
Towards rigorous analysis of
Open Source Software

Luis S. Barbosa 1

Departamento de Informática (HASLab)
Universidade do Minho

Braga, Portugal

Pedro R. Henriques 2

Departamento de Informática (CCTC)
Universidade do Minho

Braga, Portugal

Alejandro Sanchez 3

Departamento de Informática
Universidad Nacional de San Luis

San Luis, Argentina

Abstract

This paper discusses the (often hidden) potential of Open Source Software devel-
opment to resort to, benefit from and cross-fertilize formal engineering methods,
whose role is indisputable in the production of trustworthy software components.
A strategy addressing the incorporation of formal verification methods in the Open
Source Software lifecycle, in a somewhat less conventional way — that of assisting
the re-engineering process of running code — is proposed.

Key words: Open Source Software, formal methods, program
analysis.

1 Email: lsb@di.uminho.pt
2 Email: pedrorangelhenriques@gmail.com
3 Email: asanchez@unsl.edu.ar

Preprint submitted to Elsevier Preprint 7 December 2011



1 Introduction

The impact of Open Source Software on the way software applications and
software-based services are currently developed, distributed and deployed, is
indisputable. Usually acknowledged key benefits include rapid code turnover,
extensive testing, supported maintenance and low development costs. Linux
distributions, Apache and MYSQL, serve as paradigmatic examples of its
success and resilience.

Open Source Software is being increasingly adopted by industry, also for
mission and safety-critical applications. In general, experience has shown that
many open source software products are reliable and have achieved adequate
functionality and scalability. For example, an extensive study carried on a
few years ago showed that an active, mature open source initiative may have
fewer defects than similar commercial projects 4 . Similarly, reference [Aea02]
reports on a study of 100 open source applications concluding that structural
code quality was higher than expected and comparable with commercially
developed software.

This does not mean that Open Source Software is immune to the sort
of correctness problems and vulnerabilities affecting software in general.
Software development de facto standards are still pre-scienctific in their lack
of sound mathematical foundations to provide an effective basis to predict
and certify programs behaviour. Open source communities are no exception,
even if failure is definitely not advertised:

4 The study, How open source and commercial software compare: A quantitative analysis of
TCP/IP implementations in commercial software and in the Linux kernel, 2003, is available
from www.reasoning.com/downloads/opensource.html.

2



We tend not to hear very much about the failures. Only successful
projects attract attention, and there are so many free software
projects in total that even though only a small percentage succeed,
the result is still a lot of visible projects. We also don’t hear
about the failures because failure is not an event. There is no
single moment when a project ceases to be viable; people just
sort of drift away and stop working on it. There is not even a
clear definition of when a project is expired. Is it when it hasn’t
been actively worked on for six months? When its user base stops
growing, without having exceeded the developer base? What if
the developers of one project abandon it because they realized
they were duplicating the work of another–and what if they join
that other project, then expand it to include much of their earlier
effort? Did the first project end, or just change homes? Because
of such complexities, it’s impossible to put a precise number on
the failure rate. But anecdotal evidence from over a decade in
open source, some casting around on SourceForge.net, and a little
Googling all point to the same conclusion: the rate is extremely
high, probably on the order of 90 to 95%.

K. Fogel, in [Fog05]

Certifying software with respect to precise specifications of their behaviour
and/or given levels of performance and security, constitutes the overall agenda
of the so-called formal methods. Qualifier formal stresses that such a certi-
fication is not a matter of opinion (i.e., a legal argument), but has a similar
status to that of a mathematical proof, in the sense that precise mathematical
techniques are used either to build and compose the software, or to guide a
systematic verification procedure. Formal methods in Software Engineering is
no longer an esoteric issue, but essential to obtaining the highest degrees of
assurance required by trustworthy systems. And industry is becoming more
and more aware of this fact. On the other hand, the maturity of current tools
to support formal development, analysis and verification is now much more
adequate for industrial use than it has been in the past, when it was extremely
hard for non-specialists to use such methods.

