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Abstract - The use of a multi-resolution control model for a 
robot painting system is reported in this paper. It gives a 
flexible and general framework for the control system design 
which eases software development and integration, as well as 
experimentation with different sensory behaviours. 
 

I. INTRODUCTION 
 
The main goal of the project described in this paper is to 

develop a robot system with the capability of painting 
different parts with on-line definition of the painting 
trajectories. A robot mounted video camera, ultrasonic and 
infrared sensors are used to acquire data for internally 
representing the geometry of the part’s surface to be 
painted, exploiting the mobility of the robot. The 
generation of the painting trajectories will be subsequently 
based on the internal representation. 

The diverse nature of sensory input, the recognising and 
planning tasks involved, the link between actuation and 
sensing, make the design of the control structure for this 
project a non-trivial problem and call for a relatively 
sophisticated conceptual base. Multi-resolution, i.e., the 
decomposition of the envisaged system according to time-
scales of information processing or granularity of 
representation, has been gaining increased attention as a 
principle for the understanding and design of complex 
systems [1]. In the fields of control and robotics, J. Albus 
and co-workers [2] [3] [4] applied the multi-resolution 
principle in a reference model architecture for intelligent 
control systems. (In the sequel, it will be referred as the 
RCS model for short.) It has been adopted in this project as 
a general conceptual framework for global design of the 
system and software integration. 

In the next section, we give brief overviews of the RCS 
model and how the components of the robot painting 
system are mapped on it. Sections III and IV describe the 
software procedures which implement image acquisition 
and depth map filling of the part to be painted. Section V 
concludes and lists future work. 

 
II. OVERVIEW OF THE PROJECT 

 
The RCS model goes further than multi-resolution in 

recognising that an intelligent system must be organised in 
levels according to the time-scales implicit in perception 
and action or the detail of representation of environment 
and self.  The RCS model also decomposes each level in 
four functions or modules (see Fig. 1): 

- World Modelling (WM), a multi-faceted activity which 
builds, maintains and allows the use of world 
representations; 

- Sensory Processing (SP), the transformation of data 
from sensors in elements or structures of WM; 

- Behaviour Generation (BG), the planning and control 
of action designed to achieve behavioural goals;  

- Value Judgement (VJ), the evaluation of perceived and 
planned situations to enable BG to select advantageous 
goals and select priorities. 

 

 
Fig. 1 - Decomposition in modules of each level of a RCS model. 
 
RCS establishes the interactions among these modules in 

such a way that, globally speaking, each level functions as 
a feedback arch anchored in the preceding one(s) and 
allowing the anchoring of the succeeding one. So, in the 
overall, the system is an hierarchical structure of arches 
which feedback loop the environment and itself at different 
levels of speed of answer, width of time window, depth of 
memory and complexity of relations involved. Let us note 
that RCS allows for different hierarchical structures to exist 
in parallel and converge at some pre-specified level and 
that at each level communication between modules may be 
bi-directional. 

At present, a Puma 560 is being used as the manipulator 
of the robot painting system. The video camera and one 
ultrasonic sensor are mounted over the shoulder of the 
Puma (see Fig. 2 for a general and a detailed view). This 
ultrasonic sensor is used to locate and align the video 
camera with the part. 



 

 
 

 
 
Fig. 2 - Location of the video camera in the robot painting system. 
 

 
Fig. 3 - The RCS reference model architecture, as applied to the robot 

painting system.  

This set-up allows for confining the work area of the 
manipulator, acquiring the 2D information (image) of the 
part’s surface in front of the manipulator and  
approximating its position in the robot co-ordinate system. 
The 3D (or depth) information will be measured by 4 
ultrasonic sensors (range: 35cm to 3m) and 4 infrared 
sensors (range: 10cm to 80cm), mounted on a fixture at the 
wrist of the manipulator. The manipulator will be used as a 
mobile scanner, to position the depth sensors along a grid 
of measuring points over the part. This will make for 
having a map of the projection of the part's surface to be 
painted, in the manipulator co-ordinate system. Based on 
this map, the needed painting trajectories will be defined 
on-line.  

