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Abstract 

A constitutive model developed for the simulation of the cyclic behaviour of interface 

elements is proposed. Its theoretical framework is fully based on the plasticity theory. Starting 

from an existing monotonic model, two new yield surfaces are introduced in order to include 

non-linear unloading/reloading behaviour in an accurate fashion. The motion of the unloading 

surfaces is controlled by a mixed hardening law and, by adopting appropriate evolution rules, 

it is possible to reproduce non-linear behaviour during unloading. Numerical results 

concerning the analysis of both uniaxial tests and masonry walls are presented and discussed 

as application and validation examples of the constitutive model. 
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1. Introduction 

Interface elements were initially employed in concrete by Ngo and Scordelis [1], in rock 

mechanics by Goodman et al. [2] and in masonry by Page [3], being used since then in a great 

variety of structural problems. The application of a micro-modelling strategy to the analysis 

of in-plane masonry structures using the finite element method requires the use of continuum 

elements and line interface elements. Usually, continuum elements are assumed to behave 
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elastically whereas non-linear behaviour is concentrated in the interface elements. This sort of 

modelling assumes high importance in structures where the interface appears well defined (as 

in masonry structures) and, therefore, the numerical simulation of the cyclic behaviour of 

interface elements is definitely a key issue when dealing with micro-modelling. For each type 

of element referred to above, the respective constitutive model establishes a relation between 

generalized stress and strain vectors, usually expressed as 

 =σ εD  (1) 

where D represents the stiffness matrix. For zero-thickness line interface elements, the 

constitutive relation defined by Eq. (1) expresses a direct relation between the traction vector 

and the relative displacement vector along the interface, which read 

 σ 
=  

τ 
σ  ,   

n

t

u

u

 ∆
=  

∆ 
ε  (2) 

The development of constitutive models for the analysis of structures submitted to cyclic 

loading should consider the main relevant features that characterize cyclic behaviour. Recent 

experimental work [4-7] carried out to investigate cyclic behaviour of interfaces has shown 

some important characteristics, summarized as 

• Stiffness degradation in both tension and compression regimes; 

• Residual relative normal displacements at zero stress; 

• Absence of stiffness degradation in direct shear; 

• Complete crack closing under compressive loading. 

Based on the available experimental results concerning the cyclic behaviour of interfaces, 

the following hypotheses will be assumed in this paper: 

• Elastic behaviour constitutes a satisfactory approach for shear unloading/reloading 

behaviour; 
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• Elastic unloading/reloading is not an appropriate hypothesis for tensile and compressive 

loading since observed experimental behaviour cannot be simulated accurately, namely 

stiffness degradation and crack closing/reopening, which clearly exhibit non-linear 

behaviour. Accordingly, non-linear constitutive material laws should be adopted. 

It becomes clear that the classical formulation of plasticity theory is unable to reproduce 

these particular features and therefore cannot be used for cyclic loading. However, as shown 

elsewhere [8-10], this same theory can consistently be extended to incorporate plastic 

behaviour during unloading. In this work, a rate independent behaviour is considered for the 

interface constitutive model. 

2. Constitutive model 

In order to accurately reproduce the main characteristics related to cyclic behaviour of 

interfaces, a constitutive model is proposed in this paper. For further details, the reader is 

referred to [11]. This model is fully based on an incremental formulation of plasticity theory 

and derives from an existing constitutive model developed by Lourenço and Rots [12] for 

monotonic loading, which includes all the modern concepts used in computational plasticity, 

such as implicit return mappings and consistent tangent operators. 

