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Abstract

Biological denitrification using a pure culture ofAlcaligenes denitrificanswas investigated in a closed rotating
biological contactor, which operated with a hydraulic retention time of 2 h, a carbon/nitrogen ratio of 2:1, with
a dissolved O2 concentration below 6 mg l−1 and under three different phosphate concentrations.Alcaligenes
denitrificanswas not repressed by O2 limitation and the removal of nitrate was about 30% more efficient at the
intermediate phosphate concentration (20 mg P l−1).

Introduction

Biological processes for nitrogen removal are impor-
tant in wastewater treatment for removal of nitrogen
compounds that otherwise result in eutrophication, al-
gal blooms and oxygen depletion (Okabeet al. 1997).
These compounds are normally removed in two steps.
The first step is aerobic and involves the oxidation of
ammonia to nitrate by autotrophic bacteria (nitrifica-
tion). In the second step (denitrification), nitrate is re-
duced via nitrite to nitrous oxide and finally to nitrogen
gas, which is a harmless gas. Initially, this process was
considered to be strictly anoxic (Payne 1973), with O2
below 0.5 mg l−1 (van der Hoeket al. 1994). However,
with a certain number of bacteria, denitrification oc-
curs even in the presence of O2 (Lukow & Diekmann
1997). Heterotrophic denitrifying bacteria require an
organic carbon source and methanol has been the most
widely used (Monteithet al. 1980). More recently, it
became important to use carbon sources compatible
with the standards imposed for drinking water. Thus,
citrate and acetate are being used increasingly. Never-
theless, microbial growth is regulated by other factors,
the availability of phosphorous (usually as phosphate)
being one of the most important. So, in order to
prevent an excessive increase in suspended biomass

and for environment protection (phosphorous, beside
nitrogen, is the main eutrophication agent) and eco-
nomic reasons, it is important to study the optimal
concentration of phosphate necessary to the denitri-
fication process. The conventional technologies used
for biological nitrogen removal are activated sludge
systems, oxidation ditches and sequencing batch re-
actors (Kornaros & Lyderatos 1997). The use of a
closed rotating biological contactor is a relatively new
biological wastewater treatment process. It combines
advantages of the aerobic rotating biological contactor
(high biomass concentration, short hydraulic retention
time, low energy consumption, operational simplic-
ity) and the anaerobic process (low quantities of waste
biological solids) (Luet al. 1997).

The objective of the present work was to study
the effect of phosphorous concentration in the deni-
trification process, in such a closed rotating biological
contactor under a dissolved O2 concentration below
6 mg l−1 and a carbon/nitrogen molar ratio of 2:1.
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Fig. 1. Schematic diagram of the anoxic rotating biological contactor.

Materials and methods

Experimental apparatus

The experimental set-up was a closed rotating bi-
ological contactor single-stage system consisting of
13 poly-methylmethacrylate disks (diam.= 23.4 cm)
mounted in a rotating shaft, having a total volume
of 15.5 l. The submergence of the disks was 96%.
The reactor was covered and sealed, but operated al-
ways with dissolved O2 concentrations up to 6 mg l−1

(it was not taken any precaution in order to maintain
anaerobic conditions). The rotational speed was 2 rpm
and the temperature was maintained around 26◦C
by means of a water jacket. A schematic description
of the reactor is illustrated in Figure 1. The reactor
was operated with a hydraulic retention time of 2 h
and fed with a synthetic medium containing 50 mg
N-NO3 l−1, using citrate as the carbon source.

Start-up of the RBC

The reactor was inoculated with 600 mlAlcali-
genes denitrificans(0.5 × 108 cell ml−1). For the
initial formation and accumulation of the biofilm,
the reactor was operated in batch mode for a
week. After this period, it was fed continu-
ously with a synthetic wastewater: 408 mg l−1

C6H5Na3O7 · 2H2O (tri-sodium citrate-di-hydrate),
361 mg l−1 KNO3, 24.2 mg l−1 NaMoO4 · 2H2O,
5.6 mg l−1 FeSO4 · 7H2O, 0.81 mg l−1 MnCl2 · 2H2O,
51.5 mg l−1 CaCl2 · 2H2O, 409 mg l−1 MgSO4 · 7H2O
and a variable concentration of K2HPO4 and KH2PO4
in order to obtain three different concentrations (200,
20 and 2 mg P l−1). Due to the medium buffering ca-
pacity, no pH adjustment was performed. It should be
stressed that the medium used represents a ratio C/N=
2:1, which is slightly higher than the theoretical value
of 1.86:1. This last value is obtained considering the
approach of McCartyet al. (1969), taking the synthe-
sis of bacterial cells into consideration. However, it is
also necessary to consider that some carbon will be
used for the deoxygenation of the medium.

