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Abstract. Extrusion scale-up consists in ensuring identical thermo-mechanical 
environments in machines of different dimensions, but processing the same 
material. Given a reference extruder with a certain geometry and operating 
point, the aim is to define the geometry and operating conditions of a target 
extruder (of a different magnitude), in order to subject the material being 
processed to the same flow and heat transfer conditions, thus yielding products 
with the same characteristics. Scale-up is widely used in industry and academia, 
for example to extrapolate the results obtained from studies performed in 
laboratorial machines to the production plant. Since existing scale-up rules are 
very crude, as they consider a single performance measure and produce 
unsatisfactory results, this work approaches scale-up as a multi-criteria 
optimization problem, which seeks to define the geometry/operating conditions 
of the target extruder that minimize the differences between the values of the 
criteria for the reference and target extruders. Some case studies are discussed 
in order to validate the concept. 
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1   Introduction 

Scale-up is very often the action of defining the geometry and operating conditions of 
a machine that reproduce the working conditions of another of the same type and of 
different size, but processing the same material.  This is a procedure of great practical 
importance. For example, in the case of polymer extrusion, scale-up rules are used to 
design large extruders using the results of studies performed on laboratory-scale 
machines. Extrapolating know-how instead of performing research on large-output 
machines allows for significant time savings [1-3]. 

Scale-up rules were proposed over several decades by different researchers, 
namely Carley and McKelvey (1953), Maddock (1959), Pearson (1976), Yi and 
Fenner (1976), Schenkel (1978), Chung (1984) and Rauwendaal (1986) [1-3]. These 
studies used analytical process descriptions to correlate large and small primary 
scaling variables (diameter, channel depth, screw length and screw speed) simply in 



terms of an exponent of their diameter ratio. However, since plasticating extrusion is a 
complex process involving solids conveying, melting of these solids and melt 
conveying, as well as other related phenomena such as mixing, such correlations only 
hold when a single process criterion is kept constant, e.g. constant melt flow shear 
rate, or constant melting rate. This was recognized in the reviews prepared by 
Rauwendaal (1987) and Potente (1991) [2, 3], who anticipated unbalanced solids and 
melt conveying rates when applying most of the rules available.  

A more performing scaling-up methodology is therefore needed. It is important to 
consider simultaneously several process criteria and, since they are often conflicting, 
to know the degree of satisfaction eventually attained. Flexibility in terms of the 
criteria selected is also important, in contrast with the available methods that provide 
relations for specific performance measures. Thus, it makes sense to consider 
extrusion scale-up as a multi-objective optimization problem, where the purpose is to 
define the geometry/operating conditions of the target extruder that minimize the 
differences between the values of the criteria for the reference and target extruders. 
This work applies a Multi-Objective Evolutionary Algorithm (MOEA) methodology, 
previously developed by the authors, to perform that task. Rather than selecting the 
best optimization method, the aim here is to characterize the problem and ascertain 
the level of success of the solutions proposed. 

The text is organized as follows. In section 2 we present the optimization 
methodology (which uses a MOEA) and the process modelling routine, both 
developed by the authors. Section 3 discusses one scale-up example, which is 
presented and solved. Finally, section 4 proposes some conclusions. 

2   Multi-Objective Scale-Up 

2.1   Optimization Methodology  

As stated above, extrusion scale-up consists in extrapolating the behaviour of a 
reference extruder to another of the same type, but of different size (denoted as target 
extruder). Thus, we know the geometry and processing conditions of the reference 
extruder and wish to define either the operating conditions (if the machine exists), or 
the geometry and operating conditions (if it is to be built/purchased) of the target 
extruder, in such a way that the major performance measures of both machines are as 
similar as possible. This is seen here as an optimization problem where we seek to 
determine the geometry/operating conditions of the target extruder that minimize the 
differences in performance in relation to the reference extruder.  

