ABSTRACT
When trying to use software agents (SAs) for real-world business and thereby putting them in a situation to operate under real-world laws, the abstractness of human regulations often poses severe problems. Thus, human regulations are written in a very abstract way, making them open to a wide range of interpretations and applicable for several scenarios as well as stable over a longer period of time. However, in order to be applicable for SAs, regulations need to be precise and unambiguous. This paper presents a case-based reasoning approach in order to bridge the gap between abstract human regulations and the concrete regulations needed for SAs, by developing and using a knowledge base that can be used for drawing analogies and thereby serves as reference for “translating” abstract terms in human regulations.

Keywords
Software Agents, Case-Based Reasoning

1. INTRODUCTION
Intelligent inter-systemic electronic contracting is a specific way of forming contracts by electronic means in such a way that contracts are concluded and perfected exclusively by the actuation and interaction of intelligent and autonomous informatics devices capable of autonomous, reactive and proactive behavior, capable of reasoning, of learning through experiences, of modifying their own instructions and, last but not least, of making decisions on their own and on behalf of others (AI and Law). In this form of contracting, an important role is played by intelligent software agents (SAs). And these may be functioned as tools controlled by humans or faced as subjects of electronic commerce, they may be seen as legal objects or as legal subjects [4, 5]. Yet, in any case, it is important to legally consider their own and autonomous will [6]. Thus, within the last years the vision of autonomous software agents conducting inter-systemic electronic contracts on behalf of their principals in the Internet has gained wide popularity and scientists have published a wide number of papers with possible application scenarios [16]. However, when thinking about these scenarios one needs to keep in mind, that the Internet (as an extension of the real-word) and all its users are affected by real-world regulations. Consequently, SAs that act on behalf of their human owners are subject to real-world regulations as well [8]. Neglecting the question of how legal acts by SAs should be interpreted, nevertheless the problem arises that SAs as actors in the Internet need to understand the legal context in which they are acting. Hence when performing legal acts for their principals, SAs need to understand the corresponding human regulations [11] in order to be able to assess when and under which circumstances a regulation is violated and when not and what punishment might follow. One possible relevant issue is the mere consideration of rules and sanctions, specially when considering the communication platforms and the relations between SAs and platforms: if SAs don’t abide by the rules, probably they may be put out of the platform and, eventually, they might even be totally destroyed or “murdered” [7]. But another important issue, especially when considering the will of the SA in legal relations, has to do with the consideration of legal rules and the possibility that SAs actually know them and adopt certain standards of behavior according to the legal rules. But is it reasonable to expect that SAs behave in accordance with legal rules? [9]

The problem that arises when SAs are to operate under real-world conditions is that human regulations are usually writ-
ten in a quite abstract way and are often open to interpretation [14]. The main reason for this is to cover a large number of cases with the same legal text and to keep regulations stable over a longer period. Thus if being formulated in an abstract way, the same legal text can be applied to several scenarios and only its interpretation needs to be adapted [26]. For instance, German regulations on the obligation in kind, e.g., obligations of a seller who has not sold a specific item, but an item of a certain kind are as follows: (§243 German Civil Code (BGB) [1]):

(1) A person who owes a thing defined only by class must supply a thing of average kind and quality.
(2) If the obligor has done what is necessary on his part to supply such a thing, the obligation is restricted to that thing.

In this case “average kind and quality” and “what is necessary” are abstract terms/actions that (on purpose) are not properly defined, so that the number of accepted ways for the debitor to fulfill his obligation(s) in kind can be extended without changing existing laws. Furthermore, the study of law itself is not a natural science but is based on hermeneutics where coherence and context are used to solve a given problem. Thus, in the example the fulfillment is linked to the contextual circumstances, leaving more room for interpretation on both sides.

As mentioned earlier, this abstraction and possibility of multiple interpretations that is positive for humans pose severe problems when trying to implement them for SAs where meaning should be precise and unambiguous. In order to tackle this problem, this paper will present a case-based reasoning (CBR) approach, in which a context depended knowledge-base is set up that can be used for terminological interpretations and comparisons by the SAs. In detail the paper is structured as follows: in order to lay the foundations for the CBR approach, related work dealing with the question of representing knowledge and regulations for SAs will be presented and compared to CBR in chapter 2. Afterwards, in chapter 3.1 CBR and its six steps will be illustrated in more detail. Last but not least, in chapter 3.2 the CBR model will the be used to analyze the example just mentioned in the last paragraph. The paper will close with a short summary and conclusion.

