 

been used by many researchers [48-51]. Assuming that the contacting bodies are truly rigid, as opposed to locally deformable or 

penetrable bodies as in the penalty approach, the complementarity formulation resolves the contact dynamics problem by using the 

unilateral constraints to compute contact impulses or forces to prevent penetration from occurring. Thus, at the core of the 

complementarity approach is an explicit formulation of the unilateral constraints between the contacting rigid bodies [52]. The basic 

idea of complementarity in multibody systems can be stated as for a unilateral contact either relative kinematics is zero and the 

corresponding constraint forces are zero, or vice versa. The product of these two groups of quantities is always zero. This leads to a 

complementarity problem and constitutes a rule which allows the treatment of multibody systems with unilateral constraints [53-55]. 



 5  

One of the first published works on the complementarity problems is due to Signorini [56], who introduced an impenetrability 

condition in the form of a LCP. Later, Moreau [57] and Panagiotopoulos [58] also applied the concept of complementarity to study 

non-smooth dynamic systems. Pfeiffer and Glocker [11] extended the developments of Moreau and Panagiotopoulos to multibody 

dynamics with unilateral contacts, and examined the importance of the complementarity. Indeed, complementarity method has been 

proven to be a very useful way to formulate problems involving discontinuities [59-61]. In turn, the DVI has been recognized to be a 

powerful tool to deal with multiple contact problems in multibody dynamics. This approach has the advantage that it does not need the 

use of small time steps as in the case of penalty approaches, which means that simpler integrator schemes can be used, such as the 

Euler method [47]. However, the algorithmic procedures that result from DVI approach are of great complexity. This formalism has 

been used with success by Tasora et al. [35] to model and analyze multibody systems involving hundreds of thousand contacts. The 

DVI approaches are also interesting in the measure that they can easily deal with friction problems without need to modify Coulomb’s 

friction law.  

In short, the different methods to deal with contact-impact events in multibody systems have inherently advantages and 

disadvantages for each particular application. None of the formulations briefly described above can a-priori be said to be superior 

compared to other for all applications. In fact, a specific multibody problem might be easier to describe by one formulation, but this 

does not yield a general predominance of this formulation in all situations. 

 

 

MODELING REVOLUTE CLEARANCE JOINTS 
It is known that in standard multibody system models, it is assumed that the connecting points of two bodies, linked by an ideal 

revolute joint, are coincident. However, the introduction of the clearance separates these two points. Figure 1 shows a typical 

connection with revolute clearance joints found in a planar multibody system, where the clearance size is exaggerated in order to 

illustrate the phenomena associated with the revolute joints with clearance, namely, the bouncing effect. In a revolute clearance joint, 

when a contact occurs between the journal and bearing, a contact force is generated and applied perpendicular to the plane of collision. 

The force is typically applied as a spring damper element. If this element is linear, the approach is known as the Kelvin Voigt model 

[62]. If the relation is nonlinear, the model is generally based on the Hertz contact law [63]. 
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Figure 1: Typical connection with revolute clearance joints found in a planar multibody systems 

 
Figure 2 depicts a revolute joint with clearance, that is, the so-called journal bearing, where the difference in diameters between 

the bearing and the journal defines the diametric clearance. Several published research works have focused on the different modes of 

motion of the journal inside the bearing boundaries. Most of them consider a three-mode model for predicting the dynamical response 

of articulated systems with revolute clearance joints [64]. The three different modes of journal motion inside the bearing are the 

sustained contact or followed mode, the free flight mode, and the impact mode, which are schematically represented in Figure 2. 
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Figure 2: Types of journal motion inside the bearing boundaries 

 
In the sustained contact or followed mode, the journal and the bearing are in permanent contact and a sliding motion relative to 

one another is assumed to exist. In this mode, the relative indentation varies along the circumference of the bearing. In practice, this 

mode is ended when the journal and bearing separate from each other and the journal enters in the free flight mode. In the free flight 

mode, the journal can move freely inside the bearing boundaries, that is, the journal and the bearing are not in contact; consequently, 

no reaction force is developed at the joint. In the impact mode, which occurs at the termination of the free flight mode, impact forces 

are applied and removed in the system almost instantaneously. This mode is characterized by a discontinuity in the kinematic and 
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dynamic characteristics of the system, and a significant exchange of momentum occurs between the two impacting bodies. At the 

termination of the impact mode, the journal can enter either a free flight or a followed mode [65]. 
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Figure 3: Generic configuration of a revolute joint with clearance in a multibody system 

 
Figure 3 shows a generic configuration of a revolute joint with clearance in a multibody system. In the dynamic simulation, the 

behavior of the revolute clearance joint is treated as an oblique eccentric collision between the journal and the bearing. The mechanics 

of this type of collision involves both the relative normal velocity and the relative tangential velocity [66]. When the impact occurs, an 

appropriate contact law must be applied and being the resulting forces introduced as generalized forces in the system’s equations of 

motion [1]. 