2.1 Existing constitutive model for monotonic loading 

The monotonic constitutive interface model is defined by a convex composite yield 

criterion, composed by three individual yield functions, where softening behaviour has been 

included for all modes, reading 

 Tensile criterion: ( ) ( )κσσκ tttt
,f −=σ  

Shear criterion: ( ) ( )κσφστκ ssss
tan,f −+=σ  

Compressive criterion: ( ) ( ) ( )κσκ cc
T

cc
,f −= σPσσ 2

1

 

(3) 
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Here, φ represents the friction angle and P is a projection diagonal matrix, based on material 

parameters. σ t ,σ s  and σ c  are the isotropic effective stresses of each of the adopted yield 

functions, ruled by the scalar internal variables κ t , κ s  and κ c , respectively. In order to 

obtain a simple relation between the scalar variable cκ  and the plastic multiplier cλ , the 

original monotonic compressive criterion, see Eq. (3)3, was rewritten in square root form. The 

rate expressions for the evolution of the isotropic hardening variables were assumed to be 

given by 

 
λ∆κ ��� tnt u ==  ,   λ∆κ ��� sts u ==  ,   λ

σ
κ �

�
� c

c

pT

c == εσ
 (4) 

Fig. 1 schematically represents the three individual yield surfaces that compose the 

multisurface interface model in stress space. Associated flow rules were assumed for tensile 

and compressive modes and a non-associated plastic potential was adopted for the shear 

mode, with a dilatancy angle ψ and a cohesion c, given by 

 ( )κσψστ sss
tang −+=  (5) 

A non-associated flow rule for shear is necessary because friction and dilatancy angles are 

considerably different, as shown by Van der Pluijm [13]. 

2.2 Constitutive model for cyclic loading 

In order to include unloading/reloading behaviour in an accurate manner, an extension of 

the plasticity theory is presented here. Two new auxiliary yield surfaces (termed unloading 

surfaces) similar to the monotonic ones were introduced in the monotonic model, so that 

unloading to tension and to compression could be modelled. Each unloading surface moves 

inside the admissible stress space towards the similar monotonic yield surface. In a given 

unloading process, when the stress point reaches the monotonic yield surface, the surface used 

for unloading becomes inactive and the loading process becomes controlled by the monotonic 

yield surface. Similarly, if a stress reversal occurs during an unloading process, a new 
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unloading surface is started, subsequently deactivated when it reaches the monotonic 

envelope or when a new stress reversal occurs. The proposed model comprises six 

possibilities for unloading/reloading movements, as schematized in Fig. 2. Two unloading 

cases from the monotonic envelope are considered: unloading to tension (CT) and unloading 

to compression (TC). In both cases, a stress reversal can occur even before the monotonic 

envelope has been reached, leading to reloading movements to compression (CTC) and to 

tension (TCT), respectively. These two cases may originate two new other movements if a 

reversal situation happens before stresses reach the monotonic envelope, respectively CTCT 

and TCTC. If a stress reversal takes place during a CTCT or TCTC movement, reloading 

movements CTC and TCT are assumed to occur, respectively. The movements to tension 

(CT, TCT and CTCT) are carried out with the same unloading surface, but different hardening 

laws, which must be based on reliable experimental data. The same applies to the movements 

to compression (TC, CTC and TCTC). 

Both unloading surfaces are ruled by mixed hardening laws, for which a definition of the 

back-stress vector  αααα is necessary. In this work, the evolution of the back-stress vector is 

assumed to be given by [10, 14] 

 (1- ) U tK αγ λ=α u��  (6) 

where tK is the kinematic tangential hardening modulus, Uλ� is the unloading plastic 

multiplier rate and αu  is the unitary vector of αααα. Associated flow rules are assumed during 

unloading to tension and to compression. 

Unloading/reloading to tension can be started from any allowable stress point, except from 

points on the monotonic tensile surface, see Fig. 3(a), ruled according to the yield function 

 (1)( ) ( )UU UU i , tt tt
, ,f = −σ α ξ σ γκ κ  (7) 
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where Ui , tσ  is the isotropic effective stress and U tκ  is the tensile unloading hardening 

parameter. The scalar γ provides the proportion of isotropic and kinematic hardening (0≤γ≤1). 

