


Abstract—This paper presents an approach to the
automatic detection of small bowel tumors by
processing endoscopic capsule images. The most
significant texture information is selected by using
wavelet processing and captured in the image
domain from an appropriate synthesized image.
Co-occurrence matrices are used to derive texture
descriptors by modeling second order statistics of
color image levels. These descriptors are then
modeled by using third and fourth order moments
in order to cope with distributions that tend to
become non-Gaussian especially in some
pathological cases.  The proposed approach is
supported by a classifier based on radial basis
functions procedure for the characterization of the
image regions along the video frames. The whole
methodology has been applied on real data and
shows that higher order moments can be effective
in modeling capsule endoscopic images regarding
tumor detection.

I. INTRODUCTION

Conventional endoscopy presents some important
limitations in the diagnosis of small bowel
problems, since it is limited to the upper
gastrointestinal (GI) tract, at the duodenum, and to
lower GI tract, at terminal ileum. Therefore, prior to
the invention of wireless Capsule Endoscopy (CE),
the small intestine was the conventional
endoscopy’s last frontier, because it could not be
internally visualized directly or in entirely by any
method [1]. Due to the referred limitations, a very
significant part of the small intestine, which has a
medium length of six meters, is not seen by these
conventional techniques.
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The conventional endoscopy diagnosis procedure
consists in an exam that uses a flexible
endoscope, with a video camera in the distal tip, to
acquire intra-corporeal images from the GI tract.
The endoscope is introduced through the mouth
(upper GI endoscopy) or trough the rectum (lower
GI endoscopy), into the body passively by pushing
it from outside. The motion of the tip of the
endoscope is controlled by the operating physician
by manipulating wires in the shaft of the
endoscope from outside of the human body. In GI
tract, great skill and concentration are required for
navigating the conventional endoscope because of
its flexible structure. Discomfort to the patient and
the time required for diagnosis heavily depend on
the technical skill of the physician and there is
always a possibility of the tip of the endoscope
injuring the walls [2].

In 2000, the development of capsule endoscopy
opened a new chapter in small bowel examination,
allowing the visualization of the entire GI tract,
reaching places where conventional endoscopy is
unable to. CE is a simple, non-invasive procedure
that is well accepted by the patient and can be
performed on an outpatient basis. The introduction
of CE also represented the first major technological
innovation in GI diagnostic medicine since the
flexible endoscope [1]. More recently, a new
technique, the double-balloon enteroscopy (DBE),
has been introduced into clinical practice [3]. DBE
has the potential to examine the entire length of
the small bowel with biopsy and therapeutic
capability. However it is a time consuming
procedure that requires specialist training for the
operating physician. Therefore CE can be used as
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a first line diagnosis method, while DBE can be
used as a confirmatory or therapeutic modality for
lesions first visualized by CE [4].

The first commercially-available wireless video
capsule was the M2ATM ( by Given Imaging Ltd.,
Yoqneam, Israel), a pill-like wireless capsule
(11mm×26 mm), which contains a miniaturized
camera, a light source and a wireless circuit for the
acquisition and transmission of signals [5]. The
capsule is passively propelled trough the entire GI
tract, capturing images at a rate of two frames per
second. Image features include a 140° field of
view, 1:8 magnification allowing visualization of
individual villi, 1–30 mm depth of view, and a
minimum size of detection of about 0.1 mm. By the
time battery power expires after about 8 hours, the
camera will have captured about 55,000 images,
which are transmitted to the hard drive in a belt
worn by the patient [6]. The capsule is excreted in
the patient’s stool, usually within 24–48 h, and not
reused [4].

Unlike conventional endoscopy, no drugs are
administered to the patient and air insufflation is
not neeeded. This might make the test more
sensitive, as drug-induced drops in blood pressure
or air tamponade (that is, compression of the blood
vessels within the bowel lumen by insufflated air),
which frequently occur during conventional
endoscopy, can make it difficult to visualize small
bleeding vessels. Some investigators maintain that
use of the capsule camera is a more ‘physiological’
form of endoscopy [6]..

