ON UNIQUENESS AND DECAY OF SOLUTION FOR HIROTA EQUATION
X. CARVAJAL AND M. PANTHEE

ABSTRACT. We address the question of the uniqueness of solution to the initial value problem
associated to the equation

Bu + iadu + B + i’y|u\2u + §|u|28xu +euf,u=0, =z,teR,

and prove that a certain decay property of the difference w1 — u2 of two solutions w1 and uo at
two different instants of times ¢t = 0 and ¢ = 1, is sufficient to ensure that u; = wus for all the

time.

1. INTRODUCTION

In this work we consider the following equation
Opu + iad?u + B3u + iy|u|®u + O|u*Opu + eu?d,u =0, x,t €R, (1.1)

where a, 8 € R, 8 # 0, 7,0, € C and u = u(x,t) is a complex valued function. Our main
concern is to find a sufficient decay property satisfied by the difference of two different solutions
at two different instants of time to prove the uniqueness of the solution to the initial value
problem (IVP) associated to (1.1).

The equation (1.1), with the mixed structure of Korteweg-de Vries (KdV) and Schrédinger
equations, was proposed by Hasegawa and Kodama in [8, 17] to describe the nonlinear propaga-

tion of pulses in optical fibers. This equation is also known as Hirota equation in the literature.
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Several aspects of this equation including well-posedness issues, solitary wave solutions, unique
continuation property, have been studied by various authors recently, see for example [3], [4],
[5], [18], [23] and references therein.

Study of unique continuation property (UCP) for certain models has drawn much attention
of a considerable section of mathematicians in recent time, see for example [1], [5], [9] — [16], [19]
— [22], [24], [25] and references therein. In particular, in [5] and [4] we addressed the UCP for
the equation (1.1). In [5], we proved that if a sufficiently smooth solution u to the initial value
problem associated to (1.1) is supported in a half line at two different instants of time then wu

vanishes identically. The precise statement of our result in [5] is the following.

Theorem 1.1. [5]. Let u € C([t1,t2]; H*) N CL([t1,t2]; HY), s > 4 be a solution of the equation
(1.1) with o, B,7,0,€ € R, B # 0. If there exists t; < ty such that

suppu(-,t;) C (—o00,a), j=1,2 (1.2)

or, (Suppu('7tj) - (b¢ OO), j: 172)' (13)
Then u(t) =0 for all t € [t1,12].

In our subsequent work [4], we obtained more general uniqueness property for the solution of

the IVP associated to (1.1).

Theorem 1.2. [4]. Let u,v € C([t1,ts]; H¥)NC([t1,t2]; HY), s > 4 be solutions of the equation
(1.1) with o, B,7,0,€ € R, 3 # 0. If there exists b € R such that

u(z,t) = wv(x,t), (z,t) € (b,00) x {t1,t2}, (1.4)

or, (u(z,t) = wv(x,t), (x,t) € (—00,b) X {t1,t2}). (1.5)

Then

U(t) = ’U(t) Vte [tl,tg].

Remark 1.1. Theorem 1.1 is the special case of Theorem 1.2 when v = 0.
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Motivation to obtain the above results is the following observation. Consider the IVP associ-
ated to the linear part of (1.1), i.e.,
U + 10Uy + Blzer = 0,

u(z,0) = up(z).

(1.6)

If w and v are solutions to (1.6) then w := w — v is also a solution to (1.6) with initial data
w(z,0) = u(z,0) —v(x,0) =: wo(z). If wy is sufficiently smooth and has compact support,
then using Paley-Wiener theorem it is easy to see (for detail see [5]) that w = 0, i.e., u = v.
But the proof of the same property is not so simple when one considers the nonlinear terms
as well, because in this case w := v — v is no more a solution. To overcome this situation,
we generalized and employed the techniques developed in the context of the generalized KdV
equation by Kenig-Ponce-Vega in [13] and [14] to prove Theorems 1.1 and 1.2 .

Quite recently, Escauriaza, Kenig, Ponce and Vega in [7] introduced a new technique to obtain
sufficient conditions on the behavior of the difference u; — us of two solutions u; and us of the
generalized KdV equation at two different instants of time ¢ = 0 and ¢ = 1 that guarantees
u; = ug. In [7], the authors obtained a sharp decay condition to guarantee the uniqueness of
solution to the generalized KdV equation. So, there arise a natural question, whether one can
find such a decay condition to get uniqueness property for a mixed equation of the KdV and
Schrodinger type. In this work, we shall extend the approach in [7] to address a uniqueness
question to the IVP associated to the Hirota equation (1.1) which has a mixed structure of the

KdV and the Schrédinger equations. Our first main result of this work is the following.

Theorem 1.3. Let uy,uz € C([0,1]; H3(R)) N L%(|z|?dx)), be strong solutions of the equation
(1.1) with o, B3,7,d,e € R, 3 # 0. If, for any a > 0,

ui(0) —ua(-0),  ur(-,1) — us(-,1) € H' (e da), (1.7)

then

ur = uz.

To prove Theorem 1.3 we follow the techniques introduced in [7] by deriving some new esti-

mates that are appropriate to work with the equation under consideration.
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Using the gauge transformation
o(z, 1) = NN 20000 90\ — 38A2)¢, 1) (1.8)

with A = %, one can work for an equivalent equation for v without the term iqu,, in the
linear part. With this, it seems that, our result for the original equation also follows from the
techniques in [7]. But it is not the case: because if we work on the transformed equation for v

(without the Schrédinger term), in the beginning we need to suppose that

3/2

vl(a;,tj) — UQ(:L’,tj) S Hl(eax+ ) =: X1, j=1,2. (19)

So, after undoing the transformation, for the original solution u, we need:

3/2
+

/
wi(z,t) —ua(x,tj) € Hl(e‘mi2) & vi(x, tj) —va(z,t;) € Hl(ea(x+o‘2/25) ) =: X5. (1.10)

But (1.10) is not always true, because one can find function f for which ||f||x, < oo but
| fllx, = oo and vice versa.

Therefore, it is not possible to discard the Schrodinger term using gauge transform so as to
apply the techniques from [7] directly in our case.

