
 

 1 

ECCM 2010 
IV European Conference on Computational Mechanics 

Palais des Congrès, Paris, France, May 16-21, 2010 

Closed form micro-macro  
relationships for periodic masonry 
A. Mauro1, G. de Felice1, P.B. Lourenço2 
 
1  University Roma Tre, Department of Structures, Rome, Italy, mauroa@uniroma3.it,  defelice@uniroma3.it  
2 University of Minho, Department of Civil Engineering, Guimarães, Portugal, pbl@civil.uminho.pt  

The use of theoretical models for providing a constitutive identification of masonry, starting from 
the individual properties of the phases (i.e. mortar and bricks), constitutes an attractive alternative to 
costly experimental investigations. In the case of brickwork with periodic texture, the latter issue is 
tackled resorting to the homogenization theory by Anthoine [1] and solved by means of the finite 
element method. In order to obtain closed form formulations many authors in literature made 
simplifying assumptions regarding either the masonry bond, Pande et al. [2], or the joints thickness, 
Cecchi & Sab [3]. The simplifications adopted turn out to introduce significant errors in the results 
when either a large difference in stiffness between the phases or a non negligible thickness of the joint 
are encountered. 

In the present paper a homogenization procedure is presented, which takes into account the effect 
of the bond and the Poisson-type interaction between mortar and brick. Assuming a simplified 
kinematics for the phases belonging to the R.V.E., the so-called localization problem is solved by 
imposing the minimization of the average internal strain energy. Closed form formulations are then 
derived for the equivalent in-plane elastic constants of masonry. The expressions found are consistent 
with those obtained in literature in the limit cases in which masonry is tackled as a stratified medium 
or where the joints are treated as interfaces. The accuracy of the results is investigated by means of a 
comparison with finite element analysis. A parametric study, conducted varying the geometries and 
the mechanical properties of the phases, shows that the error introduced over a very wide range of 
values for the elastic properties is lower than 8%, meaning that the procedure is ready to be used for 
non-linear analysis.  

Introduction 

Aiming at predicting the behaviour of masonry structures, macro-modelling approaches, based on 
the definition of an equivalent homogeneous medium, are far more preferable than micro-modelling 
strategies, in which units and joints have to be reproduced separately. The latter approach in fact 
becomes not feasible in practical cases when the dimension of the structure is much bigger than the 
dimension of the unit. 

When dealing with masonry showing a periodic texture, a constitutive description of the 
equivalent homogenous medium can be achieved resorting to the homogenization theory, by solving a 
boundary value problem (of localization) defined on a representative volume element (R.V.E.) of the 
material, Suquet [4]. In the specific case of running bond masonry, the problem was addressed by 
Anthoine [1] in a rigorous way and solved by means of the finite element method. The latter approach 
applied in a full three-dimensional fashion requires intensive numerical computations, Cecchi and Di 
Marco [5], so that the problem is usually tackled under plain conditions, by taking advantage from the 
geometrical aspect ratio of masonry walls. 

In order to handle the problem analytically many authors in literature introduced simplifying 
assumptions regarding either the bond of the material, Pande et al. [2], following the so-called two-
step homogenization approaches, or treating the joint as interfaces, Cecchi and Sab [3] and de Felice et 
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al. [6]. These approaches provide analytical formulation for the overall elastic constants of masonry 
and allow to obtain the relations between microscopic and macroscopic stress and strain fields. The 
abovementioned relations result particularly attractive for non-linear problems within the framework 
of multi-scale analysis.  

However, the simplifications commonly used in the literature are thought to introduce some errors 
in predicting the properties of the equivalent homogeneous continuum. Concerning the elastic moduli, 
quite good results are obtained when thin joints and small differences between the stiffnesses of 
mortar and brick are encountered; the error introduced by the models is expected to become larger in 
the case of thick joints and soft mortar, Zucchini and Lourenço [7]. Moreover, both the approaches fail 
in reproducing the microscopic stresses arising within the phases which strongly depend on the bond 
pattern, which is neglected in the multi-step approach, and on the Poisson-type interaction between 
mortar and brick, which is not accounted for when the joints are treated as interfaces. Furthermore, the 
plain stress assumption, which is commonly adopted, is in disagreement with the exact three-
dimensional solution, as showed by Anthoine [1]. All these arguments suggest that the extension of 
the abovementioned models to the non-linear range may leads to erroneous estimation of the 
mechanical behaviour of masonry. 

In the present paper the homogenization theory is applied rigorously to running bond masonry, i.e. 
in a three-dimensional fashion and by accounting for the actual thickness of the joints. A compatible 
approach is then followed by introducing a simplified kinematics with the purpose of obtaining, in 
analytical form, an upper bound estimation for the elastic constants of masonry and closed form 
micro-macro relationships. Finally, the results obtained within the elastic range are compared with the 
models proposed in literature and with the results of a standard finite element procedure. 