The relative (or reduced) stress vector ξξξξ is given by 

 = −ξ σ α  (8) 

In the same way, unloading/reloading to compression can take place from any acceptable 

stress point, except from points on the monotonic compressive surface, see Fig. 3(b), being 

controlled by the following yield function 

 ( )
1

2
( , ) ( )U UUU

T
c ci , cc

,f γσκ κ= −ξσ α ξP  (9) 

where Ui , cσ  is the isotropic effective stress and Ucκ  is the compressive unloading hardening 

parameter. 

The evolution of the hardening parameters is given by 

 

U U
p

t n tuκ λ= =∆ �� �  ,   U U
U

T p

c c
i , c

κ λ
σ

= =
ξ ε�

��  (10) 

For each of the six hypotheses considered for unloading movements, a curve that relates the 

unloading hardening parameter Uκ  and the unloading effective stress Uσ  must be defined. 

Thus, the adoption of appropriate evolution rules makes possible to reproduce non-linear 

behaviour during unloading. Physical reasons imply that C
1
 continuity (continuous functions 

with continuous derivatives) must be imposed on all the six - UUσ κ  curves. Also, all 

functions must originate positive effective stress values, their derivatives must always be non-

negative and its shape must be adequately chosen to fit experimental data, obtained from 

uniaxial tests. The six different curves adopted in this study are used in the definition of the 

isotropic and kinematic hardening laws. 

The complete definition of the hardening laws requires the need of four additional material 

parameters with respect to the monotonic version, which can be obtained from uniaxial cyclic 
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experiments under tensile and compressive loading. These parameters define ratios between 

the plastic strain expected at some special points of the uniaxial σ-∆un curve and the 

monotonic plastic strain. Some of these points are schematized in Fig. 4, and are defined as: 

• κ1t: plastic strain at zero stress when unloading from the monotonic tensile envelope, see 

Fig. 4(a); 

• κ1c: plastic strain at zero stress when unloading from the monotonic compressive 

envelope, see Fig. 4(b); 

• κ2c: plastic strain at the monotonic tensile envelope when unloading from the monotonic 

compressive envelope, see Fig. 4(b); 

• ∆κc: plastic strain increment originated by a reloading from a CT or a CTCT unloading 

movement (stiffness degradation between cycles). 

The integration of the non-linear rate equations over the finite step 
1( ) ( )n n+→⋅ ⋅ , by applying 

an implicit Euler backward integration scheme, allows obtaining the following discrete set of 

equations [11]: 

 ( )1 1 1
p

n n n+ + += −σ ε εD  

11

1

U
U

p p
n ,nn

`n

g
λ ++

+

∂
∆= +

∂
ε ε

σ
 

1 1 1(1- ) Un n ,n , nksK αλγ+ + +∆= +α α u  

1 1U U , U,n n ,nλκ κ+ +∆= +  

( )11 11
0UU ,nn n,n

, ,f κ ++ ++ =σ α  

(11) 

where εp
 is the plastic strain and ksK  is the kinematic secant hardening modulus, defined as a 

function of the unloading hardening parameter and the kinematic effective stress [15]. The 

discrete Kuhn-Tucker conditions at step n+1 are expressed as 



 8

 
1 0U ,nλ + ≥  ,   ( )11 11

0UU ,nn n ,,n
,f κ ++ ++ ≤σ α  ,   ( )11 11 1

0UU U ,nn n ,,n ,n
,f κλ ++ ++ + =σ α  (12) 

Considering an auxiliary elastic trial state, where plastic flow is frozen during the finite step, 

Eqs. (11) can be reformulated and read 

 
1 1

trial
n n n+ +∆=σ σ ε+ D  

1
p,trial p

nn+ =ε ε  

1
trial
n n+ =α α  

1U U ,
trial

,n nκ κ+ =  

( )11 11 1 UU U,

trial trial trialtrial
,nn n,n n

, ,f f ++ ++ += σ α κ  

(13) 