Currently, the M2ATM capsule was replaced by the
PillCamTM SB, an endoscopic capsule optimally
design for small bowel data acquisition. Given
Imaging has also endoscopic capsules best suited
to esophagus and colon analysis (PillCamTM ESO
and PillCamTM COLON). Olympus Corporation has
also launched an endoscopic capsule for the study
of the small bowel [1]. The time required to a
physician to analyze the resulting video is, on

average, 40-60 min[4]. Since this task requires
complete concentration from the reader, being,
nevertheless, prone to errors, and is time
consuming, there is the need to develop computer
systems to support the medical diagnosis. Note
also that having an expert physician analyzing, for
a long period, a capsule endoscopic exam is also
very costly, and, therefore, exists an important
economic opportunity to develop a computer
assisted diagnosis tool to this task.

After the introduction of CE, it was discovered that
that the prevalence and malignancy rates for small
bowel tumors are much higher than previously
reported and that the early use of CE can lead to
earlier diagnoses and reduced costs, and hopefully
prevent cancer [1]. A small bowel tumor is
diagnosed in approximately 2.5–9% of patients
submitted to CE, indicating that the frequency of
these neoplasms is considerably higher than was
previously thought. At least 50% of small intestine
tumors identified with CE are malignant [4].
However, the early diagnosis of small bowel tumor
is difficult, because signs are vague and laboratory
tests are unhelpful [7]. There are no specific
symptoms for benign or malign small bowel tumors
and, normally, they are detected in advanced
stages, due to mechanical obstruction of the GI
tract. However, obscure GI bleed can be an earlier
symptom and a key factor for an early diagnosis of
these lesions [1].   Small bowel tumors are a
significant finding at CE and are often missed by
other methods of investigation. Note that, even in
malignant lesions, treatment is potentially curative
in the absence of metastatic disease.

The automatic detection of abnormalities can be
based in alterations in the texture of the small
intestine mucosa. Maroulis et al. [8][9] proposed
two different methods based in the analysis of
textural descriptors of colonoscopy videos wavelet
coefficients. The first uses second-order statistical
features that are calculated on the wavelet domain



of each image, at the bands 1,2,3 of the wavelet
transform. The second is based on the covariance
of second-order textural measures in the wavelet
domain, namely in the bands 4,5,6. In the work of
Abyoto et al.[10] has been observed that the
textural information is localized in the middle
frequencies and lower scales of the original signal.
Kodogiannis et al.[2] proposed two different
schemes to extract features from texture spectra in
the chromatic and achromatic domains, namely a
structural approach based in the theory of formal
languages, where a textured image is considered a
sentence in a language, of which the alphabet is a
set of texture primitives called textons, constructed
in accordance with a certain grammar determining
the layout of such texture primitives within a
pattern. In Kodogiannis et al.[2] work is also
proposed a statistical approach, where statistical
texture descriptors are calculated from the
histograms of the RGB and HSV color spaces of
CE video frames. In authors previous work
[11][12], are proposed different  classification
schemes for capsule endoscopic video frames
based in statistical measures taken from texture
descriptors of co-occurrence matrices, using the
discrete wavelet transform to select the bands with
the most significant texture information for
classification purposes. In previous investigation, it
was observed that abnormal capsule endoscopic
images tend to present non-Gaussian distributions
of the texture descriptors, while normal frames
present a normal distribution of these descriptors.
Therefore, the Gaussianity of the co-occurrence
matrices texture descriptors may be the used in as
features in a classification scheme to identify
abnormal frames.

The proposed methodology in the present paper
focus the feature extraction process from the
endoscopic capsule video frames, with a method
based in higher order statistic evaluation of texture
descriptors taken from co-occurrence matrices,
calculated for an image reconstructed from the

wavelet coefficients of the selected wavelet bands,
which contain the most important texture
information for classification purposes. The
proposed approach is performed in the HSV color
space.  These features are the input of a radial
basis functions (RBF) neural network, in a
classification scheme used to classify real data
from Hospital dos Capuchos patients.