2. RELATED WORK

After briefly explaining the problem of “translating” abstract human regulations for SAs, in this chapter the related work will be presented. Therefore existing approaches to represent information and rules shall be analyzed. As however, a multiplicity of ways to represent information and regulations exists so far, this paper tries to classify them into 4 categories – namely rule-based systems, ontologies, semantic webs and case-based reasoning systems [13] – and will analyze the categories respectively.

2.1 Rule-Based Systems

As the name already indicates, rule-based systems, are composed of a finite number of rules. These rules normally can be formulated as conditional clauses of the following form:

If condition a holds, THEN it can be concluded that statement B is true as well. (If A then B.)

Thereby the “if”-part of the rule is called proposition or left hand side whereas the “then”-formulation is referred to as conclusion or right hand side. Besides these rules, the knowledge base in rule-based systems consists of facts. Facts, in general, are elements that can be described by a finite amount of discrete values [3]. The coherences between the elements are represented by rules. Both components, the rules and the elements, form the abstract knowledge of the rule-based system.

In order to apply the abstract knowledge to a new context, such as in the case of the context-depended “obligations in kind” mentioned in chapter 1, a detailed context description (i.e. concrete or case-specific knowledge) as well as an inference mechanism are required. Depending on the application, the inference mechanism can either be applied data-driven (forward-linked) or goal-oriented (backward-linked). In the first case, the case specific knowledge is used as initial point for the reasoning process. Starting from the fulfilled assumptions, the rules are used to infer about the truth of the concluding rules. Subsequent, the deduced facts on their part are used as initial points for the further inference process. In contrast, the goal-oriented approach uses the opposite conclusion-direction. Thus, the final situation is taken as initial point and all rules are checked by moving backwards, like in a decision tree where starting from the top-node all subjacent edges and nodes are verified (see figure 1).

![Figure 1: The tree structure of rule-based systems](image)

When judging the applicability of rule-based systems for the “translation”-problem mentioned in the introduction it has to be noticed, that although they foster a well structured analysis, they do not seem applicable. One reason for this is that in rule-base systems all possible situations (or facts) and rules need to be known in advance, leaving not only the problem of pre-definition, but this invokes such a large number of propositions and rules that need to be defined (if one wants to map everything for the SA) that the systems consistency and transparency are more then in danger.

2.2 Ontologies

Another method discussed in literature to move from abstract human regulations to concrete ones for SAs are ontologies (see [26] for example), as their formulation and usage enables programmers of SAs to separate the knowledge of
2.3 Semantic Nets

The last group of methods of solution that shall be discussed in this paper – besides CBR approaches – are semantic nets, which were first invented for computers by Richard H. Richens of the Cambridge Language Research Unit in 1956. A Semantic net is net, which represents semantic relations between the concepts. This is often used as a form of knowledge representation. It is a directed or undirected graph consisting of vertices, which represent terms and concepts, and edges that represent the relations between the terms [25] (see figure 2 for example).

By using semantic nets for concepts and terminologies, SAs are given the capability to understand and process freely drafted texts by referring to the components of the nets and their structure to one another. Although this solves one problem occurring when applying ontologies, several further problems remain. Thus, although semantic nets are appropriate for specifying fuzzy terms that consist of several elements (i.e. items with vague component specifications), it is difficult to construct semantic nets that help to define single terms that are hardly divisible such as the term “average” when referring to the kind and quality when dealing with obligations in kind.