The computing hardware includes a CAN (Controller 
Area Network) board and a PC with a Pentium processor. 
The data of the ultrasonic and infrared sensors are acquired 
at the CAN board. The data are pre-processed and sent to 

the PC via the CAN net at a 1 Mb baudrate. The CCD 
video camera connects to a low-cost video blaster 
acquisition board mounted inside the PC. The 
communication with the Puma is now realised by a serial 
link to a standard trajectory controller. It is planned to 
substitute this controller by Trident boards, for enhanced 
performance. 

In Fig. 3 the reader can appreciate the mapping of these 
elements in a RCS model with four levels and three 
different hierarchies: vision, sonar and manipulator. 

Level 4 acts as a sequencer for the location and map 
building of the part. As the project advances, more 
sophisticated functions will be assigned to this level, as 
adapting the 2D resolution of the depth scanning or 
clustering similar shapes of parts for improved speed of the 
map building process. 

At level 3, the SP module allows for creating a map of 
the part’s surface to be painted which constitutes the global 
WM of this level. At present, the BG module is responsible 
for, in interaction with SP and WM,  aligning the camera 
with the part, and organise and control the depth scanning 
sequence which incrementally fills the part’s map. It will 
also be responsible for generating the painting trajectories. 

The Puma 560 Controller is distributed over level 2 and 
1 and it decomposes trajectory controller commands into 
the voltages needed to drive the robot’s motors. The SP 
module of the vision hierarchy at level 2, allows to create 
the dominant points of the surface, while the corresponding 
in the sonar hierarchy supplies the distance measures.  

The image acquisition and the first processing of the 
sonar measures are done at level 1.  

 
III. ACQUIRING THE PART’S SURFACE IMAGE 

 
The vision system is composed by a National Electronics 

CCD video camera, a low-cost Creative’s Video Blaster 
acquisition board and a set of software procedures 
developed with Borland C++ under Windows environment.  

The assigned goal of this system is to extract the 
information needed to create a 2D representation of the 
part’s surface that the system should paint (this is the 
surface that faces the camera). This 2D representation takes 
the form of a contour defined by the dominant points. 
Furthermore, these dominant points are assigned to a set of 
possible positions in the robot axis system. This will be the 
basis for the construction of the depth surface map. 

Figure 4 illustrates the information extraction process in 
the vision system. 

 
 
 

 
 

Fig. 4 - Image information extraction process. 
 
After the image has been captured, segmentation is 

applied. This is achieved by Otsu global thresholding [5], 
selected on the basis of a comparative study covering Otsu, 
Maximum Entropy, Uniform Error and Minimum Error 
threshold selection methods described in [6]. 



 

After the image has been segmented into object and 
background regions and the main acquisition noise 
removed by means of a smoothing median filtering [7], a 
boundary tracking procedure is applied. This has the 
purpose of basing the extraction of a set of dominant points 
meant to represent the 2D shape of the object’s image 
captured. 

For the purpose of extracting the dominant points, a 
combination of two algorithms was used. The first marks 
pixels as candidates for dominant points and it is an 
improved version of the classical splitting method 
presented by Duda and Hart. The second provides the 
selection and is based on slope. This arrangement was 
devised to provide a dominant points extraction process 
suitable for most different sorts of object shapes. An 
example of the performance of the dominant points 
extraction process is shown in figure 5.  

 

 
 

Fig. 5 - Results from the dominant points extraction process 
superimposed on an original image. 

 
The final task is to compute a first approximation to the 

dominant points co-ordinates in the robot’s system, from 
their video camera co-ordinates. For this purpose, the 
distance from the camera to the object, given by the 
ultrasonic sensor mounted on top of the video camera is 
used.  