The multi-objective scale-up optimization methodology proposed includes the 
following steps: 

 
1- Use the process flow modelling routine to predict the responses of the reference 

extruder under a specific set of operating conditions and polymer system; 



2- Analyse the results and define the most important parameters to be used for 
scale-up;  

3- Organize known information on target extruder (geometry: screw external 
diameter and length/diameter ratio; operating range: screw speed, set 
temperatures); 

4- Perform scale-up via minimization of the differences in performance between 
the two extruders (optimization criteria). 

 
The method requires three basic routines: a modelling package, a multi-objective 

optimization algorithm and a criteria quantification routine (see Figure 1). The 
algorithm defines automatically the (increasingly more performing) solutions to be 
used by the modelling routine. The parameter values obtained from the latter serve as 
input data to the criteria quantification routine, which compares them with the 
equivalent ones for the reference extruder. This information is supplied to the 
optimization routine, which defines new improved solutions to be evaluated, the 
process being repeated until a stop criterion is reached. 
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Fig. 1. Scale-up optimization methodology. 

2.2   Multi-Objective Evolutionary Algorithms  

During the last decade Multi-Objective Evolutionary Algorithms (MOEA) have been 
recognized as a powerful tool to explore and find out approximations to Pareto-
optimal fronts in optimization problems [4, 5]. This is essentially due to their capacity 
to explore and combine various solutions to find the Pareto front in a single run and 
the evident difficulty of the traditional exact methods to solve this type of problems.  

In a multi-objective algorithm the solution space is seen as sets of dominated and 
non-dominated points. These are solutions at least as good as the remaining with 



respect to all objectives, but strictly better with respect to at least one objective, i.e., 
one solution point dominates another when it is equally good in every objective and 
formally better in at least one objective [4]. Since in MOEA the various criteria (or 
objectives) are optimized simultaneously, each individual solution belonging to the 
Pareto set establishes a compromise between all criteria. An efficient MOEA must 
distribute homogeneously the population along the Pareto frontier and improve the 
solutions along successive generations.  

In this work, the Reduced Pareto Set Genetic Algorithm with elitism (RPSGAe) is 
adopted [6,7]. Initially, RPSGAe sorts the population individuals in a number of pre-
defined ranks using a clustering technique, in order to decrease the number of 
solutions on the efficient frontier, while maintaining its characteristics intact. Then, 
the individuals’ fitness is calculated through a ranking function. To incorporate this 
technique, the algorithm follows the steps of a traditional GA, except that it takes on 
an external (elitist) population and a specific fitness evaluation. Initially, the internal 
population is randomly defined and an empty external population is formed. At each 
generation, a fixed number of the best individuals, obtained by reducing the internal 
population with the clustering algorithm [6], is copied to the external population. This 
process is repeated until the number of individuals of the external population is 
complete. Then, the clustering technique is applied to sort the individuals of the 
external population, and a pre-defined number of the best ones is incorporated in the 
internal population, replacing the less fit individuals. Detailed information on this 
algorithm can be found elsewhere [6, 7]. 

2.3   Single Screw Extrusion Modelling Routine  

Extrusion is a process whereby a molten polymer is forced to flow continuously 
through a die of a given shape, thus yielding a product with a constant cross-section 
(Figure 2). Despite the apparent simplicity of both machine and procedure, some 
basic functions must be accomplished if the product is to exhibit good performance. 
Process continuity is ensured by using an Archimedes-type screw, rotating inside the 
heated barrel at constant speed. Some screw geometric features and proper selection 
of barrel temperatures determine the most appropriate sequence of solid polymer 
conveying in the initial screw turns, progressive melting of this material, melt 
conveying with pressure generation and flow through the die [1, 7]. These individual 
stages are also illustrated in Figure 2. Their characteristics are described 
mathematically by a set of differential flow equations, which are coupled by 
appropriate boundary conditions to provide a global plasticating model that is solved 
numerically.  