A stress reversal occurrence is based on the elastic trial state. After a plastic process 

(monotonic or cyclic), a stress reversal case is established under the condition of a negative 

unloading yield function value. Within the notation inserted before, unloading movements CT 

or TC must be started from the respective monotonic envelope whenever, after a converged 

load step where ( ) 0nnn
,f κ =σ , the following condition occurs 

 ( )111 1
0

trial trialtrial
nnn n

,f f κ +++ += <σ  (14) 

The remaining unloading hypotheses, see Fig. 2, are trigged whenever, after a converged 

load step in which ( ) 0UU ,nn n,n
, ,f κ =σ α , the following situation happens 

 ( )11 11 1
0UU U

trial trial trialtrial
,nn n,n ,n

, ,f f κ ++ ++ += <σ α  (15) 

The system of non-linear equations expressed by Eqs. (11) can be significantly simplified 

because the variables 1n+σ , 1n+α  and 1U ,nκ +  can be expressed as functions of 1U ,nλ +∆  and, 

therefore, Eq. (11)5 is transformed into a non-linear equation of one single variable. The 

plastic corrector step consists of computing an admissible value of 1U ,nλ +∆  that satisfies 

Eqs. (12), using the Newton-Rapshon method. The necessary derivative reads 
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(17) 

Fig. 3 illustrates also that a composite yield criterion, composed by an unloading/shear 

corner, may occur. These two modes are assumed to be uncoupled, resulting in U Uκ λ= ��  and 

s sκ λ= �� . Since all unknowns of the stress vector can be expressed as functions of 1U ,nλ +∆  and 

1s,nλ +∆ , the system of non-linear equations to be solved can be reduced to 

 ( )
( )

1 1

1 1

0

0

U

UU

,n s,ns

,n s,n

,f

,f

λ λ

λ λ

+ +

+ +

 =∆ ∆


=∆ ∆

 (18) 

The components of the Jacobian necessary for the iterative Newton-Raphson procedure to 

solve this system can be found in [11]. 

Each time a stress reversal takes place, a new unloading surface is activated, being 

deactivated when it reaches the monotonic envelope towards which it moves, thus, for the 

same load step, yielding may occur both on the unloading surface and on the monotonic 

surface. Therefore, a sub-incremental procedure must be used in order to split such load 

increment into two sub-increments, each one corresponding to a different yield surface. In a 

strain driven process, in which the total strain vector is the only independent variable, the 

problem consists in the computation of the scalar 0 1β< <  

1 1 1(1- )n n n nβ β+ + += + +∆ ∆ε ε ε ε  (5.1) 
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for which the strain increment 1nβ +∆ε  leads the unloading surface to touch the monotonic one. 

After the deactivation of the unloading surface, the remaining strain increment 1(1- ) nβ +∆ε  is 

used for the monotonic surface. In the present implementation, β is computed through the 

bisection method, where the monotonic yield function is evaluated at each iteration. 

2.3 Performance of the model under uniaxial loading 

The ability of the proposed constitutive model to simulate experimental results is now assessed 

by comparisons with reputed available experimental data obtained under uniaxial loading 

conditions. The results were graphically scaled on peak experimental displacement and stress 

values, for a better comparison. 

A direct shear test on mortar joints carried out by Atkinson et al. [4] is used here to evaluate the 

ability of the model to predict cyclic shear loading assuming elastic unloading/reloading 

behaviour. The comparison between the experimental data and the numerical response is shown 

in Fig. 5. A good agreement can be found between the experimental and the numerical results. 

As assumed in the proposed formulation, elastic behaviour for shear unloading/reloading showed 

to be a good approximation of the experiments. The hypothesis of exponential softening also 

seemed to be appropriate for shear monotonic loading. 

