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Abstract— This paper is concerned with the segmentation of
the second heart sound (S2) of the phonocardiogram (PCG), in
its two acoustic events, aortic (A2) and pulmonary (P2)
components. The aortic valve (A2) usually closes before the
pulmonary valve (P2) and the delay between these two events is
known as “split” and is typically less than 30 miliseconds. S2
splitting, reverse splitting or reverse occurrence of components
A2 and P2 are the most important aspects regarding cardiac
diagnosis carried out by the analysis of S2 cardiac sound. An
automatic technique, based on discrete wavelet transform and
hidden Markov models, is proposed in this paper to segment S2,
to estimate de order of occurrence of A2 and P2 and finally to
estimate the delay between these two components (split). A
discrete density hidden Markov model (DDHMM) is used for
phonocardiogram segmentation while embedded continuous
density hidden Markov models are used for acoustic models,
which allows segmenting S2. Experimental results were
evaluated on data collected from five different subjects, using
CardioLab system and a Dash family patient monitor. The ECG
leads I, II and III and an electronic stethoscope signal were
sampled at 977 samples per second.

[. INTRODUCTION

HE phonocardiogram (PCG) is a sound signal, which
Tcarries important information about the general state of
contractile activity of the cardiohemic system..
Cardiovascular diseases and defects cause changes or
additional sounds and murmurs that can be useful for
diagnosis purposes. A normal cardiac cycle contains two
major sounds: the first heart sound S1 and the second heart
sound S2. S1 occurs at the onset of ventricular contraction
and corresponds in timing to the QRS complex. S2 follows
the systolic pause and is caused by the closure of the
semilunar valves. The importance of S2 regarding diagnosis
purposes has been recognized for a long time, and its
significance is considered of utmost importance, by
cardiologists, to auscultation of the heart [1].

This paper will concentrate mainly on the analysis of the
second heart sound (S2) and its two major components A2
and P2. The main purposes are estimating the order of
occurrence of A2 and P2 as well as the time delay between
them. This delay known as “split” occurs from the fact that
the aortic and pulmonary valves do not close simultaneously.
Normally the aortic valves close before the pulmonary valves
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and exaggerated splitting of the S2 sound may occur in right
ventricular outflow obstruction, such as pulmonary stenosis
(PS), right bundle branch block (RBBB) and atrial and
ventricular septal defect. Reverse splitting of sound S2 is due
to a delay in the aortic component A2, which causes a
reverse sequence of the closure sounds, with P2 preceding
A2. The main causes of reverse spitting are left bundle
branch block (LBBB) and premature closure of pulmonary
valves. The wide “split” has duration of about 50
miliseconds compared to the normal “split” with the value of
< 30 ms [2]. The measurement of the S2 “split”, lower or
higher than 30 ms and the order of occurrence of A2 and P2
leads to a discrimination between normal and pathological
cases.

Most biomedical signals tend not to be stationary,
typically having highly complex time frequency
characteristics. Frequently they consist of brief, high
frequency components closely spaced in time, accompanied
by long lasting, low frequency components closely spaced in
frequency. Usual Fourier methods are adequate for picking
out frequencies from a signal consisting of many frequencies,
but they are utterly incapable of dealing properly with a
signal that is changing over time. Because of their
compatibility with non-stationary random processes the
wavelet transform (WT) is a powerful tool for analysing
biomedical signals. The good time frequency localization is
the most important advantage that wavelets have over some
other methods. Furthermore, WT has demonstrated the
ability to analyse the heart sound more accurately than other
techniques as the spectrogram (STFT) or Wigner distribution
(WD) [3] in some pathological cases. One of the key issues
regarding signal parameterization in the scope of wavelet
transform is the selection of the scales which are the least
affected by noise maintaining, however the most useful
signal information. This topic is of particular interest
concerning phonocardiogram analysis since murmurs, which
are noise-like events can appear in both diastolic and systolic
segments. These murmurs, which are very important
concerned to the diagnosis of several pathologies such as
valvular stenosis and insufficiency, if not attenuated,
seriously difficult the automatic detection of the cardiac
sounds specially when only the phonocardiographic signal is
available. In the scope of this paper, three consecutive
dyadic wavelet scales were selected. The choice was made
on the basis of the frequency content of S1, S2, A2 and P2. It
is well known that the sound S2 has higher frequency content
than S1, and A2 has also higher frequency content than P2.
Therefore, it is possible to select an appropriate level of
focus, which depends on the sampling frequency, or in other



words an appropriate scale for the which these frequency
content differences are enhanced.