On the other hand, one may think of treating the term icu,, at par with nonlinear terms
and apply the estimates from [7] directly. This is also not possible, because the term with o
does not satisfy the necessary decay condition so as to use the estimates from our earlier works
[4, 5]. This situation has been explained in our earlier work [4], Remark 3.10.

Although the idea and estimates are similar to the one introduced in [7], the presence of
the Schrodinger term in the linear part creates obstacle to obtain such estimates, which can be
seen more explicitly in the derivation of the lower estimates in Section 3. The proofs of several
estimates that are crucial to prove the main results depend on the estimates obtained on our
previous works [4] and [5], where the exponential decay property of the solution was necessary.
As observed in [4] and [5], the presence of the third order derivative in (1.1) is fundamental
to obtain the desired exponential decay property of the solution. So we will suppose 8 # 0

throughout this work. To be more precise, let us recall the following remark from [4].

Remark 1.2. We can suppose 5 > 0. In fact, for a # 0 we can suppose 3 = |al|/3.
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If B < 0 we define w(z,t) = u(—x,t) then w is a solution to the equation (1.1) with the
coefficient of the third derivative is positive.
If B> 0 and a # 0 we define w(z,t) = u(a tx,t) with @ = |a|/383, then w is a solution of

the equation
.9 -3 2 ~12 T
Wi + 10 Wyy + BA° Wegr + i7y|w|“w + da|w|*w, + eaw w, = 0,
and we have Ba® = |a|a?/3.

As mentioned earlier, we are interested in finding a decay condition satisfied by the difference
of two solutions at two different instants of time ¢ = 0 and ¢ = 1 that is sufficient to get
the uniqueness of solution to the IVP associated to (1.1). Note that, while treating with the
difference of two solutions, we need to address an equation with variable coefficients (see (4.2)

below). Therefore, in the first instant, we consider a more general equation,

W + 10Wap + PWags + a2(2, t)Way + a1 (x, t)wy + b1 (z, 1) W, + ao(z, t)w + bo(x, t)w =0, (1.11)
and prove the following result.
Theorem 1.4. Assume that the coefficients in (1.11) satisfy that

ag, by € L2 A L1/ A L8783,
a1, by € LY/BLIO A 8783  p16/15 1673 (1.12)
ay € LYTLYP A LI A e

and

ao, bo, a1, by, az, (ag)z, (bo)z, (@1)z, (b1)z, (02)z, (a2)zz, (@2) 22z, (a2)r € L (R x [0,1]),

az, (az) € LF([0, 1) Ly (R)).
(1.13)

Ifw e C([0,1]; H*(R)) N L*(|z|*dz))is a strong solution of (1.11) with
1/ az>/?
w(-,0),w(-,1) € H (e*+ dz), Va >0,

then w = 0.
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Once we get this theorem, the proof of the main theorem follows by proving that the variable
coefficients involved in the equation in question satisfy the respective estimates.

Our next result is concerned with the existence of solution to the IVP associated to (1.1) that
decays asymptotically in . First, let us consider the IVP (1.6) associated to the linear part of
(1.1). The solution to the IVP (1.6) is given by,

1 .
u(x,t) = - 3tG(—3 3t> * ug () (1.14)
where
isw3 3 | iat!/34x2 o .
G(x)—/e R I +2mmdn. (1.15)
R

With some easy calculations, one can obtain
|G(x)| = |Ai(z — 4x*B?)|, (1.16)
where Ai is the usual Airy function given by
Ai(x) = / 62”i$5+%i“353d77
R

and
atl/3

N 2397

If x > 872B2, we get

|Ai(xz — 47’ B?)| < CeCla—an?B2)3/2 Ceiﬁ%x?ﬂ (1.17)
Therefore, from (1.16) and (1.17) we have, for any ¢ € [0, 1],
__C_.3/2
|G(z)] < Ce 2727, (1.18)
- 202
provided, = > Y

The estimate shows that the decay condition in Theorem 1.3 is in accordance with the decay
of the function G that describes the solution of the linear part.

In what follows, we show the existence of a local solution to the IVP associated to (1.1) that
satisfies the similar decay property as the linear solution described above. More precisely, our

second main theorem reads as follows.
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Theorem 1.5. There exists ug € S(R), ug # 0 and T > 0 such that the IVP associated to (1.1)
with data uy has a solution w € C([0,T] : S(R)) which satisfies

lu(z,t)| < ce™ ™3 x>, te [0,T7,
for some constant ¢ > 0.

We organize this article in the following manner. In Sections 2 and 3 we prove some pre-
liminary estimates (upper estimate and lower estimate) which play a vital role to prove our
main theorem. In Section 4 we present a proof of a more general result, Theorem 1.4, and then
the proofs of the main results of this work, Theorem 1.3 and Theorem 1.5. Before leaving this

section, let us record some notations that are used throughout this work.

Notations: We use f({) and f(&,v') to denote the Fourier transform defined by f(f) =
\/% [ e ™ f(x) dz, and f(&,7) = o= [ e "@EHD f(2 t) dwdt vespectively. We use L5 L to denote

mixed Lebesgue spaces. We write A < B if there exists a constant ¢ > 0 such that A < ¢B.

2. UPPER ESTIMATES

This section is devoted to prove upper estimates that play crucial role in the proof of the

main results. Let us first define the following operators
Hf = (8 +iad?+ BO)f,  Hunf = (3 + ™ (iad? + BO3)e ™) f. (2.1)

By Remark 1.2, we can suppose that 5 > 0 and |a|/3 = . Also, let us define v := e™*u, where

u is a solution to (1.1). We begin with the following result.