The vertical pressure profile in the hopper is computed to set an initial condition at 
the extruder entrance. In the initial screw turns, we assume the linear displacement of 
an elastic solid plug subjected to increasing temperature due to the combined 
contribution of friction dissipation and heat conduction from the surrounding metallic 
surfaces. Delay (i.e., beginning of melting) is sub-divided into the initial existence of 
a melt film separating the solids from the barrel, followed by encapsulation of the 
solids by melt films. Melting follows a mechanism involving 5 distinct regions, one 
being the melt pool, another the solid plug and the remaining melt films near to the 



channel walls. Melt pumping and die flow were modelled considering the non-
isothermal flow of a non-Newtonian fluid. Calculations are performed in small screw 
channel increments, a detailed description being given elsewhere [7, 8]. 
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Fig. 2. Single screw extrusion: the machine, physical models and results of the modelling 
routine. 

2.4   Scale-Up Criteria  

For scale-up purposes, it makes sense to define two types of criteria. The first deals 
with single value parameters such as power consumption (E), specific mechanical 
energy (energy consumption per unit output, SME), output (Q) or degree of mixing 
(weight average total strain, WATS), which are illustrated in the radar plot of Figure 2 
and provide an overview of the extruder behaviour under a specific set of input 
conditions. Within the same type, other criteria could be selected, such as well-known 
adimensional numbers like Cameron, Peclet or Brinkman, which account for 
temperature development, relative importance of convection and conduction and 
extent of viscous dissipation, respectively, thus estimating complementary aspects of 
the thermo-mechanical environment. The second type of criteria deals with the 
evolution of certain parameters along the screw, such as melting (solid bed, X/W), 
pressure (P), shear rate (γ& ) and temperature (T) axial profiles. The following 



equations are used to define the objective functions for single values and profile 
parameters, respectively (see Figure 3): 
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where Fj is the fitness of criterion j, Cj and Cj

r are the values of criterion j (single 
values) for the target and reference extruders, respectively, and Cj,k and Cj,k

r are the 
values of criterion j on location k (along the extruder) for the target and reference 
extruders, respectively.  

1   2    3   .............................................. K

r
k,jC

kjC ,jC jF

r
k,jk,j

r
jj CCCC −− or1   2    3   .............................................. K

r
k,jC

kjC ,jC jF

r
k,jk,j

r
jj CCCC −− or

 

Fig. 3. Definition of the fitness of a criterion. 

3   Scaling-Up Single Screw Extruders 

3.1   Example 

Using as reference a laboratorial extruder with a diameter of 30 mm and as target an 
extruder with a diameter of 75 mm (see table 1 and Figure 4), we wish to perform 
scale-up in terms of operating conditions. Data for the reference extruder was 
obtained using a screw speed (N) of 50 rpm and a uniform barrel temperature profile 
(Ti) of 190 ºC. The range of variation of the target extruder parameters is: N [10-200] 



rpm; Ti [170-230] ºC. Data from polypropylene (NOVOLEN PHP 2150 from BASF) 
is adopted for the computational work.  

 

Table 1.  Geometry of the extruders used for scale-up.  

D (mm) L/D L1 /D L2 /D L3 /D Compression 
ratio 

75 30.0 10.0 10.0 10.0 3.3 
30 30.0 10.0 10.0 10.0 2.5 
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Fig. 4. Parameters required to describe the extruder geometry and operating conditions. 

3.2   Results and Discussion  

Figure 5 shows the results of the optimization when the various criteria were 
considered individually. A distinct set of operating conditions is proposed for each 
criterion. The smaller the value of the objective function the more successful the 
scale-up is. As expected, scaling-up using criteria related to machine size (output, 
power consumption) becomes difficult for considerable diameter ratios (in this case, 
2.5). However, the use of constant values or functions related to flow characteristics 
(e.g., relative melting rate, average shear rate, average shear stress, viscous dissipation 
and adimensional numbers) is quite successful.  