Phonocardiogram analysis requires frequently robust
detection of S1 and S2 sounds. Traditional techniques for
this purpose are mainly based on the simultaneous recording
of other signals such as the ECG (Electrocardiogram) and
CP (Carotid pulse). S1 occurs at the onset of ventricular
contraction and corresponds in timing to the QRS complex.
Therefore, it can be easily identifiable if the ECG is
available. Detection of S2 is more difficult since the T-wave
is not a reliable indicator of its identification. In fact T-wave
is often a low amplitude and smooth wave and sometimes not
recorded at all. A much more reliable indicator of the
identification of the S2 sound is the notch in the aortic
pressure wave, which is transmitted through the arterial
system and may be observed in the carotid pulse recorded at
the neck. Signal processing techniques for the detection of
the dicrotic notch and segmentation of the phonocardiogram
include, among others, least-squares estimate of the second
derivative of the carotid pulse [4], averaging techniques [5]
and more recently the use of heart sound envenlogram,
which reports a 93% success rate. However, implementing
this algorithm is prone to error and it is sensitive to changes
in pre-processing and setup parameters, which strongly
compromises its robustness.

Recently new approaches based on pattern recognition
have been applied in solving difficult problems concerned
with classification purposes, such as automatic speech
recognition, cardiac diagnosis and segmentation of medical
images, among others. These algorithms rely heavily on
parametric signal models, which parameters are learned from
examples. Hidden Markov models (HMM) are a class of
these parametric models that can be used to model
phenomena in which deterministic observed symbols are
arranged in temporal series. An HMM consists of a set of
states connected by transitions between them. At each time
instant a transition takes place and the model generates one
observation. In this manner a non-stationary signal can be
modeled by a quasi-stationary signal, since the first is sliced
in stationary segments. It has been shown that HMM’s have
the capability of breaking the phonocardiogram in its main
components S1 and S2 [6] [7] especially under situations of
weak murmurs. The presence of strong murmurs claims for
robust parameterization techniques. This paper shows that
also the constituent waves of the main sounds can be
accurately modeled by HMM’s if an appropriate grammar is
selected. This study can also be easily extended to the S1
sound, however this is out of the scope of this paper. In the
scope of this paper three different scales of the wavelet
transform are simultaneously observed by a continuous
density hidden Markov model.

II. WAVELETS

The wavelet transform (WT) is a signal representation in a
scale-time space, where each scale represents a focus level of

the signal and therefore can be seen as a result of a band-pass
filtering.

Given a time-varying signal x(t), WTs are a set of
coefficients that are inner products of the signal with a
family of “wavelets” obtained from a standard function
known as “mother wavelet”. In Continuous Wavelet
Transform (CTW) the wavelet corresponding to scale “s”
and time location “1” is given by
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where y(t) is the mother wavelet, which can be viewed as a
band-pass function. The term S‘ ensures energy
preservation. In the CWT the time-scale parameters vary
continuously
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where the asterisk stands for complex conjugate. Equation
(2) shows that the WT is the convolution between the signal
and the wavelet function at scale “s”. Therefore the shape of
the mother wavelet seems to be important in order to
emphasize some signal characteristics, however this topic is
not explored in the ambit of the present work.

For implementation purposes both “s” and “t” must be
discretized. The most usual way to sample the time-scale
plane is on a so-called “dyadic” grid, which means that
sampled points in the time-scale plane are separated by a
power of two. This procedure leads to an increase in
computational efficiency for both WT and Inverse Wavelet
Transform (IWT). Under this constraint the Discrete
Wavelet Transform (DCT) is defined as
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which means that DWT coefficients are sampled from CWT
coefficients. ASS “dyadic” scale is used and therefore s,=2
and 7,=1, yielding s=2' and 7=k2’ where j and k are integers.

As the scale represents the level of focus from the which
the signal is viewed, which is related to the frequency range
involved, then digital filter banks are appropriated to break
the signal in different scales (bands). If the progression in the
scale is “dyadic” the signal can be sequentially half-band
high-pass and low-pass filtered.

The output of the high-pass filter represents the detail of
the signal. The output of the low-pass filter represents the
approximation of the signal, for each decomposition level,
and will be decomposed in its detail and approximation
components at the next decomposition level, and the process
proceeds iteratively in a scheme known as wavelet
decomposition tree, which is shown in figure 1. After the
filtering half of the samples can be eliminated according to



the Nyquist’s rule, since the signal now has only half of the

frequency.
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Figure 1- Wavelet decomposition tree

‘Lnis very pracucal Titering aigoritnm yielas as Fast
Wavelet Transform (FWT) and is known in the signal
processing community as two-channel subband coder [6].

One important property of the DWT is the relationship
between the impulse responses of the high-pass (g[n]) and
low-pass (h[n]) filters, which are not independent of each
other and they are related by

g[L—1-n]=(=1)"h[n] @)

where L is the filter length in number of points. Since the
two filters are odd index alternated reversed versions of each
other they are known as Quadrature Mirror Filters (QMF).
Perfect reconstruction requires, in principle, ideal half-band
filtering. Although it is not possible to realize ideal filters,
under certain conditions it is possible to find filters that
provide perfect reconstruction. The most famous ones were
developed by Ingrid Daubechies and they are known as
Daubechies’ wavelets. In the ambit of this work only
Daubechies’ wavelets with 2 vanishing moments (db-4) were
used.