The ability of the model to capture the main features related to cyclic tensile behaviour is now 

checked against the experimental results of Gopalaratnam and Shah [16] on concrete specimens. 

The comparison between experimental and numerical results is shown in Fig. 6. The 

experimental data was modified in order to express a σ-∆u relationship. The numerical response 

is in good agreement with the experimental results, namely in terms of stiffness degradation. 

However, a better agreement could be found if monotonic exponential softening was replaced by 

a more suitable law [17]. 
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The experiments carried out by Karsan and Jirsa [18] on concrete specimens under cyclic 

compressive loading are used here to appraise the ability of the model to simulate cyclic 

compressive loading. The experimental and numerical results are compared in Fig. 7. The 

experimental results were modified in order to express a σ-∆u relationship. Characteristic 

features such as stiffness degradation during each unloading/reloading cycle and between cycles 

are simulated by the model in an appropriate fashion. 

The last uniaxial example presented here deals with a tensile-compressive loading test 

performed by Reinhardt [19] on a concrete specimen. Only six loading cycles were simulated. 

The comparison between experimental and numerical results is shown in Fig. 8. In spite of the 

complex cyclic behaviour exhibited by the experimental result, namely stiffness changes 

associated with the closing and reopening of cracks, the model showed to be able to accurately 

describe the experimental behaviour. 

3. Numerical examples 

The ability of the model to reproduce the main features that characterize cyclic behaviour as 

well as to reproduce experimental results in structural elements is now assessed through the 

numerical analysis of three masonry walls submitted to cyclic loads. In these simulations, the 

units were modelled using eight-node continuum plane stress elements with Gauss integration 

and, for the joints, six-node zero-thickness line interface elements with Lobatto integration 

were used. All material parameters are discussed in [11]. 

3.1 TUE wall 

Within the scope of the CUR project, Raijmakers and Vermeltfoort [20-21] tested several 

masonry shear walls submitted to monotonic loads. The walls were made of wire-cut solid 

clay bricks with dimensions of 210×52×10 mm
3
 and 10 mm thick mortar joints and 

characterized by a height/width ratio of one, with dimensions of 1000×990 mm
2
. The shear 
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walls were built with eighteen courses, from which only sixteen were considered active, since 

the two extreme courses were clamped in steel beams. 

During testing, different vertical uniform loads were initially applied to the walls. Then, for 

each level of vertical load, a horizontal displacement was imposed at the top steel beam, 

keeping the top and bottom steel beams horizontal and preventing any vertical movement of 

the top steel beam. For the purpose of investigating cyclic behaviour, a wall submitted to an 

average compressive stress value of 1.21 N/mm
2
 is considered here. In what follows, the wall 

to be numerically tested is denoted as TUE wall. Since the wall was tested under monotonic 

loading, the main purpose of this numerical analysis is to assess the qualitative ability of the 

model to simulate features related to cyclic behaviour, such as stiffness degradation and 

energy dissipation. 

In order to investigate the cyclic behaviour of the TUE wall, it was decided to submit it to a 

set of loading-unloading cycles by imposing increasing horizontal displacements at the top 

steel beam, where unloading was performed at +1.0 mm, +2.0 mm, +3.0 mm and +4.0 mm, 

until a zero horizontal force value was achieved. The numerical horizontal load-displacement 

diagram, obtained using the proposed model and following the described procedure, is shown 

in Fig. 9, where the evolution of the total energy is also given. Fig. 9(a) shows that the cyclic 

horizontal load-displacement diagram follows closely the monotonic one aside from the final 

branch, where failure occurs for a smaller horizontal displacement. Unloading is performed in 

a quite linear fashion showing important stiffness degradation between cycles, while 

reloading presents initially high stiffness due to closing of diagonal cracks and then is 

followed by a progressive decrease of stiffness (reopening). In this way, the sequence of the 

unloading-reloading cycles originates a structural response characterized by a light strength 

degradation (around 4%) as well as noticeable stiffness degradation. From Fig. 9 it can also be 

observed that the energy dissipated in an unloading-reloading cycle is increased from cycle to 
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cycle. In [11], the same wall is analysed under load reversal, for which a 13% strength 

degradation was reached, see Fig. 10. It was found that the geometric asymmetry in the 

micro-structure (units) influenced significantly the structural behaviour of the wall. It is also 

clear from these analyses that masonry shear walls with diagonal zigzag cracks possess an 

appropriate seismic behaviour with respect to energy dissipation. 