3. CASED-BASED REASONING

As a result of the limitations of the approaches presented so far, this paper will present a mechanism that overcomes these limitations and helps to solve the translation problem introduced in chapter 1: the CBR approach. The fundamental idea of this approach is not to try to “translate” abstract terms directly, but – as done in hermeneutics – to use coherence and context to address the problem. Thereby it is assumed that similar cases normally tend to have similar solutions and similar terms normally tend to have similar meanings, even if they emerge against different backgrounds. Consequently the knowledge gained from solving earlier translation problems can be used as a first approximation when new translation problems appear [23]. A concrete case of case-based reasoning at least consists of a description of the problem (i.e. the abstract terms) and the solution found therefore (i.e. the translation in a specific context). In addition the solution to the problems can be associated with a quality assessment, or justifications why a specific solution was chosen for a specific case. The individual cases are stored in a knowledge base which can be resorted to when a new problem arises.

3.1 The 6 steps of Case-Based Reasoning

The six step CBR process model that will be used in this paper was first presented by Roth-Berghofer and Iglezakis [22] who expanded the often cited CBR model of Anmoodt and Plaza [2]. The model consists of the six steps retrieve, revise, review, retain, review and restore that are integrated into two separate phases, the application and the maintenance phase (see figure 3).
Retrieve. Given a target problem, in the first phase of the model, similar cases\(^1\) that are relevant for solving the new problem are retrieved cases from memory. A case consists of a problem, its solution, and, typically, annotations about how the solution was derived. For example, suppose an agent wants to buy a specific complex grid service (that uses CPU time, disk space and memory for its calculations) in the name of his principal. So far, however he has never bought such a service before and is no familiar with the vocabulary applied. Thus, being a novice in this area, the most relevant experience he can recall is one in which he successfully bought some virtual disk space, i.e. a resource that the service he wants to buy now consists of [12]. The procedure he followed for buying the disk space, together with the justifications for decisions made along the way, constitutes the agent’s retrieved case.

Reuse. After the retrieval of similar cases, these solutions from the previous cases have to be mapped to the target problem. This is done in the reuse-phase. The mapping itself may involve adapting the solution as needed to fit the new situation. In the grid service example, this would for example mean that the agent must adapt his retrieved solution to focus on complex services instead of “simple” resources.

Revise. Having mapped the previous solution to the target situation, the next step is to test the new solution in the real world (or a simulation) and, if necessary, revise it. Suppose the agent adapted his grid resource solution by adding the costs for the individual resources up in order to have an idea about the price for the service. After this, he discovers that the aggregated costs for the individual resources are much higher than the costs for the complex service and he offered the seller of the service to much money for it, as his cost calculation did not account for this interrelation — an undesired effect. This suggests the following revision: concentrate on market prices when trying to calculate the costs for a service and do not aggregate the costs of the individual resources instead.

By finishing the revision, the application phase (i.e. the actual problem solving) itself can be closed\(^2\). However for a CBR system to function properly the knowledge base that it is based on, needs to be sustained. This is done in the maintenance phase which consists of the three sub-phases retain, review and restore.

Retain. After the solution has been successfully adapted to the target problem, together with the resulting experience, it should be stored as a new case in the memory i.e the knowledge base. The agent, accordingly, records his new-found procedure for buying grid services, thereby enriching

\(^1\)For more information about how to retrieve similar cases and to draw analogies between them see [19] or [10] for example. They, for example, propose to use a memory that organizes experiences (cases) based on generalized episodes. These structures hold generalized knowledge describing a class of similar episodes. An individual experience is indexed by features which differentiate it from the norms of the class (those features which can differentiate it from other similar experiences). As a new experience is integrated into memory, it collides with other experiences in the same generalized episode which share its differences. This triggers two processes. Expectations based on the first episode can be used in analysis of the new one (analogy). Similarieties between the two episodes can be compiled to form a new memory schema with the structure just described (generalization)[18].

\(^2\)At first glance, CBR (and especially its application phase) may seem similar to the rule-induction algorithms of machine learning as it starts with a set of cases or training examples and forms generalizations of these examples, albeit implicit ones, by identifying commonalities between a retrieved case and the target problem. The key difference, however, between the implicit generalization in CBR and the generalization in rule induction lies in the point when the generalization is made. A rule-induction algorithm draws its generalizations from a set of training examples before the target problem is even known; that is, it performs eager generalization. In contrast, CBR starts with the target problem and delays implicit generalization of its cases until testing time.
his set of stored experiences, and better preparing him for future grid service transactions. A second purpose of the retain step is to modify the similarity measures by modifying the indexing structures. However, modifications like this should only be implemented in case-based reasoning if it is possible to track the changes or better measure the impact of those changes.

