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Abstract: The main goal of this work is the generalisation of fractional viscoelastic models on Time Scales, apply-
ing the Riemann-Liouville derivative to the Maxwell’s viscoelastic constitutive law. We show that, in time scale,
the solution found is also expressed through the Miller-Ross function.
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1 Introduction

Time scale analysis is a method that unifies discrete
and continuous analysis, see e.g. [1], [2] and [3].
This method can be applicable to several physical phe-
nomena, in particular for those that can be described
through fractional differential equations. In the liter-
ature, the mechanical behaviour of viscoelastic mate-
rials is described as being a combination of an ideal
solid (elastic) and purely viscous (fluid) components,
that are represented by a spring and a dashpot, re-
spectively. The so called Blair’s model is an intu-
itive generalisation of the classical viscoelastic mod-
els for which the integer derivatives are replaced by
non-integer derivatives. In recent years, several au-
thors extended theoretical results in the contexts of
mathematical analysis to time scale, see e.g.[3], [5]
[4], [6], [9], [10], [11], [12]. These results can, for
instance, be applied in the field of material mechan-
ics in order to improve conventional constitutive laws.
In this paper, as an example of a potential applica-
tion, we apply the Laplace transform and Miller-Ross
function, on time scales, to viscoelastic constitutive
laws [15], in order to explore the potentialities of this
unified analysis.

This paper is organised as follows: In Section
2 are summarised importants results regarding Time
Scale Calculus; In section 3, using the Riemann-
Liouville derivative on time scale, the viscoelastic
constitutive models. Also, in this section, the relax-
ation modulus is written with respect to Miller-Ross
function, in time scale, applying Laplace transforms.
The conclusions are given in Section 4.

2 Fundamentals of the Fractional
Calculus in Time Scale

Some preliminarily definitions and theorems on time
scales can be found in [3], [4], [6], [7], [8], [12], [9],
[10], [11], and [13].

Definition 1 The Taylor monomials or generalized
polynomials, hk : T2 → R, k ∈ N0, are defined re-
cursively by h0(t, τ) = 1, k = 0

hk+1(t, τ) =
∫ t

s
hk(s, τ)∆s, k ∈ N,

for all t, τ ∈ T.

The time scale ∆-Riemann-Liouville type frac-
tional integral of the function f ∈ L1([a, b] ∩ T) of
order α ∈ R+ is defined by (a, b ∈ T): I0

af = f and

Iαa f(t)=
∫ t

a
hα−1(t, σ(s))f(s)∆s ∈ L1([a, b] ∩ T).

(1)
Let α, β > 0. Then,

Iα0 (Iβ0 f)(t) = Iα+β
0 f(t). (2)

Definition 2 In the fractional calculus the ∆-
Riemann-Liouville fractional derivative of order α >
1, m− 1 < α < m ∈ N is defined as follows, respec-
tively, ∀t ∈ [a, b] ∩ T,

Dα
RLf(t) = ∆mIm−α0 f(t)

= ∆m

∫ t

a
hm−α−1(t, σ(τ))f(τ)∆τ (3)

where f ∈ Cmrd([a, b] ∩ T) and ∆mg(t) = f∆m
(t) is

the usual derivative of g(t).
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Proposition 3 (Taylor’s Formula) Let f ∈
Cmrd([a, b] ∩ T), m ∈ N,Tk = T, a, b ∈ T.
Then

f(t) =
m−1∑
k=0

hk(t, a)f∆k
(a)

+
∫ t

a
hm−1(t, σ(s))f∆m

(s)∆s︸ ︷︷ ︸
(Ima f∆m)(t)

. (4)

for all t ∈ [a, b] ∩ T

Definition 4 Assume that the function f : T → C
is regulated. The Laplace transform of f , denoted by
L{f}, is defined by

L{f}(z) :=
∫ ∞

0
f(t)e	z(σ(t), 0)∆t, (5)

for all z ∈ C where 	z is the operation from [3].

Proposition 5 If f : T → C is such that f∆ is regu-
lated, then

L{f∆}(z) := zL{f}(z)− f(0) (6)

for all z ∈ D{f}such that lim
t→∞
{f(t)e	s(t, 0)} = 0.

Proposition 6 If f : T → C be a generalized ex-
ponential, hyperbolic, trigonometric, or polynomial
function, and let g : T→ C be regulated. The, subject
to a certain limit condition,

L{f ∗ g} = L{f} · L{g} on D{f ∗ g}, (7)

where ∗ is the convolution’s operator.

Proposition 7 If f : T→ C is regulated and F (t) =∫ t

0
f(u)∆u for t ∈ T, then

L{F}(z) =
L{f}(z)

z
(8)

for all z ∈ D{f}such that lim
t→∞
{F (t)e	s(t, 0)} = 0.