Fig. 11 illustrates the incremental deformed meshes with the principal compressive stresses 

depicted on them, for imposed horizontal displacements corresponding to +4 mm and to a 

zero horizontal force after unloading from +4.0 mm. Initially, the structural response is 

characterized by the formation of a single, large, compressive strut. During unloading to zero 

force, cracked head joints are partially closed and bed joints slide in the opposite direction. 

The evolution of the diagonal cracks clearly leads to the development of two struts, one at 

each side of the diagonal line. The softening behaviour that appears after peak load is caused 

by compressive crushing of the lower toe of the wall, which eventually leads to failure. 

3.2 JRC walls 

Within the framework of a research program on the assessment of the seismic vulnerability 

of existing masonry buildings, two masonry walls were tested at the Joint Research Centre 

(JRC), Italy [22]. Henceforth, these walls are here referred to as JRC walls. 

The two walls were made of 250×120×55 mm
3
 brick units and hydraulic lime mortar, 

arranged in two-wythes thickness English bond pattern with the same width of 1000 mm, the 

same thickness of 250 mm, the same joint thickness of 10 mm, but different heights. The 

higher wall presents a height/width ratio of 2.0 whereas the lower wall presents a ratio of 

1.35. The experimental results showed that the different height/width ratio implies important 

changes in the wall’s overall behaviour. These changes are most certainly related to the 

activation of different mechanisms of non-linearity, namely cracking of the joints, frictional 
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sliding along the joints, tensile and shear rupture of the units and compressive failure of 

masonry. 

Experimental load and boundary conditions were chosen in order to reproduce the real 

conditions experienced by the walls during a seismic occurrence as well as possible. In this 

way, a vertical uniform compressive load was initially applied. Then, a quasi-static cyclic 

horizontal displacement was imposed on the steel beam, at the top of the walls. The 

experimental set-up was such that the steel beam was prevented from rotating, thus allowing 

the same vertical and horizontal displacements at all points of the beam. Both walls were 

initially subjected to an average normal stress of 0.6 N/mm
2
. Keeping this vertical load 

constant, alternated increasing in-plane horizontal displacements were imposed on the walls 

using a cyclic and increasing procedure. 

Fig. 12 presents numerical and experimental results in terms of the horizontal load-

displacement diagram at the top of the high wall. Moreover, for a better understanding of the 

cyclic behaviour of the wall, Fig. 13 represents the principal compressive stresses represented 

on the incremental deformed meshes, for lateral displacements of +12.5 mm and -12.5 mm. 

The numerical response clearly indicates that the high wall submitted to alternate horizontal 

displacements simply rocks in both ways. The highly non-linear shape of the load-

displacement curve is essentially due to the opening and subsequent closing, under load 

reversal, of the top and bottom bed joints, which is evidenced by Fig. 13. Similar deformed 

patterns, involving the opening of extreme bed joints, were observed during the experimental 

test [22]. Numerical results show that the cyclic behaviour of the wall is controlled by the 

opening and closing of the extreme bed joints, where damage is mainly concentrated. The 

model also shows low energy dissipation, which is a consequence of the activated non-linear 

mechanism (opening-closing of joints). The comparison between experimental and numerical 

results shows that the constitutive model is able to accurately reproduce the experimental 
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cyclic response of the high wall, in terms of maximum load (Fexp=72 kN and Fnum=67.6 kN), 

global load-displacement diagram, hystereses cycles and total energy evolution as well as in 

terms of deformed mesh. 