Open Source Software, however, by the very nature of its open and un-
conventional development model, in which coding and debugging efforts are
shared among a distributed, heterogeneous community, with decentralized
control mechanisms, makes software quality assessment, let alone full certi-
fication, particularly hard to achieve. On the other hand code is exposed,
freely available, often complemented with heavy volumes of informal docu-
mentation (in the form of source code comments, wiki notes, forum threads,

3



...), offering an enormous potential for verification and analysis.

The certification problem for Open Source Software raises specific chal-
lenges and opportunities, both from the technical/methodological and the
managerial points of view (see, e.g., [DAI09] for an extensive review on the
security dimension). Not by chance the discussion on how formal development
methods can be brought to Open Source Software practice, has been the focus
of a series of workshops promoted by the United Nations University, with the
acronym OpenCert since 2007 (see opencert.iist.unu.edu/ and [BCS10] for
the latest proceedings).

This paper aims at contributing to this debate: to what extent, and in
which ways, may research in formal methods and accompanying tools become
meaningful and usable for open source development and certification? There
is certainly no single answer. In the sequel we argue for a lightweight , ‘back-
ward’ approach: rather than insisting on the effective introduction of formal
methods in the development process, we suggest the dissemination of rigor-
ous program understanding and analysis techniques suitably integrated in an
open infrastructure where open source code can be registered and analyzed in
a number of different ways.

Paper outline.

Section 2 discusses the dichtonomy Formal Methods vs Open Source Soft-
ware, pointing out which characteristics of Open Source Software one may
build on to introduce such methods without disturbing its peculiar, but suc-
cessful development cycle. Then, section 3 describes our proposal of a certifi-
cation infrastructure for Open Source Software. Sections 4 and 5 make such a
proposal more concrete through a brief summary of two tools developed witin
the authors’ research team to be part of the envisaged infrastructure. Finally,
section 6 concludes and gives some pointers for future research.

2 Quality, Formal Methods and Open Source Software

A standard approach to reduce risks in using an artifact is to establish an
independent certification process. However, no certification standards exists
that could be used to assess or classify the quality of Open Source Software.
Such, a standard would certainly have to include the maturity of the devel-
opment process, but open source reality has long been ignored in academia
and its study largely reduced to a social phenomenon. Empirical studies exist
(see e.g. [Aea02,MFH02,MHP05]) but are still insufficient. Moreover they
tend to focus on the context of software production, i.e, on the factors that
determine the development conditions and, thus, are expected to influence its
final quality, rather than on the product itself. Technical, or product oriented
quality, on the other hand, deals with factors directly influencing maintain-

4



ability, reliability and portability, which are extremely relevant for industry
integrating Open Source Software in their own solutions.

That is precisely the focus of formal or rigorous engineering methods. De-
spite the complex, decentralized nature of Open Source Software development
process, it is possible to identify a number of its characteristics which, in our
opinion, favor a fruitful interaction with such methods. Our claim is that
any proposal for incorporating this sort of methods in Open Source Software
development should build on the following:

• High code modularity, leading to and stimulating separate development,
without a need to change or understand the core system, or interfere with
each developer’s progress. This not only reduces the risk of propagating
defects, but is also the key for a successful introduction of tight control
cycles based on rigorous methods, which are, in their majority, composi-
tional. A popular study of the Linux kernel development [LC03] concluded
that modularity let multiple developers work on the same solution, often in
competition, increasing the probability of timely, high-quality solutions.

• Rapid release cycles which keep code reviewers and developers interested
and motivated, quickly resulting in systematic and high quality extensions.
This also makes possible similarly rapid verification or analysis cycles and
the suitable feedback of their results into the development process.