 
IV. DEPTH MAP BUILDING 

 
A complete representation of the part’s surface in robot 

co-ordinates demands that depth measurements be made in 
order to obtain 3D information. As said, this is 
accomplished by making the manipulator scan the 2D 
shape with its ultrasonic or infrared distance sensors. The 
aim of having these two types of sensors is to cope with the 
limitations of each one. At the present stage of the system’s 
development, only ultrasonic sensors are in consideration, 
and so only them will be referred from now on. The overall 
result of this task is the building of a surface map which 
shall support the generation of painting trajectories [8]. 

Two approaches were experimented for the building of 
the surface map. In the first - direct depth-map building - a 
straightforward scanning of the part at a constant angle of 
the sensors with direct registering of measured values has 
been used. Problems with sonar distance measures 
suggested a second approach. In this one - averaged 
measure weighted by confidence levels - the values 
assigned to each scanning point are a weighted average of 
the four sonar measures. This approach given better results, 
and was easily implemented by transforming the first. 

 

A. Direct depth-map building 
 
Departing from the output of the SP module of level 2 

from the vision hierarchy - a sequence of dominating points  
defining the part’s shape contour -, a general polygon-scan 
conversion algorithm, which handles convex and concave 
polygons [9], is used to build a 2D representation in the 
form of a linked list of segments of horizontal scan lines 
belonging to the shape. This algorithm operates by 
computing spans that lie between left and right edges of the 
polygon. The span extrema are calculated by an 
incremental algorithm that computes a scan-line/edge 
intersection from the intersection with the previous scan 
line [10]. 

The disposition of the four sensors, relative to the robot 
grip’s axis, is a square as presented in the Fig.6. 

The y co-ordinates that the image acquisition obtained 
for the part’s dominant points, are subjected to perspective 
errors. Those values were based on the depth measurement 
given by the sonar mounted on the top of the video camera, 
which is not the depth of all points but only approximately 
of the object’s centroid. The only co-ordinates that system 
can consider without error are the z co-ordinates, because it 
is known that the object is positioned over the table, which 
has a fixed z co-ordinate. In fact, the true values of the x, y 
co-ordinates of the boundary points will be defined later by 
sensor acquisition. So, when acquiring points in the 
boundary region an uncertainty margin must be considered. 
For this, the found boundaries are augmented by a certain 
default value, as illustrated in Fig. 7. 

Once the extreme possible values for  the boundaries of 
the object are estimated, the robot is moved to the lowest z 
co-ordinate and the leftmost y co-ordinate of the shape, at a 
distance in the range of the ultrasonic sensors and depth 
scanning begins. 

For each scan line, a set of evenly spaced points is 
defined, all over the surface of the object. The minimal 
increment between these points is set to the edge’s length 
of the sensors’ square arrangement. The robot will step 
along those points sweeping the y co-ordinates along a 
fixed z co-ordinate, and then incrementing to the next z co-
ordinate by the same value. The process repeats till all the 
shape is swept, as illustrated in Fig. 7. The robot’s position 
increment between steps, is twice the distance between 

sensors. At each step four depth measures are taken and 
assigned to the points of the part which supposedly are in 
the axis of each sensor. 

 

dy
Robot
grip’s
position

dz

Sensors

 
Fig. 6 - Location of the four sensors 



 

 
The experimental results of this process having been 

applied to a rectangular plane part are displayed in Fig. 8, 
with the use of Matlab. 

Two problems became evident: 
- at the part’s border zones, sonar measures become 

completely unreliable, so the detection of edges positions is 
inaccurate; 

- at the interior of the part significant dispersion among 
sensors’ measures appears. 

Obviously, these results call for a more sophisticated 
sensory behaviour. With a partial change of the modules at 
the level 3 of the reference architecture, a second approach 
based on averaging the measures was generated. 
 
B. Averaged measure weighted by confidence levels 

 
Assuming that the surface does not present significant 

changes at the scale of the square defined by the four 
sensors, it seems reasonable to accept that the average of 
the measure from sensors can be assigned to that point of 
the part’s surface which lies on the grip axis, i.e., in the 
axis passing through the centre of the square’s arrangement 
of sensors. In doing this, to maintain the resolution of the 
depth map, speed of acquisition must be traded-off against 
sensor fusion in order to get greater accuracy. 