II. FEATURES EXTRACTION

The proposed method relies on a color textural
features extraction process based in textural
analysis. Since the low-frequency components of
the images do not contain major texture
information, the most important bands in the
wavelet transform are those in which are present
medium and high frequency, texture encoding,
information. To reduce the final number of
features, a new image is synthesized from the
selected wavelet coefficients, where the new
image contains only the vital texture information
from the selected wavelet bands. Thus the
synthesized image contains the significant textural
information present in the wavelet decomposed
sub-images. The texture descriptors are calculated
over the co-occurrence matrix calculated from the
new image synthesized from the selected wavelet
coefficients, for every color channels. These are
statistical descriptors that contain second order
color level information captured from the co-
occurrence matrix, which are mostly related to the
human perception and discrimination of textures.
With color level information we intend to mean
color intensity. Since human perception is a
complex pattern identification process, it is
proposed the correlation between the descriptors,
using higher order statistics to correlate the texture
data present in the three color channels, as well as
non-Gaussianity identification in the texture
descriptors of each color channel.

Texture can be roughly classified as fine, course,
grained, smooth, etc and consists of texture



primitives or elements, sometimes called textons.
However, primitives are hard to define. Primitives
for the checkered textile or fabric, can be defined
by at least two hierarchical levels, where the first
corresponds to textile checks of knitted stripes
while the second corresponds to the finer texture of
the fabric or individual stitches. Therefore texture
description is scale dependent. The wavelet
transform is perhaps the most appropriate tool for
scale dependent signal analysis.

Texture can be, however, more precisely defined
to make machine recognition possible. Tone and
structure of a texture are features that help to
define more precisely textures [13]. Tone is based
mostly in pixel intensity properties in the primitive,
while structure is the spatial relationship between
primitives. Repeated occurrence of some color
level configuration can constitute an interesting
texture description, since rapid variations with
distance define fine textures while slowly variations
define coarse textures. Co-occurrence matrices
encode precisely this information and can be used
to extract statistical descriptors for texture
classification and pattern recognition systems
based on textural descriptors. The statistical model
is usually built by estimating the second order joint-
conditional probability density function f(i,j,d,θ),
which is computed by counting all pairs of pixels at
distance d having pixel intensity of colour levels i
and j at a given direction θ. The angular
displacement used is the set {0, π/4, π/2, 3π/4}. It
is considered only 4 statistical measures among
the 14 originally proposed [13]. They are angular
second moment (F1), correlation (F2), inverse
difference moment (F3), and entropy (F4),
representing the homogeneity, directional linearity,
smoothness and randomness of the co-occurrence
matrix, defined respectively as:
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where p(i,j) is the ijth entry of normalized co-
occurrence matrix, N the number of levels of the
synthesized image and μx, μy, σx, σy are the means
and standard deviations of the marginal probability
px(i) obtained by summing up the rows of the
matrix p(i,j).

In the ambit of this paper these features were
obtained from pre-processed images, which are
synthesized from source images where information
not relevant for texture analysis was discarded.

II.1- Image pre-processing

The image pre-processing stage synthesizes an
image containing only the most relevant textural
information from the source image. The most
relevant texture information often appears in the
middle frequency channels [14]. Texture is the



discrimination information that differentiates normal
from abnormal lesions, regarding colorectal
diagnosis [8], [9], [15] and [16], hence it is likely to
be extrapolated to small bowel diagnosis with
similar characteristics.

The wavelet transform allows a spatial/frequency
representation by decomposing the image in the
corresponding scales. When the composition level
decreases in the spatial domain it increases in the
frequency domain providing zooming capabilities
and local characterization of the image [17].  This
spatial/frequency representation, which preserves
both global and local information, seems to be
adequate for texture characterization.

Color transformations of the original image I result
in three decomposed color channels:

.3,2,1, iI i (5)

where i stands for the color channel.

A two level discrete wavelet frame transformation
is applied to each color channel (Ii). This
transformation results in a new representation of
the original image by a low resolution image and
the detail images. Therefore the new
representation is defined as:
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where l stands for the wavelet band and n is the
decomposition level.