Lemma 2.1. The following estimate holds
lollzzorz < C(I0C0) 2 + wC, Dllz2 ) + CllHmol £y 2. (2:2)
Proof. We have
H,, = 0y + ™ (iad? + BO2)e™™ = 0y + i (™ Dpe” ™) + B(™ e ™). (2.3)
Also using (e™*0,e"™*)) = (0, —m)’, j = 1,2,3, we obtain

Hyf = 0 4 B02 + (ice — 38m)d% + (38m?* — 2iam)d, + iam? — fm?)f. (2.4)
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The symbol of H,, is given by

it —iBE% — (ia — 36m)E2 + (36m? — 2iam)if + iam? — Bm>

(2.5)
= i(1 — BE3 — al? + 3m3*¢ + am?) — (Bm® — 2amé — 36mE?).
Note that the real part of the symbol vanishes at
—a =+ /a? +35%2m?
€ = Callg (2.6)

3p
As noted in [7], by an approximation argument, it suffices to prove (2.2) for v € C*°([0, 1]; S(R))
with 9(&,t) = 0 near &4 for all t € [0, 1].
Now, consider f € C*°([0,1]; 8(R)) with f(x,t) =0 for ¢ near 0 and 1 so that we can extend
f as zero outside the strip R x [0, 1]. Also suppose that f({,t) = 0 for £ near &4 for all t € R.

For such a function f, define an operator T' by

Ty f(ga T)
T = . 2.7
) = S BE — o + 38m%€ + am?) — (Bm® — 2amé —3pmeD” 7
We claim that the operator T satisfies the estimate
ITfllLere < ClifllLize, (2.8)
which in turn implies (2.2).
To prove this, let us define n. € C*®(R), € € (0, 1) such that
ne(t) =1, te 21— 2¢]; suppn. C [e,1 —¢].
Define
Ve :ns(t)v(xat)v fa(xvt) = Hm(vg)(SU,t),
then, ve. = T'f.. Now (2.8) gives,
[vellzgerz < CllHm(ve)llpize < Cllne(®)vllzizz + [1neHm ()|l L1 z2- (2.9)

Letting ¢ — 0, the left hand side of (2.9) converges to HUHL‘[’&]L% and the limit in the right
hand side is bounded by

C(llv(0)llz2 + o, Dl z2) + CllHmvl £ 2
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Therefore, our task is to prove (2.8). As noted in [7], it is enough to prove that for f(z,t) =

f(x) ® 64, (t), with f(&) = 0 near &4, with to € (0,1), one has

1T fllzeerz < Cllfllze, (2.10)

where C' is independent of ¢g.

Let us recall the formulas

1 \V X(—oo.0y(D)e®, b >0
(T + z‘b) =04 o (2.11)
X(0,00) (t)etba b<0,

so that for a,b € R,

itoT . —00 - (t—to)b7 b 0
e - (212)
T—a-+1 X(0,00) (t — to)e(t—to)b’ b<0.
Hence,
o e £ ()
Tf(E )= i{ (T — BE — a2 + 38m2¢ + am?) + i(Bm3 — 2amé — 38mé&?)} (2.13)
e f(€) |

i .
7 —a(§) +ib(E)
Combining (2.12) and (2.13), it is clear that the operator T" acting on these functions becomes

the one variable operator R given by,
RF(€) = (xqpiey>0y (e @el =0y o) (t = 10)) F(€)

+ (X (i) <0y (€)™ OOy o 1 (t —t0)) f(€),

for which we need to establish that

(2.14)

I1Rflrz < Clifllez, (2.15)

with C' independent of ¢y and m.
But, looking at the multiplier in (2.14), the estimate (2.15) holds true and this completes the
proof. O

Our next result deals with the crucial upper estimate and reads as follows.
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Lemma 2.2. There exists k € Z1 such that if u € C*([0,1]; C§°(R)), then for any m > 1, the

following estimate holds:
N T B L
< Cm (1™ u(, 0)) 12 + 1T u(, 1) | 12) (2.16)
+ C(HemxH“HLE‘” + HemxHUHLlﬁ/wLW“ + HemxHUHL1L2>7
xt x t x 't
where @(5) = (14 1€2)Y24(€) and || - [z are restricted in [0,1].
Proof. As noted in the beginning of this section, by Remark 1.2, we can suppose that 3 > 0 and
|a|/3 = 3. Let us define
v=e""u e C([0,1]; S(R)), (2.17)

then the estimate (2.16) can be written as

ol s, + €™ Oae™ 0| 1 1505 + €™ 07 ™™ | oo 12

L}
< Cm?* (| Ju(, 0|2 + Tu(, Dz ) (2.18)
+ C(IMHmvll 37 + I Hml] 1o prosms + [ Hmolly 2)-

The estimate (2.18) will hold true if we can prove the following set of estimates

lollzs, < C (el 0)llze + llo( D2 ) (2.19)
0ll o provs < CoF (17200, 0) 12 + 177200 Dllg2) + CllHamoll pos o (220)

and
lem=02e= ]| e 2 < O (T o, )2 + 1T0(, Dll2 ) + CllHmoll 12 (2.21)

We start by proving the estimate (2.19): As in Lemma 2.1, it is enough to prove (2.19) for
v € C*([0,1] : 8(R)) such that 9(£,t) = 0 near &t. Suppose that f € C*([0,1] : S(R)) with
f(z,t) =0 for t near 0 and 1, so we can extend f to 0 outside the strip R x [0, 1]. Also suppose
that f(€,t) = 0 for € near &4 for all t € R. We will show that for the operator T defined in (2.7)

ITflzs, < CIfl sy (2.22)

and

ITSllzs, < Cllfllgrz, (2.23)
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for f € $(R2) with f(&,¢) = 0 for £ near & for all ¢ € R.
The estimate (2.22) is proved in [4]. To get (2.23) we restrict to consider f(x,t) = f(z)®0dy,(t),
and reduce the case to show that the operator R defined in (2.14) satisfies

|Rflzs, < Cllfla. (2.24)

with C independent of m and . But this is done in [4]
Now we show that estimates (2.22) and (2.23) imply the estimate (2.19). For this, consider

ve(@,t) = me(t)v(@,t),  Hm(ve) = ni(t)v + nHm(v) = fi(2,1) + fa(z, 1). (2.25)
Suppose,
vi(z,t) =T fi(x,t), va(x,t) =T fa(x,t), (2.26)
where both make sense because of our assumption on v. Then,
ve(z,t) = vi(x,t) + va(z, t), (2.27)
since both sides are in [2, and have the same Fourier transform. Hence, from (2.22) and (2.23)

it follows that

Foellzs, < lonllgs, + losllzs, < Cllfillzaza + Cllfall o/
xt
(2.28)
< Clne(@vllyrg + Cline () Himoll 57
Now, letting € — 0 we get the required estimate (2.19).