Review. The review step considers the current state of the knowledge containers and assesses their quality. For this purpose appropriate measures need to be found. In literature two fields of corresponding kinds of measures can be distinguished: syntactical measures (i.e. measures that do not rely on domain knowledge) like minimality, simplicity, uniqueness, etc. [21], and semantical measures (i.e. measures using domain knowledge) which check whether the cases are (still) relevant for example [24].

Restore. Finally, the last phase comes into play in case in the review phase it was identified that the quality level of the cases is not as desired. In this case measures to lift the quality level above the critical value are suggested and if approved are being implemented [22].

After having had a look at the CBR model and its six steps, in the next chapter, the model shall be applied to the obligation in kind example given in the introduction in order to show the CBR potentials for helping to make abstract terms understandable for SAs.

3.2 Applying the Case-Based Reasoning Approach

After explaining the general CBR approach, the question arises how it can help with “translation” abstract legal terms for SAs. To start the explanation, we would like to recall the general CBR-idea: namely the usage of coherence and context to address. As mentioned in chapter 3.1 it thereby is assumed that similar cases normally tend to have similar solutions and similar terms normally tend to have similar meanings, even if they emerge against different backgrounds. This means that in order to be applicable for the “translation” example, the SA needs a knowledge base which is filled with at least a few cases. If no similar cases exist, the SA first of all needs to be trained, meaning that it has to pass the decision to his principal who then makes that decision and gives the result to the SA who then is able to fill his knowledge container. In the opposite case, i.e. if the SA finds a similar case he then can go on by analyzing which decisions where made in this case an why. A similar case in the “translation” example might for example be a case with a paragraph using similar formulations such as §241a. Although this paragraph has got a different context (i.e. it deals with unsolicited performance issues), it nevertheless can help the SA in understanding the new problem, i.e. the content of §243 of the German Civil Code as the phrases used are partly the same (especially with regard to the quality terminology). Another example of a similar case would be transactions that included §243 of the German Civil Code which the SA has concluded before. Starting from these similar cases, in the next step, the SA is to analyze the similarities between his new problem and the old cases. Thereby he has to include the context of the cases in its reasoning. Finally, if a decision is made concerning the interpretation or the translation of the new terms, the mapping needs to be tested in reality. This can either be done by the software agent sending its decision to its principal for validation purposes or by closing the deal and waiting for the outcome (which is than checked against the expected outcome). Finally, after the “translation”-problem is being solved and the outcome is clear in a next step, the quality of the new solution needs to be assessed. This is either done by comparing the achieved result with the expected one or by transferring the evaluation to the principal how can make more elaborate decision. Afterwards the SA can decide whether to include this new case in the knowledge base or not. Normally it will choose to do so if the new case expands its knowledge base in a sensible way, e.g. if it has not stored any cases concerning the vocabulary of §243 of the German Civil Code before. This knowledge adaption is completed by maintaining the knowledge base. Thus in the legal context it might happen that a paragraph or a law is changed or interpreted differently in the course of time.

4. CONCLUSIONS

As mentioned in chapter 1, when wanting to move to “intelligent inter-systemic electronic contracting” where intelligent software agents conclude contracts on behalf of their human owners many challenges need to be overcome. One of them is the problem of the abstractness of human regulations. The paper presented several approaches that can be found in literature (e.g. ontologies, etc.) trying to tackle the problem, which however have several drawbacks and consequently may not be the best choice. That is why the paper presented the CBR reasoning concept and explained how it could help to solve the problem. In contrast to many other approaches, CBR has the advantage of being applicable even of the new problems to be solved (e.g. the understanding of new abstract terms)\(^3\), if the problem is badly structured or described incompletely, if the knowledge base starts with a relatively small number of cases or if the rules between the different components are not all known [17, 20]. For this reason and due to its relative simplicity, in the view of the authors, it is well suited for addressing the “translation”-challenges laying ahead and should be researched in more detail.

5. REFERENCES

\(^3\)Although CBR reasoning can be applied if only a small knowledge base is available, the more cases it can build on the better it tends to work.