Since the textural information is better presented in
the middle wavelet detailed channels, then second
level detailed coefficients would be considered.
However, the relatively low image dimensions (256
X 256) limit the representation of the details,
becoming the first level more adequate for texture
representation [12]. Thus, the image
representation consists of the detail images

produced from (6) for the values l=1, 2, 3 as shown
in figure 1. This results in a set of 9 subimages:

  .3,2,13,2,1  liDil (7)

For the extraction of the second order statistical
textural information co-occurrence matrices would
be used calculated over the nine different
subimages. However, in order to diminish the
dimension of the observation vectors the image to
process can be synthesized from inverse wavelet
transform with the coefficients of the large scales
(lower frequencies) discarded. This procedure
reduces the dimensionality of the observation
vector by a factor of 3 since only three images
need to be processed (colour channels) instead of
the nine obtained in the wavelet domain. Our
results confirmed that the most relevant texture
information is maintained through Inverse wavelet
transform, which is used to synthesize a new
image from the selected wavelet bands. In [12], it
was demonstrated that the most significant texture
information for classification purposes, in capsule
endoscopic frames, is at the lowest wavelet scale.
Therefore, let Si be a matrix that has the selected
wavelet coefficients at the corresponding positions
and zeros in all other positions:

  3,2,13,2,1,  liDS i
l

i (8)

A new image, containing the most relevant texture
information, is then synthesized from the selected
wavelet bands, trough the inverse wavelet
transform.  Let Ni be the reconstructed image, for
each color channel:

.3,2,1),(  iSIDWTN ii (9)

where i stands for color channel and IDTW() is the
inverse wavelet transform.



These matrices capture spatial interrelations
among the intensities within the synthesized image
level. The co-occurrence matrices are estimated in
four different directions resulting to 12 matrices:
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where i stands for the color channel and α for the
direction in the co-occurrence computation.

Four statistical measures given by equations (1),
(2), (3) and (4) are estimated for each matrix
resulting in 48 texture descriptors:
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where m stands for statistical measure.

Since each feature represents a different property
of the synthesized image it is expected that similar
textures will have close statistical distributions and
consequently they should have similar features.
This similarity between features can be statistically
modeled in a tri-dimensional space since features
can be simultaneously observed in the three
channel colors.

While the texture descriptors can be considered
statistically independent, their occurrence together
in the three color channels is likely to be
correlated. The correlation between two
descriptors measures their tendency to vary
together and constitutes the sufficient statistics
when the multivariate density is normally
distributed. One of the main properties of the
multivariate normal distributions is that the
marginal distributions are also normal however the
converse (reverse?) is not necessarily true. As
example, Figure 4 and 5 show the distribution of
F1, for the color channel H, in a set of 100 normal

and 92 tumoral images. It is evident that the
distribution of F1 is not Gaussian especially in
cases of tumor.

In spite of many multivariate statistics used in
practice converge in distribution to a multivariate
normal, which is acceptable regarding the
multivariate central limit theorem, Gaussianity tests
can help to model more accurately multivariate
distributions. Gaussianity tests can be based on
the Mahalanobis distances from the sample mean,
computing the squared Mahalanobis distances:

   xxSxxm i
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for the n multivariate observations and plotting
them against the Chi 2 (χ2) distribution percentiles:
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where in equation (12) T stands for transpose and
S for sample covariance matrix.

Higher Order Statistics (HOS) leads to a lower
number of model parameters, therefore it is
perhaps the most appropriate choice, especially in
applications requiring a significant amount of
computational effort, such as the case of massively
processing of capsule endoscopic images based
on co-occurrence matrices. Additionally one
constraint always associated with Gaussian
mixture modeling is the choice of the number of
Gaussian components, which optimum value
depends greatly on the application and is usually
not a priori known.

II.2- Modeling non-Gaussianity of texture
statistical measures

Second order statistics is a well established theory
that is completely adequate to represent random
vectors. Nevertheless, it is limited by the
assumptions of Gaussianity, linearity, stationarity,



etc. HOS characterized by higher order moments
are adequate to model non-Gaussian distributions
under the assumption that all the moments are
finite and so their knowledge is in practice
equivalent to the knowledge of their probability
function [18].