Proposition 8 Let α > 0. Then,

L{hα(t, 0)}=L
{∫ t

0
hα−1(t, 0)∆u

}
=

1
zα+1

. (9)

Proposition 9 Let α > 0, T be a time scale, and f :
T→ R. The fractional integral of f of order α on the
time scale

L{Iα0 f(t)} =
F (z)
zα

, (10)

where F (z) = L{f(t)}(z).

Definition 10 Let α > 0, β > 0 and a ∈ R+. The
Miller-Ross function is defined through

Rα,β(t;±a) :=
∞∑
k=0

(±a)k hαk+β−1(t, 0), (11)

and its Laplace transform is given by

L{Rα,β(t;±a)}=
∫ ∞

0
Rα,β(t;±a)eσ	s(σ(t), 0)∆t.

Proposition 11 Let α > 0, β > 0 and a ∈ R+. The
Laplace transformations for several Miller-Ross func-
tions are summarised below:

L{Rα,β(t;±a)} =
zα−β

zα ∓ a
. (12)

3 Viscoelasticity models on time
scale

In this section we consider an application on the frac-
tional calculus in time scale in the theory of viscoelas-
ticity.

Viscoelastic materials when undergoing deforma-
tion exhibits a mechanical behavior that can be con-
sidered as a combination of purely elastic and vis-
cous phenomena. In fact, constitutive laws that de-
scribe viscoelastic behaviour are a combination of
springs (elastic) and dashpot (viscous) components.
The spring (elastic) component, also called Hooke’s
element is described by the formula

σ(t) = Ee(t),

where σ is the stress, E the Young Modulus (elastic
constant) and e the applied strain. The dashpot (vis-
cous) component, also called Newton’s element, is de-
scribed by the relation

σ(t) = η
e(t)
dt

,

where η is the viscosity of the material.
In linear viscoelasticity, Maxwell’s model corre-

spond to a serial combination of spring and dashpots
is used to model the relaxation effect (constant strain).
Voigt-Kelvin model, expressed as parallel combina-
tion of spring and dashpot, is used to model the creep
effect (constant stress). Also, is normal to perform
combinations of these two models in order to obtain
generalized models that best describe the observed
physical phenomena.

Following the work detailed in [15] the main idea
is to substitute the integer derivative (first derivative
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term) of the Newton’s model by a non integer α-
derivative (0 ≤ α ≤ 1). With this intuitive generaliza-
tion we obtain the so called Blair’s model, expressed
through:

σ(t) = EταDα
RLe(t),

where the order of differential-integration is given
by α and τ is the relaxation time

As usually applied in the viscoelastic field, in or-
der to obtain a more representative model, we can use
various combinations of Blair’s elements.

σ(t) = E1τ
α
1 D

α
RLe(t), (13)

σ(t) = E2τ
β
2 D

β
RLe(t). (14)

Let us assume without loss of generality that α > β

and apply the operator Dα−β
RL to the previous equation

Dα−β
RL σ(t) = E2τ

β
2 D

α−β
RL

[
Dβ
RLe2(t)

]
(15)

where, from (2), (3) and (4), we have

Dα−β
RL

[
Dβ
RLe2(t)

]
= ∆mIm−α+β(Dβ

RLe2(t))

= ∆mIm−α+β
0 (∆mIm−β0 e2(t))

= ∆mI−α+β
0 Im0 (∆mIm−β0 e2(t))

= ∆mI−α+β
{
Im−β0 e2(t)

−
m−1∑
k=0

hk(t, 0)Im0 (∆mIm−β0 e2(0))

}
.

If we assume that the strain is zero for t ≤ 0, then the
last term in previous expression disappears

Dα−β
RL

[
Dβ
RLe2(t)

]
=

= ∆mI−α+βIm−β0 e2(t) = ∆mIm−αe2(t)

= Dα
RLe2(t)

and equation (15) becomes

Dα−β
RL σ(t) = E2τ

βDα
RLe2(t). (16)

Combining equation (13) with (16) we obtain the fol-
lowing model:

1
E1τα1

σ(t) +
1

E2τ
β
2

Dα−β
RL σ(t) = Dα

RLe(t), (17)

where e(t) = e(t)1 + e2(t). Now, we apply Laplace
transform, on both side of the equation, to be able
to transform functions from the time domain to the

Laplace domain. In Laplace domain, equation (17)
reads

1
E1τα1

L{σ(t)}+
1

E2τ
β
2

L{Dα−β
RL σ(t)} = L{Dα

RLe(t)}.

(18)

where, from (3), can be expressed through

1
E1τα1

L{σ(t)}+
1

E2τ
β
2

L{∆mIm−α+βσ(t)}

= L{∆mIm−αe(t)}.