In regard to Figure 3, the relative penetration vector between the journal and bearing walls can be defined as: 

 
2

B Jd d−⎛ ⎞= − ⎜ ⎟
⎝ ⎠

δ e n  (1)  

where e is the eccentricity vector, i.e., the vector that defines the distance between the journal and bearing centers; dB and dJ are the 

bearing and journal diameters; and n is the vector that defines the normal direction to the plane of collision. 

The magnitude of the indentation can be evaluated as 

 = e - cδ  (2)  

in which c represents the radial clearance defined as 

 
2

B Jd - d
c =  (3)  

Typical contact-impact force models with dissipated effects are dependent on the contact velocities, and therefore, it is important 

to evaluate these velocities in order to account for the dissipative effects during the contact-impact process. In particular, in the 
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continuous force contact model, it is necessary to calculate the relative velocity between colliding surfaces. The relative velocity 

vector between bearing and journal can be expressed by: 

 
( ) ( )( )

C C
B J C C

B J B J

d

dt
ω ω

−
= + − −

r r
v n r r t  (4)  

where C
Br and C

Jr  are the position vectors of the contact points in the bearing and journal, n and t are the normal and tangential 

vectors, and ωB and ωJ are the bearing and journal angular velocities. It should be stated that vector t is obtained by rotating the vector 

n in the counter clockwise direction by 90º. 

The relative velocity between the contact points is projected onto the plane of contact and onto the normal plane of contact, 

yielding a relative tangential velocity, vT, and a relative normal velocity, vN. The normal relative velocity determines whether the 

contact bodies are approaching or separating. Similarly, the tangential relative velocity determines whether the contact bodies are 

sliding or sticking. The relative scalar velocities, normal and tangential to the plane of collision, are found by projecting the relative 

impact velocity onto each one of these directions 

 T
Nv = v n  (5)  

 T
Tv = v t  (6)  

In the presented approach, although a revolute joint with clearance does not constrain any degree-of-freedom from the mechanical 

system, as an ideal joint does, it imposes force-induced restrictions, limiting the journal to move within the bearing. However, this is 

not the case when the constraint-based contact formulation is considered, in the measure that the contact is modeled at the kinematic 

level when the contact between the bodies is detected. Thus, when the clearance is present in a revolute joint, two kinematic 

constraints associated with an ideal joint are removed and two degrees of freedom are introduced instead. The dynamics of the joint is 

then controlled by the contact-impact forces developed between the journal and bearing. Thus, whilst a perfect revolute joint in a 

mechanical system imposes kinematic constraints, a revolute clearance joint leads to force constraints. Therefore, joints with clearance 

can be defined as force-joints instead of kinematic joints. When a contact between the journal and bearing takes place, contact-impact 

forces act at the contact points. The contributions of these contact-impact forces to the external forces applied to the mechanical 

system are found by projecting them onto the X and Y directions. Since these forces do not act through the center of mass of the 

bearing and journal bodies, the moment components for each body also needs to be evaluated. 

In short, in the dynamic analysis, the deformation is known at every time step from the configuration of the system and the forces 

are evaluated based on these state variables. With the variation of the contact force during the contact period, the system’s dynamic 

response is obtained by simply including the updated forces into the system’s equations of motion. Since the equations of motion are 

integrated over the period of contact, this approach results in a rather accurate response. Furthermore, this methodology accounts for 

the changes in the system’s configuration during the contact periods. The methodology is quite straightforward and generic to apply in 



 9  

the dynamic modeling and analysis of any mechanical system. To the authors’ knowledge, none of the formulations briefly described 

in this section can a-priori be said to be superior compared to other for all applications. It is a fact that a specific multibody problem 

might be easier to describe by one formulation, but this does not yield a general predominance of this formulation in all situations. 