Third and fourth order moments have precisely
meaning in separating Gaussian from other
distributions. The third central moment:

  33 xxE  (14)

gives a measure of assymmetricity of the
probability density function around their mean
(skewness), while the fourth central moment gives
a measure of the peaky structure of the distribution
when compared with the Gaussian. Higher than
fourth order moments are used seldom in practice,
hence not tried in the ambit of this paper.
Therefore second, third, and fourth order moments,
were used in the ambit of this paper:
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About the fourth order moment only the fourth
central moment was used in order to model
subgaussianity and supergaussianity of the
marginal distributions for all the four statistical
texture descriptors.

The second order moments or correlation of the
same statistical measure between different color
channels is computed as
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which results in the computation of 24 coefficients,
six different correlations computed for each
descriptor. The third order moments are computed
as :
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which results in the computation of 16 coefficients,
four different third order moments computed for
each descriptor. The fourth order moments are
computed as:

      




44 i
sm

i
m ICFFE (19)

which results in the computation of more 12
coefficients.

Summing up 28 higher order moments to the
second order moments, each frame is
characterized by a set of 52 components in the
observation vector. These components constitute
the input of the radial basis function.

III. RADIAL BASIS FUNCTIONS

Radial basis functions (RBF) are hidden
activation functions embedded in a two layer
neural network. RBF’s have their roots entrenched
in much older pattern recognition techniques as for
example clustering and mixture models. The input
into an RBF network is nonlinear while the output
is linear. Due to their nonlinear approximation
properties, RBF networks are able to model
complex mappings, which perceptron neural
networks can only model by means of multiple
intermediary layers. RBF’s are the neural networks
for excellence used in statistical applications since



the mappings are based on the similarity of the
underlying statistics between the training set and
the pattern to be tested. In RBF’s for pattern
recognition applications the most used activation
function is the Gaussian, however Gaussian
mixtures have been considered in various fields.
The Gaussian activation function for RBF networks
is given by:

      jj
T

jj μXμXX  1exp (20)

for j=1 …L, where X is the input feature vector, L is
the number of hidden units and µj and ∑j are the
mean and covariance matrix of the jth Gaussian
function.

The Gaussian activation function can model more
accurately groups of features that have tendency
to vary together and so more likely to represent
similar patterns. This modeling is optimal regarding
statistical classification purposes especially when
second order statistics need to be accurately
modeled. Given the central limit theorem, this
characteristic perhaps justifies the fact that usually
RBF’s present a better degree of generalization
that feed forward neural networks, in spite of
sometimes performing poorer in the training set.
This conclusion can be found in several scientific
papers [19]. Besides modeling probability density
functions, RBF’s networks have been shown to
implement the Bayesian rule [20].

The classification scheme described in this paper
used a standard radial basis function, which basic
scheme is shown in figure 2, with 52 input units, 35
RBF units and 1 output neuron. The training
algorithm was the well known hybrid learning
process where the centers were computed by
clustering, the spreads of the Gaussians chosen by
normalization and the Least Mean Square
algorithm for computing the network weights. The
output neuron was used to classify the data into 2
classes normal and abnormal.

IV. EXPERIMENTAL RESULTS

The experimental training set consisted of 400
frames from several endoscopic exams taken at
the Capucho’s Hospital in Lisbon by Doctor Jaime
Ramos. Half of these frames do not present any
abnormality, while the rest were selected as
representing tumor pathology pattern. The
selection was made by the physician. The test set
contains 600 normal capsule endoscopic frames
and 250 frames with tumor evidences. The training
and testing data are from different patients. Figures
7 and 8 shows some frames belonging to the
training set.

Instead of measuring the rate of successful
recognized patterns, more reliable measures for
the evaluation of the classification performance
can be achieved by using the sensitivity (true
positive rate) and the specificity (100-false positive
rate) measures [21].  These two measures can be
calculated as:
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Where a is the number of true negative patterns, b
is the number of false positive patterns, c is the
number of false negative patterns and d is the
number of true positive patterns.