Experimental procedure

During the course of continuous operation, parameters
such as pH, temperature, dissolved oxygen (DO), bio-
mass concentration, total and volatile solids, nitrate,
nitrite and citrate concentration, were measured. For
the determination of nitrite, nitrate and citrate ions the
sample was filtered through a 0.2µm membrane filter
in order to remove interfering suspended particles.
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Analytical methods

Citrate and nitrate concentrations were measured
by HPLC in an organic acids column (Chrompack,
300 mm × 6.5 mm). Nitrite was determined
by a colorimetric method usingN-(1-naphthyl)-
ethylenediamine (Clesceriet al. 1989).

Results and discussion

In the first run the reactor was fed with phosphate
at 200 mg P l−1. This was the highest concentra-
tion assayed. As it is not easy to find information on
denitrification withAlcaligenes denitrificans, the basis
for selecting this value was a study performed in a
chemostat with different denitrifying strains, namely
Alcaligenes faecalis(Robertsonet al. 1989). With this
amount of phosphorous there was an excessive bio-
mass growth, leading to a complete clogging of the
reactor. It should be stressed that 200 mg P l−1 is
still slightly lower than the concentration proposed
by Robertsonet al. (1989) (211 mg P l−1). Other
authors suggest an optimal concentration of phospho-
rous in a significantly lower range: 0.15–0.18 mg l−1

(Richard & Leprince 1982). However, a study withAl-
caligenes denitrificansin a fluidised bed reactor, using
0.16 mg P l−1 showed that this was not enough for
the microorganism to denitrify; 95% of denitrifying
activity was obtained with 1.14 mg P l−1 (Alves &
Vieira 1998). So, it was decided to start another run
with phosphate at 2 mg P l−1. Under this condition
the nitrate removal was higher than with phosphate
at 200 mg P l−1 (Figure 2). In terms of carbon re-
moval it was similar in both situations (Figure 3).
However, the higher nitrate removal was not accom-
panied by the formation of gaseous nitrogen (results
not shown), but either by undesirable accumulation of
nitrite (Figure 4). Such accumulation can lead to inhi-
bition of the bacterial development (Constantinet al.
1996). Moreover, a high nitrite concentration has a
toxic effect in human health. In order to reduce the for-
mation of nitrite the phosphorous concentration was
increased tenfold in the 23rd day of operation (start-up
with phosphate at 2 mg P l−1). All the other opera-
tional conditions were kept constant. In this situation
the nitrate removal was similar to that obtained with
phosphate at 2 mg P l−1, attaining an average value
of 90%. Nevertheless, the accumulation of nitrite was
drastically lowered, indicating a good performance of
the reactor in this operating conditions (C/N= 2 and
phosphate at 20 mg P l−1).

Fig. 2. Effect of different phosphorous concentrations on the carbon
removal.×, Phosphate at 200 mg P l−1; �, phosphate at 2 and
20 mg P l−1 (after 23rd day).

Fig. 3. Effect of different phosphorous concentrations on the ni-
trate-nitrogen removal.×, Phosphate at 200 mg P l−1;�, phosphate
at 2 and 20 mg P l−1 (after 23rd day).

As can be seen in Figure 5, the pH was always
between 7 and 8.2, which is the optimum range for
biological denitrification (Wanget al. 1995). As it
was expected, the pH was lower and steadier when

Fig. 4. Nitrite-nitrogen profile.×, Phosphate at 200 mg P l−1; �,
phosphate at 2 and 20 mg P l−1 (after 23rd day).
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Fig. 5. pH profile.×, Phosphate at 200 mg P l−1; �, phosphate at
2 and 20 mg P l−1 (after 23rd day).

the phosphorous concentration is greater, due to the
buffering capacity of phosphate.

Conclusions

Probably it might be possible to optimize the phospho-
rous concentration in the range 2–20 mg l−1. However,
the closed rotating biological contactor showed an ef-
ficient performance in terms of denitrification working
with a carbon/nitrogen ratio of 2:1 and with phosphate
at 20 mg P l−1. For such a phosphorous concentration
there is some confidence that no nitrite accumulation
will occur.
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