Next, we prove the estimate (2.21): As earlier, here too we make our usual assumptions on

8(¢,7). For f € $(R2?) with f(£,¢) = 0 near &1 for all ¢ € R we define

Tof(€,7) : = (i€ —m)*Tf (€, 7)

B (i€ — m)2f(g, 7) (2.29)
(T = BE — af? + 30m2E + am?) — (Bm? — 2amg — 3mE?)’
Let
Tof(x,t) = xpo1T2f (2,1). (2.30)
We will show that
T2 fll ez < Clfllzszzs (2.31)

I Tofllge 2 < O[T £l - (2.32)
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Before proving (2.31) and (2.32), we show that these estimates imply (2.21). Using the
notations introduced in (2.25), (2.26) and (2.27), the estimates (2.31) and (2.32) yield
(0 — m)QUEHLgOL% < Ix0,11 (02 — m)Q'UlHL;oL% + l1x70,11 (02 — m)ZUQHLgOLf
<\ Tafillpeers + 1Tofoll e 2

(2.33)
< Om*| T fillgzz + Cllfollpere

< Cm?||ne(8)Jvll Lz + Cline () Himvll £y £z

Now in the limit as ¢ — 0 we get (2.21). So, to complete the proof of (2.21) it is enough to
prove (2.31) and (2.32).

With minor modification from the argument in [4], we get

HT2f”LgoL§ < C”fHL;L‘;’? (2.34)

which in turn implies (2.31).
Now we move to prove (2.32). Let 6, € C§°(R) with 6,(x) = 1 for |z| < 3r and supp 6, C
{|z|] < 4r} and consider
01n ()i — m)2F (6. 7)
i(T — B€3 — ag? + 30m2E + am?) — (Bm? — 2amé — 3m&?)
(

(1= 0 () (i€ — m)*f(&,7) (2.35)
i(T — BE3 — a2 + 38m2& + am?) — (Bm? — 2amé — 3BmE?)

= Tor J(6,7) + Toaf (£, 7).

@(fa T) -

_l’_

Let TQJ = X[O’l]TQJ. From the Sobolev lemma we obtain
T2 f | perz < Ol T2 fll 2z = CllITon fllrzre < CllIToallzser2- (2.36)
Now suppose,
G1(&.7) = O () (1 + |6)1/2 (i€ = m)*f (. 7).
so that
JTo 1 f(z,t) =Tg1(z,t)

and therefore from (2.8) and (2.36) it follows that

I To1fllgeerz < Cligillzzre = Cm? (T fllpage- (2.37)
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To complete (2.32), it is enough to prove
1722l ez < CIIfllLrrz- (2.38)

Here too, with the similar argument as in [7], we reduce the case to consider functions of the

form f(x,t) = f(x) @ &, (t) so that we just need to bound the operator

Ra(&t) = (1= 0m(€)) (i€ — m)xu(e)<0y (€)@ el 0Oy o o) (t — t0) f(€), (2.39)
as
[1R22fllzgerz < ClIJfllz2, (2.40)

with C independent of m and .

Let us write

Roof(z,t) = / (1 — 0,,(€)) (i€ — m)* X qpe) <0y (€)™ Oty o ) (t — to) f(£)dE (2.41)

and recall that a(¢) = 8€3 + a&? — 3m2¢ — am?. Now, making change of variable A = a(£) we
get d\ = (38€2 + 20 — 3Bm?)dE.
From the definition of 6,,(-), the domain of integration in (2.41) is equal to {|¢| > 3m} where
133¢2 + 2a¢ — 3pm?| = |€|? in fact if o # 0, by Remark 1.2
13667 + 208 — 30m?| =|a] |¢* & 26 — m?|
>[a(|€* —m® - 2[¢)
>|al((8/9)[€1* — 2I€]) = |al [E{(8/9)I€] — 2} = |al[€?|/9,
and the transformation is one-to-one since a’(§) = |a(&2 £ 26 — m?) 2 £2.
Thus we have £ = £(\) and

) ixé _9m S 2 3 .
Raaf(e,t) = [ e S0 PO S o @ MO 0t — o) F(E)N

(2.42)
= [P nar

with

-y €T = 0 (8)) (i —m)?
gQ(A) = 3ﬂ§2 +2af — 3,37’7‘&2 f(g)a

P\ t) = X{b(g)<0}(ﬁ)e(t_to)b(g)X(o,oo) (t —to).
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Observe that,
B <C, (A1) € R?

and

/|8tw()\,t)\dt <C vV AeR.
Therefore, using the result in [6] and taking adjoint we get,
H/ﬁ%uwmmwm<m@m

]/ [ (1 = Om(€) (i€ — m)* f(€) d£)1/2
|33£2 + 2045 30m?([38¢2 + 2af — 3pm?| (2.43)

11— 0 (OPIE2 + m2PIf (P | \1/2
/ ]3ﬂ£2+2a§ 36m?2| d£>

< CJfllz2

which is (2.32).

Finally, we supply a proof of the estimate (2.20): At this point too, let us make the usual
assumptions on v and 0. For f € $(R2) with f(£,t) = 0 near £+ for all ¢ € R, we define using
(2.7)

(i& —m)f (&)
i(T — BE3 — a2 + 3m2E + am?) — (fm3 — 2amé — 3BmE?)’

Tif(€,7) = (i€ —m)Tf(&,7) =

(2.44)
Now define,
Ty f(2,t) = X1y ()T1f (2, 1). (2.45)
We claim that
T3 £l yogpors < CI N prons porm (2.46)
and
IT3 | o pross < Crll T2 e (2.47)

As earlier, the estimate (2.20) easily follows from the estimates (2.46) and (2.47). Let us

recall, in [4] it was proved that
I3l a0 < Il oo (2.45)

which implies (2.46). To obtain (2.47) we write T} in the following way
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A~

O (§) (i€ —m) (€, 7)
i(T — BE3 — af? 4 3m2E + am?) — (Bm3 — 2am& — 3mé?)