The classification performance is high when both
Sensitivity and Specificity are high, in a way that
their tradeoff favors true positive or false positive
rate depending on the application.

In order to compute the co-occurrence matrix for
the new image, synthesized from the wavelet
coefficients from the selected bands, a new
algorithm was implemented, to avoid computing
co-occurrences in the image corners where no



image information exists. The co-
occurrence computation was done
considering d=1 since we intend to
capture fine texture details in an
image with relatively poor spatial
resolution. A similar algorithm was
also developed to calculate the
histograms of each frame.

A 3.2 GHz Pentium Dual Core
processor-based with 1 GB of
RAM was used with MATLAB to run the proposed
algorithm. The average processing time per frame
is about 1 minute, which is unacceptable to real
world applications. However, in the work of Arvis et
al.[22], there is the reference that the reduction of
the gradation levels of each color channel from
256 levels to 32 levels does not compromise the
texture analysis process. Therefore the processing
time per frame drops considerably, to about 1
second per frame, without significant loss of
performance. However the vast majority of the
pixels in the reconstructed image have a level very
close to zero, so the most of the information is
included in a few, very close, levels, which will lead
to a loss of texture information, as very close levels
in the 256 levels image are converted to the same
level in the 32 levels image. To overcome this
limitation, we have to disperse the pixel values to
all available range with a simple multiplication by a
constant. Therefore the textural information will be
present in all the 256 gray levels, and
consequently in all the 32 gray levels, after the
conversion.

The used colour space was HSV and the obtained
pair (Sensitivity, Specificity) was for the described
data set (91 ±0.4%, 92±0.1%). Table 1 resumes
the most relevant results. The results are given in
statistical terms, and, to test the importance of the
higher order statistics, the classification vector for
each frame had the second order  moments, given
by (16) or the second and third order moments,

given by (16),
(17) and (18),
or the
second, third
and forth

order
moments,

given by (16),
(17), (18) and
(19).

Table 1 - Classification performance of the proposed
algorithm

From the analysis of the classification performance
for the proposed algorithm, it is obvious that
modeling the non-Gaussianity of the texture
descriptors leads to better classification results.
However, the addition of fourth order moments do
not clearly improves the classification performance.
Note also that to correctly estimate higher order
moments, larger amounts of data is needed, and
so the classification improvement with the addition
of higher order moments will be more evident in
larger datasets.

V. DISCUSSION AND FUTURE WORK

The results of this paper show that higher order
statistics for texture descriptors can be used as
classification parameters in order to classify
capsule endoscopic video frames. It was also
shown, that higher order statistics lead to superior
classification performance. However, the
improvement from modeling non-Gaussianity
should be clearer in larger datasets, since it is well
known that higher order moments need much more
data to be accurately estimated than second order
moments. Therefore, future work will include the
augment of the available tumor frames, in order to
better identify the importance of higher order
statistics. Different classification schemes will also
be subject of future investigation.

Classification
vector

Specificity
(%)

Sensitivity
(%)

2nd order
moments

90.1±0.5 90.5±0.6

2nd and 3rd order
moments

91.2±0.3 92.4±0.4

2nd, 3rd, and 4th
order moments

91.3±0.4 92.2±0.5
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Fig. 1. Given Imaging M2A endoscopic capsule. Optical dome
(a),  lens holder (b), short focal-length lens (c), six white-light-
emitting diode illumination sources (d), complementary metal
oxide silicon (CMOS) chip camera (e), two silver oxide batteries
(f), UHF band radio telemetry transmitter (g),  antenna (h).

Fig. 2. Physiological advantages o f capsule endoscopy

Fig. 3.  Example of two level wavelet decomposition scheme of
the original image for color channel i.

Fig. 4.  Distribution of F1 texture descriptors for a set of 100
normal capsule endoscopic frames.

Fig. 5.  Distribution of F1 texture descriptors for a set of 92
abnormal (small bowel tumor) capsule endoscopic frames.

Figure 6. Scheme of a radial basis function with three input and
two output neurons.

Fig. 7. Example of a normal intestinal tissue frames

Fig. 8. Example of a tumor intestinal tissue frames
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