However, in the present work, due to its simplicity, easiness to implement and computational efficiency, the penalty approach has 

been selected as the method to be considered to model the contact-impact events. Additionally, it must be stated that the multibody 

systems formulation used in this study is generic and more appropriate to be associated with penalty approach. 

 

 

NUMERICAL MODELS FOR CONTACT FORCES 
Internal impact, as it occurs in a revolute clearance joint, is one of the most common types of dynamic loading conditions giving 

rise to impulsive forces, which in turn excites higher vibration modes affecting the dynamic characteristics of the mechanical systems. 

For a revolute joint with clearance, the contact between the journal and bearing can be modeled by the well known Hertz contact law 

[63] 

 n
NF = Kδ  (7)  

where K is a generalized stiffness coefficient, and δ is the relative indentation. The exponent n is typically 1.5 or higher. The 

parameter K depends on the material and geometric properties of the contacting surfaces. For two spheres in contact the generalized 

stiffness coefficient is a function of the radii of the spheres i and j and the material properties as [67] 

 

1
2

4
3( )

i j

i j i j

R R
K

R + Rσ σ

⎡ ⎤
= ⎢ ⎥

+ ⎢ ⎥⎣ ⎦
 (8)  

where the material parameters σi and σj are given by 

 
21 k

k
kE
ν

σ
−

= ,     (k=i, j) (9)  

the quantities νk and Ek are the Poisson’s ratio and the Young’s modulus associated with each sphere, respectively. 

Hertz contact law given by Eq. (7) is a pure elastic model, and it does not include any energy dissipation. Lankarani and 

Nikravesh [10] extended the Hertz contact law to include energy loss due to internal damping expressed as 

 
2

( )

3(1 )
1

4
n r

N
c

F K δδ
δ −

⎡ ⎤−
= +⎢ ⎥

⎣ ⎦
 (10)  

where the stiffness coefficient K is given by Eq. (8), cr is the restitution coefficient, δ  is the instantaneous relative penetration 

velocity. and ( )δ −  is the initial impact velocity. 

The Coulomb’s friction law of sliding friction represents the most fundamental and simplest model of friction between dry 

contacting surfaces. When sliding takes place, the Coulomb’s law states that the tangential friction force FT is proportional to the 
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magnitude of the normal contact force, FN, at the contact point by introducing a coefficient of friction cf [68]. The Coulomb’s friction 

law is independent of relative tangential velocity. In practice, this is not true, because friction forces can depend on many parameters 

such as material properties, temperature, surfaces cleanliness and sliding velocity. Thus, a friction force-velocity relation is desirable. 

Furthermore, the application of the original Coulomb’s friction law in a general-purpose computational program may lead to 

numerical difficulties, because it is a highly nonlinear phenomenon which may involve switching between sliding and stiction 

conditions. In order to overcome such difficulties, a modified Coulomb law is utilized [69] 

 T
T f d N

T

F c c F= −
v
v

 (11)  

where cf is the friction coefficient, FN is the normal force, vT is the relative tangential velocity, and cd is a dynamic correction 

coefficient, which is expressed as 
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1 0
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 (12)  

where v0 and v1 are given tolerances for the tangential velocity [69]. The dynamic correction factor cd prevents that the friction force to 

change direction in the presence of almost null values of the tangential velocity. This would be perceived by the integration algorithm 

as a dynamic response with high frequency contents, forcing it to reduce the time step size. In terms of computation and use of 

numerical integrators, the increase of system’s stiffness due to the presence of contact needs to be highlighted against the reduction in 

the system’s stiffness due to the elimination of joint constraints. The direct integration algorithm with Baumgarte stabilization and 

Adams-Bashforth numerical integrator has been utilized in this study due to the simplicity of implementation. Further research should 

also pursued to examine the solutions when other computational/numerical schemes, such as the coordinate-partitioning, use of 

integrators for stiff systems due to the presence of contact/impact such as Gear, etc are implemented. 

 

MULTIBODY SYSTEMS FORMULATION 
The equations of motion for a dynamic multibody system subjected to holonomic constraints associated with kinematic joints can 

be stated in the form [1] 

 
T⎡ ⎤ ⎧ ⎫ ⎧ ⎫

=⎢ ⎥ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦

q

q

M Φ q g
Φ 0 λ γ

 (13)  

With the reference frame placed at the center of mass for each body, M is the system mass matrix, qΦ  is the constraint Jacobian 

matrix of the kinematic constraint equations, the vector q  contains the generalized state accelerations, λ is the vector that contains the 

Lagrange multipliers associated with the kinematic constraints, g is the vector of generalized forces and γ is the vector of quadratic 
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velocity terms [1]. Equation (13) is formed as a combination of the equations of motion and kinemtaic constraint equations, often 

referred to as a mixed set of differential and algebraic equations of motion. 