According to (6),

1
E1τα1

L{σ(t)}+
1

E2τ
β
2

smL{Im−α+βσ(t)}

− 1

E2τ
β
2

(
sm−1Im−α+βσ(0) + · · ·+ Im−α+βσ(0)

)
=smL{Im−αe(t)}−sm−1Im−αe(0)−· · ·−Im−αe(0).

where, from (10) and taking into account that all quan-
tities are zero for t ≤ 0,

1
E1τα1

L{σ(t)}+
1

E2τ
β
2

sm
L{σ(t)}
sm−α+β

= sm
L{e(t)}
sm−α

.

Hence

L{σ(t)} =
E2τ

β
2 s

αL{e(t)}
E2τ

β
2

E1τα1
+ sα−β

.

If the strain function is following

e(t) = ε0H(t)

where ε0 is constant and H(t) is called Heaviside or
unit step function defined as:

H(t) =
{

0 , t < 0
1 , t ≥ 0

,

then, from (9), we obtain

L{σ(t)} =
E2τ

β
2 s

α−1ε0

E2τ
β
2

E1τα1
+ sα−β

.

Taking the inverse transform, using the convolution
theorem (7) and the relation (12), we derive the relax-
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ation modulus

σ(t)
ε0

= E2τ
β
2 L
−1

 sα−β+β−1

E2τ
β
2

E1τα1
+ sα−β


= E2τ

β
2 L
−1

 sα−β−1+m

E2τ
β
2

E1τα1
+ sα−β

 ∗ L−1
{
sβ−m

}

= E2τ
β
2 Rα−β,1−m (t;−a) ∗ L−1

{
1

sm−β

}
= E2τ

β
2 Rα−β,1−m (t;−a) ∗ hm−β−1(t, 0)

=E2τ
β
2

∫ t

0
Rα−β,1−m (s;−a)hm−β−1(t−σ(s), 0)∆s

= E2τ
β
2

∞∑
k=0

(−a)kh(α−β)k−β(t, 0)

= E2τ
β
2 Rα−β,1−β (t;−a) ,

where a = E2τ
β
2

E1τα1
and

Rα−β,1−m (x;−a)=
∞∑
k=0

(−a)kh(α−β)k+1−m−1(x, 0).

For a continuous case, T = R, the relaxation
modulus is given by

σ(t)
ε0

= E2τ
β
2 t
−βEα−β,β−1(−atα−β)

where the Mittag-Leffler function, Eµ,ρ(atµ), is de-
fined through

Eµ,ρ(atµ) =
∞∑
k=0

(−a)k
(tµ)K

Γ(µk + ρ)
.

For discrete time scales,

T = Tqh =

{
qk +

k−1∑
i=0

qih : k ≥ 2, k ∈ N

}
∪
{

h

1− q

}
,

which include, for example, T = Z, T = hZ and
T = {qk : k ∈ Z} ∪ {0}, the relaxation modulus is
expressed by

σ(t)
ε0

= E2τ
β
2 Rα−β,1−β (t;−a)

where the Miller-Ross function, also called modified

Figure 1: Relaxation modulus in time scale T1.4
1 with

α = 1.

Figure 2: Relaxation modulus in time scale T1.4
1 with

β = 0.

Mittag-Leffler function, reads

Rα−β,1−β(t;−τ−(α−β)) =
∞∑
k=0

(
−τ−α

)k
h(α−β)k−β(t, 0)

=
∞∑
k=0

(t− s)((α−β)k−β)
(q̃,h)

Γq̃((α− β)k − β + 1)

=
∞∑
k=0

([t]− [0])((α−β)k+β)
q̃

Γq̃((α− β)k − β + 1)
,

where (see [14])

([t]− [s])(ρ)
q̃ = [t]ρ

([s]/[t], q̃)∞
(q̃ρ[s]/[t], q̃))∞

, t 6= 0

with [x] = x+ hq̃/(1− q̃) and (p, q̃)∞ =
∏∞
j=0(1−

pq̃j), x ∈ R\{0,−1,−2, · · ·}. Further, the q-Gamma
function is defined, for 0 < q̃ < 1, as

Γq̃(x) =
(q̃, q̃)∞(1− q̃)1−x

(q̃x, q̃)∞
.
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With this work it was possible to describe the
fractional viscoelastic model, in time scale, in respect
to the Miller-Ross function. This unified approach
allows the application of Laplace transforms (direct
and/or inverse) in discrete time scale with variable
time-step. This approach has particular interest for the
description of physical phenomena similar to the ones
plotted in figures 1 and 2, where it is possible to ob-
serve a higher data resolution, for short times, in order
to better capture the pronounced decay of the Relax-
ation modulus for that time range.
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