Besides spatially averaging the sonar measures, weights 
for the measure of each sensor were introduced. These 
weights are to be interpreted as degrees of confidence, 
based on a heuristic set of rules [11]. 

Let id_s be the identifier of a sensor, Measure the 
measure it gives at a given grip position, Dc its actualised 
degree of confidence. Then M, the distance assigned to the 
surface’s point lying at the grip axis for scanning position n 
is given by: 

 

M(n)
Measure(id_s) Dc(id_s)

Dc(id_s)

id_s

id_s
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It is worth to note that the Measure values are validated 

at the SP module of level 3 according to the range of values 
physically possible. A set of tests is applied to each 
measure to determine if it corresponds to a point inside or 
outside the object and to testify if the received value is 
consistent with the physical set-up. Sensors which 
measures are not validated do not enter into the average 
calculation. 

Also it should be remarked that each Dc value is in 
effect a product of 3 partial degrees of confidence 

Dc(id_s) Dc_1(id_s) Dc_2(id_s) Dc_3(id_s)= × ×    
 (2) 

which heuristically are defined to tackle different aspects of 
the problems posed by using multiple sonars to measure 
distance. 

Dc_1, degree of confidence 1, expresses the alignment 
of the sensor values to predictable values given by a least-
squares linear predictor/estimator of the surface’s 
inclination. 

Dc_2, degree of confidence 2, expresses the agreement 
of each sensor measure with the measures of the other 3. 
The underlying assumption is that one is dealing with 
surfaces of smooth and small curvature. 

Finally Dc_3 was specifically set-up to account for the 
detection of the part’s edges. Its calculation uses a sigmoid 
function to approximate the probability distribution that the 
grip is pointing effectively to the part. 

When compared with the previous results obtained for a 
flat object surface of 20x20 cm, the performance of this 
process is much better, as Fig. 9 shows. The flat surface 
was positioned with 20 degrees relatively to the scanning 
plan. The shape of the object surface and its description 
were well retrieved.  

 

 
Fig. 9 - Experimental results for the map of a flat rectangular part with 

averaged measures of the four sonars 
 

V. CONCLUSIONS AND FUTURE WORK 
 

 
 
Fig. 7 - Surface acquisition. a) Increment definition along the object’s 

surface and error border - each marked point corresponds to a grip’s 
centre position. b) Robot’s trajectory  

 
Fig. 8 - Experimental results for the map of a plane rectangular part 

with direct registering of the four sonar measures 



 

The RCS model provides a general conceptual 
framework for the system’s design and software 
development. It is flexible, powerful and easily integrates 
diverse notions and work made by different people. It 
accommodates well the heterogeneous hardware devices 
envisaged for sensing the geometry of the part to be 
painted. It showed easy to change the generated behaviours 
and the interconnection of modules. The use of multi-
resolution gives a natural dimension for stratifying 
functionally the system in levels while the partition of each 
level in the modules depicted follows 
feedback/feedforward principles for generating system’s 
activity.  In our opinion it represents a step towards M. 
Minsky [12] contention that future intelligent systems will 
be designed and developed in a component assembly 
fashion. 

Besides the generation of painting trajectories, there is a 
lot of future work to be done in this project, including 
improvements to the results already obtained. Current work 
is in progress for having the grip axis normal to the 
estimated surface curvature. Also the adaptation of the 
depth measuring grid resolution to the surface curvature is 
being worked out. 

To minimise the movement duration of the manipulator, 
direct control of the joints is being considered, eventually 
with non-linear techniques. In what respects the geometry’s 
acquisition time, high level techniques as clustering shapes 
and the correspondent class creation, as well as learning on 
geometry is being envisaged. All these moves find a natural 
framing in the reference model adopted. 
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