Such satisfactory results were not possible to achieve for the low wall. Numerical failure 

started earlier than in the experiment, although the obtained failure mode was similar to the 

experimental one. Fig. 14 illustrates the numerical and experimental horizontal load-

displacement diagrams at the top of the wall. Before numerical failure was attained, numerical 

and experimental responses were fairly similar, aside from the peak load, which is higher for 

the numerical result. Fig. 15 represents the principal compressive stresses depicted on the 

incremental deformed meshes, for lateral displacements of +4.5 mm and -2.9 mm (numerical 

failure). Unloading and subsequent reloading causes damage in the same area, leading to the 

formation of a kind of vertical crack, only interrupted by the units, which were not allowed to 

crack. This kind of alignment of vertical cracks is the main cause leading to initiation of 

failure. These deformed patterns were also observed during the experimental testing. 

A few reasons can be associated to the premature numerical failure of the wall. A first reason 

can be related to model parameters. The choice of the parameter values was based on average 

experimental values, when available, and on estimated values, motivated by the lack of 

appropriate experimental data. Possibly, the numerical response can be sensitive to a given 

parameter, not correctly estimated. For instance, the overestimation of the peak load could 

probably be surpassed if a lower value of the compressive strength was adopted. But this 

objective was not pursued here. Another reason might be related to the adopted modeling 

strategy. Potential vertical cracks in the middle of the units were not included in the model 

since their consideration usually leads to sudden load falls in the load-displacement diagram, 

associated with numerical cracking in the middle of the unit. As a result, their inclusion 

generally affects the robustness of the numerical model. 
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4. Conclusion 

A new constitutive model entirely founded on the incremental theory of plasticity and able 

to describe the cyclic loading of interface elements is presented in this paper. New yield 

surfaces were introduced in an existing monotonic model, where each unloading surface can 

only move inside the admissible stress space and towards the similar monotonic yield surface. 

Their motion is controlled by a mixed hardening law. In this way, the normal stress 

component is described in a non-linear fashion whereas elastic unloading is assumed only for 

the shear component. 

The comparison between uniaxial experimental and numerical results shows that the most 

relevant characteristics observed in experiments are captured by the model. These results 

clearly show the need to consider non-linear material behaviour for the normal stress 

component during unloading. 

The performance of the developed constitutive model was investigated against three 

masonry walls. The numerical results have shown that the model is able to reproduce the main 

features that characterize cyclic behaviour, namely stiffness degradation, energy dissipation 

and deformed patterns, which enables its use for the analysis of masonry structures under 

cyclic loading. Important differences concerning the structural behaviour, failure mode and 

dissipated energy were found between the three shear-walls studied. 
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FIGURE CAPTIONS 

Fig. 1 Existing multisurface interface model (stress space) [12]. 

Fig. 2 Adopted hypotheses for cyclic behaviour (E stands for elastic, C for compression and T for tension). 

Fig. 3 Hypothetic motion of the unloading surface in stress space to: (a) tension and to (b) compression. 

Fig. 4 Special points at the uniaxial σσσσ-∆∆∆∆u curve: (a) tensile loading and (b) compressive loading. 

Fig. 5 Direct shear test under cyclic loading (scaled σσσσ-∆∆∆∆u curve). 

Fig. 6 Uniaxial tensile test under cyclic loading (scaled σσσσ-∆∆∆∆u curve). 

Fig. 7 Uniaxial compressive test under cyclic loading (scaled σσσσ-∆∆∆∆u curve). 

Fig. 8.  Cyclic tensile-compressive loading test (scaled σσσσ-∆∆∆∆u curve). 

Fig. 9 TUE wall: (a) Horizontal load-displacement diagram, where the dotted line represents the monotonic curve; (b) total energy evolution. 