A set of initial conditions on positions and velocities is required to start the dynamic simulation. The selection of the appropriate 

initial conditions plays a key role in the prediction of the dynamic performance of mechanical system. In the present work, the initial 

conditions are based on the results of kinematic simulation of mechanical system in which all the joints are assumed to be ideal, that 

is, without clearance. The subsequent initial conditions for each time step in the simulation are obtained in the usual manner from the 

conditions of the previous time step [1]. In order to stabilize or to keep the constraints violation under control, Eq. (13) is solved using 

the Baumgarte stabilization technique [70, 71]. In turn, the integration process is performed in this study using a predictor-corrector 

algorithm with both variable step size and order [72].  

The use of numerical algorithms with automated adjust step size is particularly important in contact problems whose dynamic 

response is quite complex due to the suddenly change in the system’s kinematic configuration. In such events, the use of a constant 

time step is computationally inefficient and the system could be overlooked due to insufficient time resolution. The automated time 

step size adaptability is therefore a crucial part of the dynamic solution procedure. Furthermore, the abrupt configuration changes 

caused by the rapid variation of contact forces are source of stiffness, since the natural frequency of the system is widely spread. Thus, 

the time step size must be adjusted in order to capture the fast and low frequency components of the system response [1, 39]. 

 

 

RESULTS AND DISCUSSION 
The main purpose of this section is to assess the influence of the presented approach on the dynamic response of a planar 

multibody system with multiple clearance revolute joints. The effects of misalignment, lubrication, flexibility of bodies, contact 

approach, and contact measurement for comparison, are out of scope of the present study, and can be subject of other future research 

developments. This section contains the results obtained from computational simulations of two planar mechanical systems with 

multiple clearance revolute joints, namely a slider-crank mechanism and a quick-return mechanism. Figure 4 shows the generic 

configuration of the slider-crank mechanism. The system consists of four rigid bodies that represent the crank, connecting rod, slider 

and ground, one ideal revolute joint and one ideal translational joint. The length and inertia characteristics of this mechanism are listed 

in Table 1. The acceleration due to gravity is taken as acting in the negative Y direction and the mechanism is defined as moving in a 

vertical plane. The existence of one, two or three clearance revolute joints are considered in the present analysis. When the system is 

modeled with one, two or three clearance revolute joints makes a system with a total of three, five and seven degrees-of-freedom, 

respectively.  
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Figure 4: Slider-crank mechanism with two clearance joints 

 
 

The crank, which is the driving link, rotates with a constant angular speed of 5000 rpm. The initial configuration of the 

mechanism is defined with the crank and the connecting rod collinear, and the journal and bearing centers coincident. Furthermore, the 

initial positions and velocities necessary to start the dynamic analysis are obtained from kinematic simulation of the slider-crank 

mechanism in which all the joints are considered to be ideal. Table 2 presents the values of the main parameters used for the different 

models, required to characterize the problem and for the numerical methods, required to solve the system’s equations of motion. 

 
 

Table 1: Geometric and inertial properties of the slider-crank mechanism 
Body Nr. Length [m] Mass [kg] Moment of inertia [kgm2] 

2 0.05 0.30 0.00010 
3 0.12 0.21 0.00025 
4 - 0.14 0.00010 

 
 
 

Table 2: Parameters used in the dynamic simulations 
Nominal bearing diameter 20.0 mm Poisson’s ratio 0.3 

Standard diametric clearance 0.05 mm Integrator algorithm Gear 
Coefficient of restitution  0.9 Baumgarte – α, β 5 

Coefficient of friction 0.01 Integration step size 1×10-6 s 
Young’s modulus 207 GPa Total time of simulation 10.0 s 

 
 

 
The diametric clearance size of the non-ideal revolute joints is taken to be equal to 0.05 mm, which corresponds to the clearance 

size in a typical journal-bearing with nominal dimensions used in the present work. For example, for a journal-bearing in which the 

nominal diameter falls into the interval between 18 and 30 mm, the minimum and maximum recommended diametric clearance sizes 

are 0.02 and 0.06, respectively [73].  