• Independent and active code review, typically lead by people outside the
project team. A publicly visible bug and issue tracking tool is used by nearly
all big open source projects. Users post bugs and enhancement requests.
Each such post becomes, in effect, a tiny public mailing list focused solely
on that issue. The introduction of formal analysis methods, simply adds to
this already present critic ability.

• Large, sustainable communities to develop, test and debug code effectively.
An investigation of open source projects evolution cited in [Abe07] found
that a large base of voluntary contributing members was one of the most
important success factors. Rigorous analysis methods, timely applied, help
the coevolution of a product and its community, and reinforce positive feed-
back as well as the reward- and-recognition culture which facilitates internal
cohesion.

• Traceable pedigree. Unlike closed software, where the identity of the real
supplier is often hidden, the lineage of a open source product can easily
be traced: it is easier to determine exactly who did what, and who has
modification rights. This provides a sound basis on top of which composition
mismatches and errors detected during analysis can be traced to their origins
and easily corrected.

• Tool-mediated communication is extensively used. Actually, a ubiquitous
trait of open source development is that tool mediation is the norm. This

5



enables leaders to shift the burden of policy enforcement from people to
tools, which support authentication, regulation of commit privileges, au-
dit and notification. Again, the introduction of analysis and vertification,
corrective steps in the development cycle can easily benefit from this tool-
mediated communication.

• Last but not the least, and contrary to a widespread belief, Open Source
Software development, being distributed and multi-centered is far from be-
ing anarchic. Typically, composition, configuration, and information flow
in and out of the project’s server is somehow (but effectively) controlled.
Project initiators and main contributors often exercise tight control over
the engineering practices, not by limiting the developers behavior in their
own personal space, but by limiting the kinds of transactions developers can
make upon the persistent project state on the server. This may provide the
needed infrastructure for enforcing quality checks based on formal technics.

If formal methods offer a valuable contribution to assess and promote Open
Source Software reliability, an almost reverse claim can also be made: the
relevance of Open Source Software for the formal methods community cannot
be underestimated. Actually, open source licenses, allowing others to study,
use, improve, and release new versions, are an essential ingredient to promote
and disseminate tools supporting formal development methods — a first-class
vehicle for making continued research possible. Sadly, many such tools have
completely disappeared because they were not released under open source
licenses. The absence of an open source license for ESC/Java, for example,
created a difficult situation for many people and companies depending on this
popular tool, once Compaq/HP decided to abandon its maintenance.

A key benefit of using Open Source Software is that the code can be com-
piled freely. As technology advances fast the ability to recompile the source
code becomes more and more important. Although a general remark, this
applies indeed to support tools for formal methods: Open Source Software
remains the key. Similar remarks apply to their long term survival.

Another argument (made mostly in the context of mathematical proofs)
stems from the scientific validity and acceptance of computer generated, or
computer assisted proofs. For such proofs to be included as standard material,
the software system used to arrive at the result must also be available to
researchers, e.g., to independently check the proof for its correctness.

3 The reverse perspective

The considerations above lead the authors’ current research towards address-
ing the incorporation of formal verification methods in the Open Source
Software lifecycle in a very peculiar perspective: that of assisting the re-
engineering process of running code.

6



Typically, formal methods are designed to be applied during the develop-
ment phase, preferably from very early design stages. Difficulties and strate-
gies for proceeding this way are discussed elsewhere [BCPS10]. Our starting
point here is the fact that, faced with a high risk dependence on open source
components, often to be embedded on their own software, industry is more
and more prepared to spend resources to increase confidence in (the level of
understanding of) their code. From this point of view, the same principles and
calculi used for (formal) program development can be applied in the reverse di-
rection, from concrete to abstract models, for understanding and documenting
implementations. More precisely, we seek

• Developing program understanding and analysis techniques and combine
them for quality assessment of open source code. As Open Source Software
offers full access to source code this enables the effective application of ap-
proaches and tools entirely targeting code analysis. The nature of Open
Source Software entails the need for integration of techniques spanning the
”micro” to the ”macro” levels (e.g., from slicing to architectural recovery)
and with different levels of formality (e.g. from statistical analysis based
on code metrics to the identification and formal verification of hidden in-
variants). Sections 4 and 5 details two such techniques developed in this
context.