Fig. 10 TUE wall: horizontal load-displacement diagram under load reversal (the dashed lines represent the maximum monotonic loads). 

Fig. 11 TUE wall: Principal compressive stresses [N/mm
2
] depicted on the incremental deformed mesh for a horizontal displacement 

corresponding to: (a) +4.0 mm; (b) zero horizontal force after unloading from +4.0 mm. 

Fig. 12 Horizontal load-displacement diagram of the high wall: (a) numerical; (b) experimental (from [23]). 

Fig. 13 High wall: Principal compressive stresses [N/mm
2
] depicted on the incremental deformed mesh for a horizontal displacement equal to: 

(a) +12.5 mm, (b) -12.5 mm. 
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Fig. 14 Horizontal load-displacement diagram of the low wall: (a) numerical; (b) experimental (from [23]). 

Fig. 15 Low wall: Principal compressive stresses [N/mm
2
] depicted on the incremental deformed mesh for a horizontal displacement equal to: 

(a) +4.5 mm, (b) -2.9 mm. 
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Fig. 1. Existing multisurface interface model (stress space) [12]. 
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Fig. 2. Adopted hypotheses for cyclic behaviour (E stands for elastic, C for compression and T for tension). 
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Fig. 3. Hypothetic motion of the unloading surface in stress space to: (a) tension and to (b) compression. 
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Fig. 4. Special points at the uniaxial σ-∆u curve: (a) tensile loading and (b) compressive loading. 
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Fig. 5. Direct shear test under cyclic loading (scaled σ-∆u curve). 

 



 26

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6

Normal displacement ratio

N
o
rm

al
 s

tr
es

s 
ra

ti
o

Experimental
Numerical

 

Fig. 6. Uniaxial tensile test under cyclic loading (scaled σ-∆u curve). 
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Fig. 7. Uniaxial compressive test under cyclic loading (scaled σ-∆u curve). 
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Fig. 8. Cyclic tensile-compressive loading test (scaled σ-∆u curve). 
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(a) (b) 

Fig. 9. TUE wall: (a) Horizontal load-displacement diagram, where the dotted line represents the monotonic curve; (b) total energy evolution. 
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Fig. 10. TUE wall: horizontal load-displacement diagram under load reversal (the dashed lines represent the maximum monotonic loads). 



 31

 

  

(a) (b) 

Fig. 11. TUE wall: Principal compressive stresses [N/mm
2
] depicted on the incremental deformed mesh for a horizontal displacement 

corresponding to: (a) +4.0 mm; (b) zero horizontal force after unloading from +4.0 mm. 
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(a) (b) 

Fig. 12. Horizontal load-displacement diagram of the high wall: (a) numerical; (b) experimental (from [22]). 
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(a) (b) 

Fig. 13. High wall: Principal compressive stresses [N/mm
2
] depicted on the incremental deformed mesh for a horizontal displacement equal to: 

(a) +12.5 mm, (b) -12.5 mm.



 34

 

-100

-75

-50

-25

0

25

50

75

100

-9.0 -6.0 -3.0 0.0 3.0 6.0 9.0

Horizontal displacement [mm]

H
o

ri
z
o

n
ta

l 
fo

rc
e
 [

k
N

] 
 z

 

-100

-75

-50

-25

0

25

50

75

100

-9.0 -6.0 -3.0 0.0 3.0 6.0 9.0

Horizontal displacement [mm]

H
o

ri
z
o

n
ta

l 
fo

rc
e
 [

k
N

] 
 z

 

(a) (b) 

Fig. 14. Horizontal load-displacement diagram of the low wall: (a) numerical; (b) experimental (from [22]). 
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(a) (b) 

Fig. 15. Low wall: Principal compressive stresses [N/mm
2
] depicted on the incremental deformed mesh for a horizontal displacement equal to: 

(a) +4.5 mm, (b) -2.9 mm. 

 