Derivation of masonry elastic properties via homogenization 

Let us consider a domain of reference consisting of a single-leaf masonry wall where the bricks, 
which have dimensions hb and lb, are arranged regularly so as to reproduce a running bond pattern. 
Two families of orthogonal mortar joints are then encountered: horizontal bed joints, which have 
thickness b

mt  and are continuous within the brickwork, and vertical head joints, which have thickness 
h
mt  and are staggered between adjacent courses. Furthermore let us denote as cross joints the mortar 

located at the intersection of the previous ones. The Representative Volume Element (R.V.E.) is 
defined as the lozenge having vertexes located in the centre of four adjacent bricks and extruded 
among the whole thickness T of the wall, Figure 1. The domain is periodic in the Oe1e2 plane and 
according to the previously defined R.V.E. the two directions of periodicity write: 

212211 e)(e
2

)(
;e)(e

2
)( b

mb

h
mbb

mb

h
mb th

tl
ith

tl
i 





      (1) 

                    
Figure 1 Representative volume element. 
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The phases are assumed to be elastic and isotropic, being their constitutive laws defined in terms 
of the stiffness tensors bC and mC , which are introduced, respectively, for brick and mortar: 
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where b and m  denote the sub-domains of R.V.E. that pertains to mortar and brick, σ  and ε  the 
microscopic stress and strain fields. Let us consider the case in which the load acts in the Oe1e2 plane 
such that the components of the macroscopic stress 3iΣ , 31,..,i  are null in order to maintain the 
symmetry with respect to the middle plane of the wall. Accordingly, the macroscopic out-of-plane 
shear strains 13E and 23E  vanish, whereas the axial strain 33E  assumes a finite value. 

Resorting to homogenization theory, Suquet [4], the in-plane behaviour of masonry viewed as a 
homogeneous medium can be derived by solving the well-known problem of localization, that is 
attached to RVE  and reads: 

0)σ( div x  (3)   
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where u(x)  is the displacement field among RVE  and )(ˆ xu is a periodic field that takes the same 
values on opposite sides of RVE , which correspond by periodicity. For a given macroscopic strain 
E , the solution of the localization problem amounts to a relation between microscopic and 
macroscopic strain fields that writes: 

E:)D()ε( xx   (7) 

where )D(x is the fourth order tensor of strain localization. Finally, by introducing the homogenized 
stiffness tensor homC , the constitutive relation of masonry is given by: 

E:CE:)D(:)C()σ(Σ hom
 RVERVE

xxx  (8) 

where <*> is the averaging operator  
From the definition of the tensor of strain localization and by virtue of Eqs. 2-8 the relation that stands 
between the macroscopic and microscopic stress fields reads: 

  :)(:C:)(D:)C(),σ( 1hom xSxxx  (9) 

where )(xS is the tensor of stress localization. 
Aiming at obtaining an analytical solution of the localization problem the R.V.E. is divided in sub-

domains corresponding to bricks, head, bed and cross joints, Figure 2, and the following simplifying 
assumptions are made concerning the displacement field )(xu , RVEx  .  

 
Figure 2 Division of RVE in brick ( i

b )and mortar ( i
m  ) sub-domains. 
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Bricks, head and bed joints are supposed to undergo an affine displacement: 
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where i
bg and i

mg  are the centres of each sub-domain as depicted in Figure 2 , i
bH and i

mH are second-
order tensors representing the gradient of the displacement within i

b  and i
m , respectively. The 

displacement filed within the cross joints is described by a second-order polynomial function where 
the linear term depends upon i

mH  , 7,6i  and the bi-linear term is defined introducing three symmetric 
second order tensors i

wB  with 3,..,1w : 
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By introducing the previously given field )(xu , the localization problem reduces to an algebraic 
problem whose variables are the 135 components of tensors i

bH , i
mH  and i

wB .By imposing the 
periodicity conditions, it is straightforward to demonstrate that: 

4,..,1HH  ib
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42 HH mm   (15) 

Moreover, by imposing the compatibility conditions of the displacement filed at the boundary of 
each sub-domain, the variables of the problem can be further reduced to the sole components of tensor 

bH . Therefore, an upper bound estimation of the macroscopic strain energy density for the equivalent 
homogeneous continuum is obtained as:  
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The equivalent homogeneous continuum behaves as an orthotropic medium whose elastic tensor homC  
is derived from Eq. 16 by differentiation with respect to E and is defined by four constants 

hom
11Y , hom

22Y , hom
12µ  and hom

12ν , namely the elastic modulus in the direction parallel and normal to the bed 
joints, the shear modulus and the Poisson ratio.  
The proposed procedure has been implemented in an algebraic manipulator and analytical 
formulations that express the tensors homC , )(xD and )(xS  as a function of mortar and brick geometrical 
and mechanical properties have been obtained. Owing to their complexity the expressions derived are 
not reported here.  

Comparison with models proposed in literature 

The solution of the localization problem obtained in the present work is now studied in the limit 
conditions where the joints reduce to interfaces, i.e. the joints thicknesses b

mt and h
mt  reduce to zero. 