N

n (1 —0m(£)) (i€ —m)f(&,7) (2.49)
i(T — BE3 — al? + 38m2& + am?) — (Bm3 — 2amé — 3BmE?)

Toif(6,7) + Tiaf (6, 7).

Tif(¢,7) =

Let T1 1 = X[0,1](t)T1,1. Now from (2.37) we have
I To1fll ez < Cm?|| T £l (2.50)

and from (2.23) we get
HTO,lfHLgt <Clfllzizz- (2.51)

Hence, using the interpolation argument based on the Littlewood-Paley decomposition as in

[14] we obtain

IT3ll o 105 < Cmll T2 f 2 (2.52)
Finally we interpolate between
1 To2flzs, < Cllfllnize, (2.53)

which follows from (2.22), with (2.37) to get
1Ta2fll o o5 < Crll T2 3z (2.54)
and this yields (2.47). O

In an analogous manner, as it has been worked out in [7], the above result holds for a larger

class of functions, for example:
u € C([0,1); H*3 (P2 dx) n HFF3(R)) N CL([0,1]; H* (e7%dx) N H*(R)),

with kK € Z, k > 1 and for all 8 > 0.
Now we want to extend the estimates in (2.16) in Lemma 2.2 to solutions with variable

coefficients

Opu + iad?u + BO3u 4 az(x,1)0%u + a1 (2, 1)0pu + by (2, )04 + ao(x, t)u + bo(z, t)a = g. (2.55)
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Let us introduce the notation

Hou = dpu+iad?u+ BO3u+as(x,t)0%u+ay (x,t)0pu+by (x, )i+ ag(z, t)u-+bo(z, 1),

and suppose that multiplication by ag(x,t) and bg(z,t) map

8/7

8 8 16/15 1 16/11 8 172
th - L:(;t ’ th - Lm / Lt ’ L:Et - Lth7

multiplication by a1 (z,t) and by (x,t) map

L6plOs 87 p6pI6/s L ple/1sp 6/ p16p 165 plp2

and multiplication by as(x,t) maps

8/7

L} — LY, L} - Lt L} - LI

To guarantee that the coefficients satisfy these conditions, it is enough to consider,
ag, by € LI/BL50 o L8/TLE3 A [16/1516/3
a1, by € LY? 0 L16/1BL16/9  [8/718/3
as € LYTLYP A LI/ L10/3 A p1eo

Also, if we assume that, if the coefficients satisfy

ao, bo, a1, by, az, dzag, dzbo, Opar, duby, Opaz, O2as, dias, Grag € L¥(R x [0, 1]),

ag, draz € L2°([0,1]; LL(R)).

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

with small norms in (2.60), then Lemma 2.2 holds for H, instead of H. In fact we have the

following result.

Lemma 2.3. Suppose that the coefficients ag, by, a1,b1,az satisfy (2.60) and (2.61) with small
norms in the spaces in (2.60). There exists k € Z' such that if u € C*([0,1]; C§°(R)), then for

any m > 10|[az|| oo ®mx[0,1])

€™ ull s, + €™ Opull 15 1605 + €™ Ogull o 2

< Cm (7™ u(,0) 2 + 1 (€™ u(-, 1))l 2 )

+ O (lle™ Hyull e + 1™ Haul s prom + 1™ Haull o2 ),

(2.62)
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Proof. Let us define

10 = 11e™ Fllzs, + €™ uf |l pyoprors + €m0 f | ooz

U7z = 151 sy + 1S o prom + 11y
From Lemma 2.2 we have
bl < Cm?* (7™ u(-, )2 + 7™ (-, )|z ) + Clle™ Hull,

< O (7™ u, 0)) | 2 + 7™ u-, 1) 2) + Clle™ Hyull

(2.63)
+ [|e™* (a10,u + a20:1 + asu + ag@)]|2
1
< szk(llJ(eme(w Ollz2 + [T (e™ u(-, 1))HL2) +Clle™ Haull2 + 5 llully,
which gives the desired result. O

One can extend this result to a boarder class of solutions as in [7].

Theorem 2.4. Let the coefficients ag, by, a1,b1,as satisfy the conditions in (2.60) and (2.61).

If u = u(x,t) is a solution of
Opu + iad7u + BOu + as(w, t)07u + ay (x,t)Opu + by (x, )00 + ag(x, t)u + bo(x, t)d = 0, (2.64)
with u € C([0,1]; HY(R)) satisfying that
u(+,0), u(-,1) € H (")

for somel > 1 and a > 0, then there exist cg and Rg > 0 sufficiently large such that for R > Ry

—a L /gl
[l L2 ({reseri1y < 0,1)) T 102t L2((Rewe R11yx(01)) + 102Ul L2({Rer< RE1} % (0,1)) < coe™ /T

(2.65)

Proof. Choose R so large that in the z-interval (R, c0), the coefficients ag, by, a1, b1, as satisfy
the conditions in (2.60) and (2.61) with small norm in corresponding spaces in (2.60).

Let p € C*°(R) with pu(z) =0if x < 1 and p(z) =1in z > 2.

For ur(z) = p(z/R), define

ur(z,t) = pr(z)u(z, t),



18 X. CARVAJAL AND M. PANTHEE

so that ug(z,t) satisfies the equation

8tuR+582uR+ia8§uR+a2(x, t)6§UR+a1(x, t)0pur+b1(x, t)0pur+ao(x, t)ugr+bo(x,t)ug = Fr
(2.66)
where,

1 o1
Fr= 5@#%“ + 35R2 1ROz + 35RHR3 u+ mRZ KRY + QWEN/RC%U 26m

1 1 1 1
+ az(w, t)ﬁ/il}/%u + 2a(z, t)EMIRawU + ax(z, t)Eu}%u + bi(z, t)ﬁﬂ?%@
Note that, supp Fr C {z : R < z < 2R}. Let us choose, m = %Rl_l. Now, we cam use

Lemma 2.3 to ug with
Hunp = 0y + B2 +iad? + figaz(2,1)0% + firar (2, 1)0y + firb (2, 1)0y + firao(z,t) + firbo(w, 1),

where fip(x)ur(xz) = pr(x), which assures that the coefficients fip(z)a;(z,t), j = 0,1,2 and
fr(z)bj(x,t), j = 0,1 have small norms in the corresponding spaces in (2.60) for R > Ry.
Therefore, applying (2.62) for R large, we get

lurll < cm%(HJ(emIUR(-,O))IILQ + 1/ (€™ ur(, 1))HL2> + lle™ Frlla- (2.68)

With the argument similar to the one in [7], the first two terms in the right hand side of
(2.68) are bounded by cq .