In what follows, several numerical results are presented and analyzed to demonstrate the computational implementation and 

efficiency of the described methodologies. The dynamic response of the slider-crank mechanism is quantified by plotting the slider 

velocity and acceleration, joint reaction forces and the reaction moment that acts on the crank. In addition, the journal center orbit 

inside the bearing boundaries and the maps that relates the eccentricity and eccentricity velocity are plotted. The global results are 

relative to two complete crank revolutions after the steady configurations state has been reached. Furthermore, the results for slider-

crank mechanism are compared with the dynamic behavior when the system is modeled with ideal joints only. The influence of the 
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number of clearance joints on the dynamic behavior of the slider-crank mechanism is investigated. In the first simulation of this 

mechanism, only one joint is modeled as clearance revolute joint, namely, the joint between the connecting rod and the slider. 
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Figure 5: (a) Slider velocity; (b) Slider acceleration; (c) Joint reaction force at the clearance joint; (d) Crank moment required to 

maintain its angular velocity constant; (e) Journal center trajectory relative to the bearing center; (f) Poincaré map.  
All for one clearance joint of 0.05 mm between the connecting rod and the slider 

 
 

From Figure 5(a), it can be observed that the existence of a clearance joint does not influence the slider velocity in a significant 

manner. In sharp contrast, the slider acceleration is strongly influenced by the contact-impact forces produced between the journal and 

bearing contacting surfaces in the clearance joint. The slider acceleration is subjected to peaks caused by contact forces that are 

propagated through the rigid bodies of the mechanism, as observed in Fig. 5(b) on the acceleration of the slider. The same phenomena 

can be observed in the joint reaction forces and crank moments, represented by Figs. 5(c) and 5(d), respectively. As far as the 

trajectory of the journal center relative to the bearing center is concerned, only one type of motion between the two bodies is observed, 

namely the sustained or followed contact mode. The relative penetration depth between the journal and bearing is visible by the lines 

of the journal path that are plotted outside the clearance circle represented by the dashed line, as illustrated in Fig. 5(e). From the 
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Poincaré map of Fig. 5(f) it can be deduced that the behavior of the slider-crank mechanism modeled with a clearance joint tends to be 

aperiodic, or even chaotic, due to the nonlinear nature of the contact-impact phenomena associated with the joint components. This 

can be explained based on the spread out nature of the Poincaré map. In fact, non periodic responses are extremely sensitive to initial 

conditions and are densely filled by orbits or points in the Poincaré map. A complex looking phase in a Poincaré map is one indicator 

of the chaotic motion. Quasi-periodic orbits fill up the Poincaré maps as the chaotic orbits, but they do so in a fully predictable manner 

since there is no sensitive dependence on the initial conditions [74]. 

 
The influence of the number of clearance joints on the dynamic response of the slider-crank mechanism is analyzed in the 

following paragraphs. The simulation of the mechanism is performed with one, two and three revolute clearance joints. Figure 6 

shows the global results for the case in which the joint connecting the crank and connecting rod is modeled as clearance joint with 

0.05 mm for diametric clearance size. The system is again operating at 5000 rpm. In general, the results, as expected, are dependent on 

the contact-impact phenomena that take place between the journal and bearing. From Figure 6(e) it can be observed that the journal 

and bearing are in permanent contact mode. The system’s response is also chaotic, as illustrated in Figure 6(f). Figure 6 shows the 

different responses of the system for the different location of the single clearance joint. It shows that the clearance joint between the 

crank and the connecting rod produces higher impact forces and then more oscillatory response.  
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Figure 6: (a) Slider velocity; (b) Slider acceleration; (c) Joint reaction force at the clearance joint; (d) Crank moment required to 

maintain its angular velocity constant; (e) Journal center trajectory relative to the bearing center; (f) Poincaré map.  
All for one clearance joint of 0.05 mm between the crank rod and the connecting rod 

 
Figures 7 to 10 illustrate the results obtained when the slider-crank mechanism is modeled with one, two and three clearance 

joints. It should be noted that the journal trajectories and Poincaré maps have similar look for all the cases simulated, as illustrated in 