Two cases are then discussed: that of a perfectly cohesive interface, which assures the continuity of 
the displacement field between adjacent bricks, and that in which the interface keeps a finite stiffness 
that allows a displacement jump between adjacent bricks to take place, see also Cecchi and Sab [3].  
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Clearly, when both head and bed joints reduce to perfect cohesive interfaces, masonry behaves as 
an homogenous material showing the same properties of the brick:  
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In the case where the sole head joint reduces to a perfectly cohesive interface, masonry becomes a 
stratified material made by alternating horizontal layers of mortar and brick. The resulting elastic 
constants are reported below:  
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where mλ , mµ  and bλ , bµ are the Lamé constants of mortar and brick, respectively. The expressions 
obtained result in close agreement with the formulation originally proposed by Salomon [8] for 
stratified materials and then applied by Pande et al. [2] to the case of masonry. 

Finally, when the whole set of joints reduces to elastic interfaces, masonry elastic constants reads: 
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where b
nK , b

tK and h
nK , h

tK  are the normal and tangential stiffness of bed and head interfaces, 
respectively. The expressions given above are in agreement with those obtained by de Felice et al. [6] 
for plain stress condition. 

Comparison with finite element analysis 

The localization problem was implemented in a standard finite element code with the purpose to 
test the accuracy of the proposed model. The R.V.E. adopted has two orthogonal planes of symmetry 
and is defined by a frame of two orthogonal vectors, Figure 3a. The abovementioned properties allow 
to model a sole portion of the whole domain and to reduce the periodicity conditions to ordinary 
Dirichlet conditions, see Anthoine [1]. Elastic analyses were performed varying the joint thickness 
from 2.5 to 20 mm and reducing the Young’s modulus of mortar so as to obtain Yb / Ym ratios ranging 
from 1 to 1000. In real cases, the elastic stiffness ratio between brick and mortar typically reaches 
values closer to the lower bound of the abovementioned range. However, in the case of inelastic 
behaviour, assuming that the modulus Ym is a secant/tangent approximation of the actual stiffness of 
mortar, the ratio Yb / Ym can reach values of 1000 or higher as a result of the degradation of the mortar 
joint. The Poisson coefficients of mortar and brick have been assumed equal to 0.25 and 0.20, 
respectively. 
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Figure 3 Finite element mesh defined on one-eight of the total volume of the R.V.E. adopted (a); comparison of 
the model with the numerical results obtained for the elastic modulus in horizontal direction (b), in vertical 

direction (c) and for the shear modulus (d). 

For the whole sets of analysis performed a good agreement is found between the analytical 
estimate given above and the numerical F.E. results. The errors provided by the analytical prediction 
of the macroscopic elastic modules in vertical and horizontal directions and of the in-plane shear 
modulus of masonry are always lower than 8%. The Poisson coefficients of masonry display higher 
discrepancies that may reach the magnitude of 40% for low values of mortar stiffness and high 
thickness of the joints; these errors, however, are thought to be not relevant for structural analysis.  

A further issue consists in evaluating the capability of the model in reproducing microscopic stress 
(or strain) fields that develop within the R.V.E. for a given macroscopic stress. For this purpose finite 
element analysis were conducted applying an unitary macroscopic vertical stress to the R.V.E. 
considering the joint 10 mm thick and varying the ratio Yb/Ym from 1.5 to 1000. Despite the fact that 
the stress concentration that develops within the phases is not accounted for in the model, since it 
provides a piece-wise constant stress field, a good agreement is found in predicting the average 
stresses in the mortar joints and in the bricks, as shown in Figure 4. 

 



 7 

b)

1 10 100 1000
 Y b /   Ym

-0.2

0

0.2

0.4

0.6

0.8

1

1.2


22

 / 


22
 

1 10 100 1000
 Y b /   Ym

-0.1

0

0.1

0.2

0.3

0.4


11

 / 


22
 

F.E.A. Bed Joint

F.E.A. Head joint

F.E.A. Brick

Model Bed Joint

Model  Head joint

Model  Brick 

F.E.A. Bed Joint

F.E.A. Head joint

F.E.A. Brick

Model Bed Joint

Model  Head joint

Model  Brick 

1 10 100 1000
 Yb /   Ym

-0.1

0

0.1

0.2

0.3

0.4


33

 / 


22
 

a)

c)

F.E.A. Bed Joint

F.E.A. Head joint

F.E.A. Brick

Model Bed Joint

Model  Head joint

Model  Brick 

 
Figure 4 Comparison between the phase-average stresses evaluated from finite element analysis and the ones 

predicted by the model for an unitary macroscopic vertical stress Σ22. 

Conclusion 

A homogenization procedure for running bond masonry was presented. The procedure relies upon 
a simplifying kinematics defined within the R.V.E. and provides analytically the elastic properties of 
masonry as a function of the geometry and of the individual properties of mortar and brick.  

The formulation includes, as a particular case, previous models proposed in literature, in which 
masonry is regarded either as a stratified material or as a system of blocks connected by interfaces.  

By comparison the results with F.E. analysis ,the errors introduced by the model are low from an 
engineering view point, even when large differences between mortar and brick stiffness are considered 
or when thick joints are taken into account. 

On the basis of the results obtained, the proposed formulation seems able to reproduce the 
essential feature of masonry behaviour and thus it constitutes a promising tool, which can be adopted 
in the framework of multi-scale analysis of masonry structures. 
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