Now we move to bound the last term in (2.68).

Recall that supp Fr C {x : R < x < 2R}. Now, the combination of Hélder and Minkowski’s
integral inequality yield,

le™ Frlle = [le™ Frll s/r + €™ Frll 1615 1611 + [[€™ FRl L1 22
xt z t

-1
< ettt R||(|U’ + [Opu| + faa%’)X{w:R<z<2R}||Lg°Lg (2.69)

< detRTR.
Hence, from (2.68) we obtain,

le™ ully, e + €70l

1
g o TRl S cort e 0)

8
{z>4R} {z>4R}

Once again, using Holder inequality in (2.70) we get, for sufficiently large R

_ !
+ 102wl 2 + |03l 2 < cae . (2.71)

H HL ({4AR<z<4R+1}x(0,1)) L({4R<z<4R+1}><(0,1))

({4R<xz<4R+1}x(0,1))
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Replacing 4R by R’ we obtain,

< a(R' /4)!
HUHL?{R’< <R/+1}x(0,1)) H IUHL(Q{R% <R/+1}x(0,1)) H z HL({R’< <R/+1}x(0,1)) Ca le !

(2.72)

which yields the required estimate (2.65). O

3. LOWER ESTIMATES

This section is concerned with lower estimates that play fundamental role in the proof of the

main result of this work. Let us begin with following lemma.

Lemma 3.1. Assume that ¢ is a real smooth function with compact support in [0,1] and B # 0.

Then, there exist ¢ > 0 and M = M (||¢'||oo; [|¢"||co) > O such that the inequality

(15/2 - T 2 (13/2 - T 2
5 el H+e(1))? (E + SO(t)) g + = et(FHe(1)? (E + go(t)) 09
L2 (dxdt) L?(dzdt) (3.1)
al/2
7 |ealFHe®))? 92 < a(E+(t))? 2 3
+ 70 o g <0 e (0 + iad? + BO° g] ey

holds, for R > a?/BY3, a such that a> > MR?, and g € C§°(R?) supported in
2
> .
{(‘MGR ‘R )‘—1}

Proof. Initially we consider the case when § = 1. In a similar way as in [7], we define a function

fla,t) = e®@Dg(z,t) with 0(z,t) = (% + ¢(t))? and the expression
@D (8, 1 iad? + 87) (efab’(w,t) flz, t)) = (Sq + Saa)f + (Ag + Aaa) f, (3:2)
where
Saf = =3a(0:f2)e — A* 03 f — aOpurf — abif;  Saaf = —icaby, f — 2iaab, fs,

and
Aaf = ft + fxa:a: + 3a20323fx + 3a29x6mmf; Aa,af = iaa29§f + Zaf:cx

We have S; = Sq, S5 o = Saar Az = —Aq and A; | = —Ag o, and therefore,

(R te®)? (Or + iad? + 02) g’

2
ety = 155+ S0)f + (Aa+ o) 2 ana

Z <{(SaAa - AaSa) + (SaAa,a - Aa,asa) + (Sa,aAa - AaSa,oz) + (Sa,aAa,a - Aa,aSa,a)} f7 f> .
(3.3)
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We find that
(SaAa - AaSa)f = [SaQAa]f

(3.4)
= 90(02z frz)ee + (6005 — 18a36020,2) fo)z + (=300, + abys + 66302041 + 9a°020,,) f,

[Sa; Aaalf = [Sae; Aalf = 160000 frue — 16a300,02, f — 16030204y fr + 1200051 fo,  (3.5)
and

[Sa,a;Aa,a]f: *4aa29:m:fx:13' (36)

In [7] it was proved that, if a® > (||¢/||cc + H<,D"\|<1>é2

([Sas Adlf, 1) _18“/ fual? ddea // L o) Ifa dodt

+ 1)R3, then

(3.7)
ma // Lo |f|2dxdt.
From (3.5) and (3.7) one has that
([Sa; Aaal f + [Sa,ai Adlf + [Saa; Aaalf, f)
= 112ac Opas fozaf — 112a3 0 9§x|f]2 —i12a°« eﬁemfxf
[t [ ff st

+z’4aa//9xtf:pf+ dac? //Qm‘sz

=: 11 +iJo +iJ3z +iJy + 5.
Integrating by parts we observe that i.Ji,iJy + iJ3,iJs € R. Since 6(z,t) = (% + ¢(t))? we
have that

i < 24@]04]

12a 1202a
/ fmfxdxdt’ 3 //]fm|2d:vdt—|—RQ/ | fo|Pdadt. (3.9)

Similarly

‘ ‘ a5/2 g_‘_ t 2f aa1/2 ’x
\1J2+2J3\:1%J3|S\J3!§96//< (G Rf( DT (Lo R’f’ dadt
48 480/
¢ // S |f]2d:):dt+;2a//\fm|2dxdt.

(3.10)
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As a® > ||¢/|| o R and (% + ¢(t))* > 1, we get

MKS// (216 (12\a|!fx\>d$dt
gzm//wr :

4 2
< R6 // Lot \f|2dxdt+ 2;‘/ | fo|2dadt.

Now R > o? and a? > R3 imply that

/ | fo|Pdadt < o // <% +gp(t)>2]f$12da:dt. (3.12)

Combining (3.9)-(3.12) we obtain

~12 64a’
iJy 4 ido 4 iJs +iJy + J5 > 2a/ A // -+l !foQdfﬁdt

52
i // Lot |f]2d:vdt.