• Catering for their smooth integration into the peculiar development process
of Open Source Software without disturbing its collaborative, distributed
and heterogeneous character. This amounts to establish feedback loops in
open source development, making publicly available a number of interrelated
analysis tools, to enhance the overall software reliability.

Our proposal to achieve the latter objective is through an online, open
infrastructure in which independently developed analysis tools (with different
levels of sophistication) are inserted to monitor, assess and, at a later stage,
certify open source products. Ideally, such an infrastructure would allow for
the registration of open source projects, their source code visualization and
analysis at different levels, as well as the rendering of analysis results in suit-
able, flexible formats to both Open Source Software developers and users. It
will not only provide support for open source software analysis, but also make
the evolution of open source software projects clearly visible to the open source
software community. In the long run, one may expect that feedback loops will
have an effective impact in the overall quality of Open Source Software prod-
ucts, with none or minimal intrusion on their life-cycle.

Such a certification infrastructure, currently under development at Univer-
sidade do Minho, adopts an open architecture, in the sense that new analysis
or visualization components can be easily added relying on an open, general
format for data/code representation. In the very spirit of Open Source Soft-

7



ware, this will allow separate use and distribution of the framework, such
that third parties can use it and plug-in their own analysis and visualization
components.

The following two sections outline two of such plug-in tools — Gamma
and CoordPat already developed in this project for source code analysis.

4 Gamma: A plug-in for assertion-based slicing

The Gamma toolkit [dCHP10,BdCHP10] is an assertion-based slicer equipped
with a verification component, to generate verification conditions, and a pro-
gram visualization functionality. Its purpose is to extract slices from code
through a number of different families of slicing algorithms (precondition,
postcondition, and contract-based).

This plug-in is intended to operate over source code suitably annotated
with contracts in the sense of the design by contract paradigm — an approach
that advocates specifying the behavior of program routines through the use of
annotations, and checking them individually, either statically or dynamically,
to obtain globally correct programs.

Of course this may sound strange with respect to its main application
target – Open Source Software. Actually, even if annotated Open Source
code may soon emerge as part of a code documentation effort whose need
the community is increasingly aware of, such is clearly not dominant today.
However, recent advances in automatic inference of annotations provide other
tools which act as pre-processors for Gamma. For example, a component
of Frama-C [CCPS09], a popular open source framework based on static
analysis, automatically infers the preconditions for a given procedure.

Gamma, whose implementation includes a new, very efficient slicing algo-
rithm [BdCHP10], is not only useful for code analysis, but also to assist auto-
matic code adaptation. This may involve elimination of code redundancy, but
can also go much further. For example, suppose there is a library containing a
procedure that implements a traversal of some data structure, and collects a
substantial amount of information in that traversal. Now suppose this library
is to be reused dropping the requirement that all the information collected
in the traversal should be used. In this case the procedure respects a weaker
specification, and thus it makes sense to produce a specialized, correspond-
ing version of the library. This is crucial for software reuse, and open source
development heavily depends on reuse.

Specializations of assertion-based slicing, for example to focus exclusively
on post-condition annotations, may be used to study when a property is valid
in a specific section of a program (for example inside a critical region to be
executed on a specific thread) and false elsewhere. Therefore, it may be used to
study the correct behaviour of code with respect to that section. Similarly, the

8



property may correspond to some invariant on a data structure, which ought
to be maintained. The toolkit also generates, in a step-by-step fashion, a set of
verification conditions given as input to automatic SMT provers, which allows
to establish the initial correctness of the code with respect to their contracts.