III. WAVELET ANALYSIS OF THE PHONOCARDIOGRAM

The major difficulty associated with the phonocardiogram
segmentation is the similarity among its main components.
For example it is well known that S1 and S2 contain very
closed frequency components [7], however S2 have higher
frequency content than S1. Another example of sounds
containing very closed frequency components, which must
be distinguished is the aortic and pulmonary components of
S2 sound. The multiresolution analysis based on the DWT
can enhance each one of these small differences if the signal
is viewed at the most appropriate scale. Figure 2 shows the
result of the application of the DWT one cycle of a normal

PCG. From the figure we can observe that dl level
(frequency ranges of 250-500Hz) emphasize the high
frequency content of S2 sound when compared with S1. D2
and d3 levels show clearly the A2 component, while d4
represents clearly the main components of S1, named M1
and T1. The features used in the scope of this work are
simultaneous observations of d1, d3 and d4 scales, therefore
the observation sequence generated after the parameter
extraction is of the form O=(o;, 0,, ...01) where T is the
signal length in number of samples and each observation o, is
a three-dimensional vector, 1. e., the wavelet scales have the
same time resolution as the original signal.
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Figure 3. Wavelet decomposition of the normal cardiac sounds. Upper
panel on the left shows the original signal.

IV. HMM SEGMENTATION OF THE PCG

The phonocardiogram can be seen as a sequence of
elementary waves and silences containing at least five
different segments; M1, T1, A2, P2 and silences. Each one
of them can be modeled by a different HMM. In the scope of
this paper we used left to right (or Bakis) HMM’s with
different number of states, since this is the most used
topology in the field of speech recognition, and the
phonocardiographic signal is also a sound signal with
auditory properties similar to speech signals. Each HMM
models one different event and the concatenation of them
models the whole PCG signal. The concatenation of these
HMM’s follows certain rules dependent on the sequence of
events allowed. These rules define a grammar with four
main symbols and an associated language model as shown in
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Figure 4. Heart sound Markov Model



This HMM does not take into consideration the S3 and S4
heart sounds since these sounds are difficult to hear and
record, thus they are most likely not noticeable in the
records.

The acoustic HMM’s are Continuous Density Hidden
Markov Models (CDHMM’s) and the continuous
observations are frequently modeled by a Gaussian mixture.
However, by observing the histograms for every state of
every HMM we observed that most of them appear to be
well fitted to a single Gaussian, so we used single Gaussian
probability density functions to model the continuous
observations.

The PCG morphologies are learned by training the
HMM’s. The training algorithm was the standard Baum-
Welch method, also called forward-backward algorithm,
which is a particular case of the expectation maximization
method. Each waveform model was trained on a set of
approximately 40 patterns.

The beat segmentation procedure consists on matching the
HMM models to the ECG waveform patterns. This is
typically performed by the Viterbi decoding algorithm,
which relates each observation to an HMM state following
the maximum likelihood criteria with respect to the beat
model structure. Additionally the most likely state sequence
is available, which allows to estimate time duration of the
PCG components as the split.

V. EXPERIMENTAL RESULTS

Experimental results were evaluated by using eight
records from different subjects. The segmentation results
were computed on the basis of frame error rate where each
frame of the labelled signal was compared to the output
signal. The system error rate was computed by dividing the
number of mismatched frames by the total number of frames
in the system. The obtained performance was high, about
99,1+0.02% over a set with about 700 cardiac pulses. Automatic
Diagnosis was performed by estimating the order of
occurrence of A2 and P2 as well as the split. Concerning to
S1 no diagnostic actions were taken. Murmurs were not
classified in the scope of this work.

Tablel- Results of PCG segmentation

Pathologies Detected Non- Wrong
detected detected

A2 after P2 34 2 3

Split>45ms 8§ 1 2

Three from the existing eight records were used for
training purposes after labelling. The testing set is composed
by the remaining five records, so does not include the
training set. No records present severe murmurs. Table 1
shows the results. Long splits were calculated by using a 2
state HMM for split modelling. As the sampling frequency is
about 1 kHz, if the HMM remains in these 2 states more

than 45 times the split is excessively long. This information
is provided by the Viterbi algorithm. A2 and P2 are
modelled by a 3 state HMM and the inverse occurrence of
them is directly computed by the grammar of the
application.

VI. CONCLUSION

The main objective of the work described in this paper was
to develop a robust segmentation technique for segmenting
the phonocardiogram into its main components. HMM’s
proved that they can perform well not only in segmenting the
PCG in its main components but also in segmenting the
components of the main components allowing automatic
diagnosis related with abnormal order of appearance of the
components of the main PCG sounds.. Additionally signal
durations can be robustly estimated which is of utmost
importance in order to diagnose split related diseases. The
discrete wavelet transform can be efficiently used to improve
signal discrimination specially when frequencies with
minimal differences need to be emphasized. The main
drawback of this approach is that the performance of the
method degrades significantly in severe murmurs, specially
in aortic and mitral regurgitation.
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