Figs. 9 and 10. In general, it can be stated that as the number of clearance joints increase, the responses seem to have more pronounced 

peaks. However, as observed as the number of clearance joints increases to maximum, the system is gradually converted a constrained 

multibody system governed by a differential-algebraic system, to an unconstrained or joint-force system governed by a system of 

ordinary differential equations. As observed in case (d) of Figures 7-10, the chaotic behavior diminishes as the system becomes joint-

force (when all the three joints have clearance).
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Figure 7: Slider acceleration for different number of clearance joints: (a) One clearance joint between connecting rod and slider; (b) 
One clearance joint between crank and connecting rod; (c) One clearance joint between crank and connecting rod and one clearance 

joint between connecting rod and slider; (d) All three revolute joints have clearance (multiple clearance joints) 
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Figure 8: Joint reaction force for different number of clearance joints: (a) One clearance joint between connecting rod and slider; (b) 
One clearance joint between crank and connecting rod; (c) One clearance joint between crank and connecting rod and one clearance 

joint between connecting rod and slider; (d) All three revolute joints have clearance (multiple clearance joints) 
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Figure 9: Journal center trajectories for different number of clearance joints: (a) One clearance joint between connecting rod and 

slider; (b) One clearance joint between crank and connecting rod; (c) One clearance joint between crank and connecting rod and one 
clearance joint between connecting rod and slider; (d) All three revolute joints have clearance (multiple clearance joints) 
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Figure 10: Poincaré maps for different number of clearance joints: (a) One clearance joint between connecting rod and slider; (b) One 
clearance joint between crank and connecting rod; (c) One clearance joint between crank and connecting rod and one clearance joint 

between connecting rod and slider; (d) All three revolute joints have clearance (multiple clearance joints) 
 
 

Finally, it would be of interest to analyze the computation time consumed in each simulation performed in the previous 

paragraphs. Figure 11 shows the computation time utilized for different diametric clearance size and for different number of joint 
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modeled as clearance joints. From Figure 11, it can be observed that the computation time decreases when the number of clearance 

joints in the system increases, because a higher number of contact-impact events take place. Secondly, the computation time slightly 

increases when the clearance size also increases, as Fig. 11a shows. The computational simulations were performed in a Pentium 4 

(3.2GHz) computer. For this purpose, a FORTRAN code named MUBODYNA (acronym for Multibody Dynamics) was utilized. This 

program has been developed for the dynamic analysis of general planar multibody systems [75]. 
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Figure 11: Variation of the computation time consumed: (a) Diametric clearance size; (b) Number of joints with clearance 

 
 

The application of the proposed methodology to a more complex multibody system is represented by the simulation of a planar 

quick-return mechanism. This mechanism is made of six rigid bodies, one ideal revolute joint between the ground and crank, two 

perfect translational joints and four revolute clearance joints, as illustrated in Fig. 12. Due to the existence of the four revolute 

clearance joints, the system has a total of nine degrees-of-freedom. The acceleration due to gravity is taken to be in the negative Y 

direction and the system is defined as moving the XY plane. The set of data adopted for the model is listed in Table 3. 

 

Table 3: Geometric and inertia data of the quick-return mechanism 
Body Nr. Length [mm] Mass [kg] Moment of inertia [kgm2] 

2 100 0.20 0.010 
3 500 1.00 0.100 
4 - 0.50 0.025 
5 120 0.24 0.012 
6 - 0.50 0.025 
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The quick-return mechanism, which produces a slow cutting stroke of a tool and a rapid return stroke, is driven by a rotational 

motor attached to the crank rotating with a constant angular velocity of 3 rad/s. The remaining initial conditions, necessary to start the 

dynamic analysis, are obtained from the kinematic simulation of the quick-return mechanism, in which all the joints are modeled as 

ideal joints. The parameters used for the dynamic simulation are listed in Table 4. A radial clearance of 0.5 mm is used in all clearance 

joints. 