L (dadt) > ([Sa; Aalf + [Sa; Awal f + [Saa; Aalf + [Saes Aaal f f)

_R2//|fm| do dt+68“ // L olt)) 1l dede
+16$//(Z+90(t)) |f1* dadt,

which concludes the proof of the Lemma when 5 = 1.

Now if 8 > 0, § # 1 (see Remark 1.2) we use the case § = 1 with a := a/ﬂQ/?’ and

This inequality, (3.3) and (3.8) yield

e HETW’ (8, +iad? + 07 g‘

g(x,t) = g(6'/3x,t). Finally, we perform a change of variable z := 33z to obtain (3.1).
O

In an analogous manner as in [7], we have the following result.

Lemma 3.2. Assume that ¢ is a real smooth function with compact support in [0,1] and that

ag, a1, by, by are complex functions in L (R?). Then there exist ¢ > 0,

Ry = Ro ([l lloos 1" lloc3 laolloos lanlloe) > 1, and M = M([|¢"[loo; |¥"]|oc) > O



22 X. CARVAJAL AND M. PANTHEE

such that the inequality

a®/? x 2 /X 2 a3/? x 2 /X 2
A7 (g +e®)? (X 7 alg+e@)? (X
e’ +et)) g + e" R’ +¢(t)) Ozg
R ( R ) L2(dzdt) ( R ) L2(dzdt)
< ¢||e®FEEO (g, + iagey + Brr + ar(@,8) gy + b1 (2, 8)Gs + ao(z, )g + bo(z, t)g)‘ L2t
(3.13)

holds, for R > Ry + a2, a such that a > MR3/?, and g € C{°(R?) supported in
t) € R?: ‘ o(t ‘ > 1}.
{@ g P02
Theorem 3.3. Let u € C([0,1]; H3(R)) be a solution of
U + 10Uy + BlUgge + a2(T, t)Uge + a1(x, t)ug + b1 (2, t)Uy + ao(x, t)u+ bo(x,t)u =0, (3.14)
with by, by, ag, a1, az, (a2)z, (a2)zz € L®°(R?) and as, (az); € L (R : LL(R)). If
1
// (ul? + |ua]? + e 2) (2, t)dwdt < A2, (3.15)
RJO

and

5/8
/ / (x,t)dxdt > 1, (3.16)

then there exist constants Ry, cg,c1 > 0 depending on

A, [1Bollss 1b1]loo, llaollsc, llatlloo, llazllss, 10zazllos, [107a2lloos lazll ge 1., 1Obaz ]l e £y

such that for R > Ry

1 (R 1/2 ,
§(R) = 6u(R) = </ / (Ju]® + Jug|* + \umlz)(:c,t)da:dt> > coe 1 B2, (3.17)
0 JR-1
Proof. Considering the gauge transformation

v(z,t) = ulx, t)e/ B0 o a2(s0ds (3.18)
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the equation for v = v(x,t) can be written as

v — (31ﬁ /Ox Oras(s,t)ds | v+ i <vm — 32@201 + < 56 A2 + —= 9ﬁ2 ) )

+ /8 (Umxm 6 — Vg + < —0gaz + 9ﬁ2 CL2> Vg + < 2753 362 83: az — 358xa2) ’U)

2 3 _ _
az0zay | a; azay aby dgby \ _
+a2v$$_35 +<_ 3/8 +962>U+a1113;_?)lgv‘i_aov—?)ﬂvx‘f’(b()_ v

=0t + 1 0Wap + Bz + a1 (2, 1)y + do(x,t)v + by (2, )0, + bo(z, )7 = 0. (3.19)

where dy, d1, by, b1 are complex functions in L (R?).

As in [7], we define the functions Or(z) = 1if xt < R—1, 0pr(z) =0if z > R, pu(z) =1
ifx>2 px)=0ifz <1and (t) =3if t € [3/8,5/8], ¢(t) = 0if t € [0,1/4] U [3/4,1],
0<0p,pn<1,0p puecC®R),0<p<3and ¢ € Ci°(R) and the function

gla.t) = Op(@) (5 +o(0) v@. ), (@.8) €Rx[0,1],

so that g has support on (—2R, R) x (0,1) and can be assumed to satisfy the hypothesis of

Lemma 3.1.

Using (3.14) one has that

gt + iag;rz + ﬁga:;rz + dlgz + Blgm + &Og + 50@

=u <% + W(t)> (zaeg)v + 22'040%)% + ﬂgg’)v + 39?% + 3595%)%.@ + &leg)v 4 Blﬁ%?@)
a (2) (1) (3) ) )
+ Or(z) <,u(1) (cp(l) + C;) v+ Zoz'l;%—?v + QW%% + 5:“ vt 36M Ve + 3ﬂMR’Um>
(1)
R

e o

2)
v+6/39 R vx—l—b193f1}

1)
v+ 3802 R

9 9()
+ 2iv R

v+ 3600
(3.20)

The remaining part of the proof follows as in [7]. In fact, using the definitions of 0g, i, ¢ and

(3.16) we get

5/2 5/2
a4 > L% (3.21)

L2(dxdt)

a(Z+p()? (T 2
e FHO? (Z40(1) g

On the other hand, we observe that the first term in the right-hand side of (3.20) is supported

in [R—1,R] x [0,1] where ¢®@/B+e()* < ¢l6a and in the remaining terms in the right-hand
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side of (3.20) we have e®(#/B+e(1)* < ¢4 Thug (3.13) and (3.15) imply that for a > M; R3/2
(M as in Lemma 3.2),

a®/? z 2 (T 2

L |palgre®)? (2 ¢

=5 [ (R+wu)gLWM)
<c ea(%+¢(t))2 (gt + i Gge + 591-” + a1 (a?, t)gl' + b (ac, t)gm -+ ao(w, t)g + b()(w, t)g)’ L2(dadt)
Sclelﬁa&u(R) + et A. (3.22)

Combining (3.21) and (3.22) it follows that
CR—ega < clelﬁaév(R) + e A, Va > M R3/2.
In particular, for a = M;R3/2? with R sufficiently large we obtain

ou(R) > 606_61R3/2.

By the hypothesis on the coefficients ag, a1, as and the definitions (3.17), (3.18) we conclude
that

du(R) ~ 6,(R) > coe_cle/z.