Figure 6 assesses the degree of satisfaction of the remaining criteria, when a 
specific single criterion is analysed. Shear rate, shear rate profile and Cameron 
number were selected for this purpose. Not surprisingly, optimization of a single 
criterion is feasible, but has little value in terms satisfying simultaneously other 
important performance measures which, in many cases, are conflicting. 

The advantages of multi-criteria optimization were tested with three examples. The 
first considers three criteria, average shear rate, C1, WATS, C2, and viscous 
dissipation, C3. The second example deals with the simultaneous optimization of C1, 
Cameron number, C4, and melting profile, C5. Finally, the third example includes all 
criteria C1 to C5. 
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Fig. 5. Scaling-up for operating conditions using individual criteria. 
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Fig. 6. Influence of the optimal operating conditions for shear rate, shear rate profile and 
Cameron no. on the satisfaction of the remaining criteria. 

The results are shown in Figure 7 and Table 2. The figure presents the 3-
dimensional Pareto surface for example 1, where criteria C1, C2 and C3 were 



optimized concurrently. The solutions identified as 1, 2 and 3 represent the best ones 
to minimize C1, C2 and C3, respectively. Solution S minimizes the average of the 3 
criteria, i.e., it yields a good compromise between the three criteria. Table 2 shows the 
operating conditions resulting from the solutions proposed for the three examples, the 
values of the 5 criteria (columns F1 to F5, but in examples 1 and 2 only three criteria 
were considered in the optimisation run) and the average F for solution S. When 5 
criteria are optimised simultaneously a better solution is found, despite of the 
conflicting nature of some of the extruder responses. 
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Fig. 7.  Pareto frontiers for example 1. 

4   Conclusions 

The methodology proposed for extrusion scale-up is able to consider simultaneously 
various criteria and to take into account their relative importance. It can be applied to 
the scale-up of either operating parameters and/or geometry. Moreover, the efficiency 
of the scaling-up can be easily assessed by monitoring the implication of the exercise 
on the satisfaction of other process measures.  

This methodology can be easily extended to other polymer processing 
technologies, as long as sufficiently precise modelling routines are available. 



Table 2.  Optimization with multiple criteria.  

Criteria Point N 
(rpm) 

T1 
(ºC) 

T2 
(ºC) 

T3 
(ºC) F1 F2 F3 F4 F5 F 

1 32.3 202.4 224.6 227.6 0.00 0.31 0.01 0.66 0.01  
2 39.7 211.6 219.3 213.1 0.25 0.16 0.01 0.06 0.13  
3 44.1 225.9 201.2 170.6 0.40 0.52 0.00 0.02 0.17  

C1,C2, 
C3 

S 32.3 202.4 224.6 227.6 0.00 0.31 0.01 0.66 0.01 0.20 
1 32.3 226.1 200.9 213.5 0.00 0.31 0.01 0.66 0.01  
2 40.5 224.1 189.5 206.2 0.27 0.43 0.01 0.00 0.16  
3 34.4 223.2 200.5 199.7 0.06 0.31 0.01 0.68 0.00  

C1, C4 
C5 

S 39.3 174.8 198.9 184.6 0.22 0.46 0.01 0.08 0.13 0.18 
1 32.3 202.4 220.7 186.4 0.00 0.31 0.01 0.66 0.01  
2 36.9 190.6 216.3 196.4 0.15 0.10 0.01 0.43 0.15  
3 44.1 189.8 220.4 181.5 0.40 0.52 0.00 0.02 0.17  
4 41.8 198.2 194.0 189.0 0.32 0.46 0.01 0.00 0.17  
5 34.4 184.2 198.7 198.7 0.07 0.31 0.01 0.68 0.00  

C1 to C5 

S 36.9 190.6 216.3 196.4 0.15 0.10 0.01 0.43 0.15 0.17 
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