 
Table 4: Parameters used in the dynamic simulation for the quick-return mechanism 

Bearing radius 10.0 mm 
Journal radius 9.5 mm 
Restitution coefficient 0.9 
Young’s modulus 207 GPa 
Poisson’s ratio 0.3 
Integration step 0.0001 s 
Integration algorithm Runge-Kutta - 4th order 
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Figure 12: Quick-return mechanism with four revolute clearance joints 

 

 

Each clearance joint is modeled as two colliding bodies, being the journal freely to move inside the bearing boundaries. The 

occurrence of contact within the clearance joints is determined by evaluating the relative penetration at any time during the numerical 

solution of the system dynamics as 

 i i ie cδ = −      (i=1, …, 4) (14)  
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The computational modeling of the contact between journal and bearing, within the clearance revolute joints, uses continuous contact 

force model with the energy dissipation in form of hysteresis damping, given by Eq. (10). The performance of the quick-return 

mechanism is quantified by plotting the X position, velocity and acceleration components of the slider, represented by body 6. This 

allows comparing the results obtained with the current model to the dynamic behavior of the mechanism with ideal joints simulated 

with the same conditions. Figure 13 shows how the revolute clearance joints influence the position, velocity and acceleration of the 

slider. The horizontal line segments in the velocity-time curve correspond to constant slider velocity, which means that there is no 

contact between the journal and bearing surfaces while such velocity is constant. Sudden changes in the velocity are clearly associated 

with the impacts within the clearance joints, which are quite visible by the step shaped curve of the velocity diagram. Smooth changes 

in the velocity can also be observed indicating that the journal and bearing surfaces are in permanent or continuous contact, that is, the 

journal follows the bearing wall. These phenomena are also quite visible in the plots of the slider acceleration illustrated in Fig. 13c. 
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Figure 13: (a) X-position of the slider, represented by body 6; (b) X-velocity of the slider; (c) X-acceleration of the slider  
 

 

In order to better understand what occurs during the dynamic simulation of the quick-return mechanism, consider Fig. 14a, in 

which the journal center orbits inside the bearing boundaries between the journal and bearing in the revolute clearance joint that 

connects the crank and slider represented by body 4. The different types of relative motion between the journal and bearing are 

observed, namely, the free flight motion, the impact followed by rebound and the permanent or continuous contact motion. The 
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relative indentation is also visible by the points plotted outside the clearance circle of Fig. 14a. A point is plotted for each integration 

time step. The point density in Fig. 14a is quite high when the journal contacts the bearing, which means that the step size is small. 

When the journal is in free flight motion the time step is increased and, consequently, the dots plotted in the Fig. 14a are further apart. 

The slider acceleration and velocity are used to plot the Poincaré map of Fig. 14b. From the analysis of the Poincaré map of Fig.14b, it 

can be concluded that the system’s response tends to have an attractor in the measure that the plots form a closed curve. This fact can 

be explained by the low crank speed of the driving link.  
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Figure 14: (a) Journal center orbit inside the bearing boundaries; (b) Poincaré map of the slider 6 

 

CONCLUSIONS 
A general methodology for modeling and simulating of multiple revolute clearance joints in planar rigid multibody systems has 

been presented and discussed throughout in this work. The equations of motion that govern the dynamic response of the general 

multibody systems incorporate the contact forces due to the collisions of the bodies that constitute the clearance joints. A continuous 

contact force model provides the intra-joint contact-impact forces that develop during the normal operations of the mechanisms. A 

suitable model for the revolute clearance joints is embedded into the multibody systems methodology. The effect of multiple clearance 

joints is particularly studied in this paper. In general, the presented methodology is straightforward and general from computational 

view point. 

From the numerical simulations performed, it can be concluded that there are considerable changes in joint reaction forces and on 

the crank moments due to the effect of clearances. These changes are clearly associated with the peaks observed in the slider 

acceleration curves for both mechanisms analyzed. It is also important to note that the magnifications of forces and moments in the 

slider-crank mechanism as affected by revolute clearance joints essentially depend on the clearance size and number of joints modeled 

as clearance joints. From the main results obtained in this work, it can be also observed that multibody systems with clearance joints 

are known as nonlinear dynamic systems which, under certain conditions, exhibit a chaotic response. As for multiple clearances, the 

number of clearance joints is increased; it seems that the system is exposed to oscillations, until the system becomes kinematic-joint 

force. Once the system becomes mechanical-joint force, a reduction in the chaotic behavior is observed in the response of the system. 
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From the results presented here, it is found that the dynamics of the revolute clearance joint in mechanical systems is sensitive to the 

clearance size and operating conditions. With a small change in one of these parameters, the response of the system can shift from 

chaotic to periodic and vice-versa. 

Finally, it should be stated that the results presented in this paper represent an upper bound of the joint reaction forces and crank 

moments due to the existence of clearance joints, since the elasticity of bodies and lubrication action in the joints were not included in 

the analysis. These phenomena seem to have an affect and might reduce the joint reaction forces. 
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