4. PROOF OF THE MAIN RESULTS

This section is devoted to provide proofs of the main results of this work. First, let us begin

with the proof of the Theorem 1.4.

Proof of Theorem 1.4. If u # 0, we can suppose that u satisfies the hypothesis of Theorem 3.3

and therefore
Su(R) > coe B (4.1)

and apply Theorem 2.4 with [ = 3/2, a > 8¢y, ¢; as above we have
8u(R) < ce o8,

which is a contradiction with (4.1) for R sufficiently large. O

Now we are position to supply proof if the first main result of this work.
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Proof of Theorem 1.3. Let uy, ug be strong solutions of the equation (1.1), then their difference
w = u1 — uo satisfies the following equation

Opw + iad>w + BOZw + Say (x, t)0pw + €by (2, 1)0pw + ag(x, t)w + bo(z, t)w = 0, (4.2)

where a1 (x,t) = |u1|?, bi(z,t) = u?, ao(z,t) = iy(Jur|? + |uz|?) + du20,us + €(ug + u2)d, iz and
bo(x,t) = iyuiug + dujdyus.
To conclude the proof of the theorem, it is sufficient to prove that w, ag, a1, bg, b1 satisfy the

hypotheses of Theorem 1.4. As in [7], this is a consequence of the estimates
lvul|ger < |vllzgenge llull e Lo- (4.3)

For the sake of completeness, we present the proofs of the estimates correcting some mistakes
present in [7].

We need show that
ao.bo € Li{:«z n Li6/13Li6/9 A L§/7Lf/3, ai, by € Liﬁ/lgLiﬁ/g n L§/7Lf/3 n Lglﬂ6/15Lg6/3'

We will prove the estimates only for by and by, because those for ag and ay are similar. Using

the hypothesis

uj € C([0,1] : H* N L*(|z|*dz)), j=1,2, (4.4)

we have (see [7])
g, 223 (), |22 () azs (1)) ze € L2([0,1],L3),  j = 1,2 (4.5)
uj, x| Pu; € L°([0,1], L), j=1,2. (4.6)

Thus, (4.3), (4.6) and Holders inequality yield

+
lurusll as < ellullzgs, sup [[(@)'? uz)lpz < ellullzgs, sup (luzllzz + llouslzz).
wt " te[0,1] " te[0,1]

Similarly

+
lur(uz)ell 173 < clluallree, sup @) (u2)allre < clluallie, sup (fuallzz + |2 (u2)el r2)-
xt " t€[0,1] © tel0,1]
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Now we will prove that by € Lglcﬁ/ 13L% /9 We have,

2\P 9/13 13/16
HUlU2HL16/13L16/9 ScHulHL;ot (/él)ip/ (’uﬂlG/gdt) dac) y 4/13 <p< 15/13,
x t )

9/16
<cllu1| L, <//<x)13p/9|uQ]16/9d:cdt> ,
1679 )1
<cllua|| Lz, </”<$>U2HL%/ dt>

<cllullzze, sup ([luallrz + llzuzlL2)-
te[0,1]

Analogously, using 4/13 < p < 35/39, we get

lur(uz)zll p1o1s oo < cllun]zgs, ti}g)l](HWHLg + 1223 (u2) ] 12)-

Now we will prove that by € ¥ 7Lf/ ® Similarly as in [7], we get

3/8
+
Hu1U2HL§/7L§/3 <cllur][Lz, (//(@4 /3’u2|8/3da:dt>

2/3, |13/4

1/4
<cluillzzs, @) *ualj up ) Pusll7s 0 < e,
x, te 0’1 x,

and we have similar estimate for [lui(u2)z | s/7,5/s.
z Ly

Finally, it is sufficient to prove that by = u? € L/ 15L% /3 Tn fact (see [7])
3/8 5/8
0311015 s < sz, e 26 1@ 132
Using (4.4)-(4.6) we conclude the proof of the theorem. O

In what follows, we provide the proof of the second main result about the decay property of

the solution to the Hirota equation.

Proof of Theorem 1.5. The proof of this theorem is very similar to the proof of Theorem 1.4 in
[7]. For the sake of clarity, we provide a brief idea pointing out the differences that arise in our
case.

Let ¢ € C§°(R), ¢ > 0, supp ¥ C (—4,6), 6 € (0,1/8) and [ (z)dz = 1.
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We consider the IVP
Ut + 10Uzy + PUgge + F(u) =0, (z,t) € R x [0,AT] @
u(xz,0) = ug(x) = eV (1)p = &Sy * 1,

where F(u) = iy|u*u + 6|u|?0,u + eu?d,u, and e, AT are sufficiently small.

Without loss of generality we can suppose § =1 (Remark 1.2).

Let V (t)ug be the solution of IVP (4.7) when 8 = 1 and let V,(t)up be the solution of IVP
(4.7) when 8 = 0.

Let us consider ¢ = V_,4, thus ¥ = V,¢, then

V(t)¢ = S * Vad = Sy x 1),

where S; x f(z) = %Az(ﬁ) * f(x) and Ai(x) is the Airy function.

The solution to the IVP (4.7) (see [7] and [12]) is obtained by iterating
O(u™)(t) = u"TL(t) = Sk 1p + /Ot Sy x F(u™)(t")dt,
n=1,2,--- in the ball
lwllzsn < 2e(1S1 % Wl s + 1Sy * 4]l 2), (4.8)

where

lwllz,s = sup([w(®)lzs + la*wt)llz2) + w2 0,7 + 105 WO | e 2oy (49)

The sequence {u"} converges in the norm given by (4.9), for T' > 0 sufficiently small, inside the
ball defined in (4.8).
Using the induction principle, the integral equation and properties of S; * ¢ (Airy function),

t €[1,1+ AT], AT > 0 small enough (see [7]) we obtain

_3/2

e , it x>1/2,
|F™"(x,t)] <ee® S 1, i |a| < 1/2, (4.10)
1/(1+2)2 if zeR.

This inequality, properties of Airy function, a limit process and the same argument as in [7] for

¢ sufficiently small yield the desired result. O
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