5 CoordPat: A plug-in for architectural analysis

If Gamma addresses code micro level, i.e., the level of procedures and state-
ments, CoordPat is oriented toward code analysis in the large. Basically, it
may be regarded as a tool for reverse architectural analysis, providing a sys-
tematic way to encode and identify coordination patterns in source code. It
aims at uncovering, registering and classifying architectural decisions often left
undocumented and hardwired in the application code. Moreover, through the
systematic, tool-supported discovery of architectural decisions, it is expected
to entail the reconstruction of the corresponding specifications.

Actually, current software systems rely more and more on non trivial co-
ordination logic for combining autonomous services often running on different
platforms. Open Source Software is no exception. As a rule, however, in
typical, non trivial software systems, such a coordination layer is strongly
weaved, at the source code level, with the application. Therefore, its pre-
cise identification becomes a major methodological (and technical) problem
which cannot be overestimated and to which this tool aims at contributing.
Not seldom open source applications emerge by composition of multi-source,
heterogeneous and previously unrelated pieces of code, which makes archi-
tectural recovery processes both useful and challenging. Moreover, there is
a need, particularly critical in open source contexts, to control architectural
drifts, i.e., the accumulation of architectural inconsistencies resulting from
successive code modifications.

CoordPat implements a rigorous methodology [RB10,RB08] to extract,
from source code, its coordination layer, i.e. the architectural layer which cap-
tures system’s behaviour with respect to its network of interactions. The qual-
ifier is borrowed from research on coordination models and languages [GC92],
which emerged in the nineties to exploit the full potential of parallel systems,
concurrency and cooperation of heterogeneous, loosely-coupled components.

The extraction methodology combines suitable slicing techniques to build
a family of dependence graphs by pruning a system dependence graph [HRB88]
first derived from source code. After the extraction stage, the tool exploits
such graphs to identify and combine instances of coordination patterns and
then reconstruct the original specification of the system’s coordination layer.
The word pattern is used here with the usual meaning: a way to describe and
reuse standard solutions for recurrent problems. Thus, CoordPat main-
tains an incrementally-built repository of patterns used to guide the analysis

9



process.

Coordination patterns are described in a formal, graph-based language
for which a relational semantics was introduced in [ORHB10]. A pattern
repository is integrated in the tool and dynamically populated by the users.
The tool also provides features for (i) basic editing of coordination patterns,
(ii) their syntactic and semantic validation, (iii) graph rendering for their
visualisation (see e.g. Fig. 1) and (iv) pattern discovery in a dependence
graph previously extracted.

Fig. 1. The Cyclic Query Pattern and its graphical representation

6 Conclusions and future work

Open Source Software is software whose license gives users the freedom to run
it for any purpose, to study and modify, and to redistribute copies of either
the original or the modified program, without having to pay royalties to previ-
ous developers. Companies are becoming aware that integrating Open Source
Software into commercial products (made available by liberal open source li-
censes) reduce development costs while offering high-quality, extensively tested
components. Furthermore, governments are getting worried with the growing
dependence on proprietary formats and software in their administration, and
regard Open Source Software as a warranty of technological independence.
This turns out to a strategic advantage, mainly in the developing world.

10



Strengthening the role of Open Source Software in the global IT sector
is, therefore, a strategic aim and, so we believe, a condition for increased,
democratic citizenship in our information-led societies. However Open Source
Software quality can be very hard to measure and to compare [Spi11]. This
could be substantially improved if there were appropriate standards, supported
by analysis tools, for certifying such software. Developing such tools, making
them widely available for the open source community, and, in the long term,
contributing to the creation of an international certification authority for open
source software, is the path to which we would like to contribute.

This paper summarizes current research at Minho University, Portugal,
on a possible strategy leading to the establishment of an independent certi-
fication process, with potential for a long-term impact on the integration of
trustworthy, open source components, in large, complex systems. In short, we
made a case for formal methods use in the ’reverse’ direction, i.e., to guide
code based analysis of open source components with potential impact in their
improvement and reuse.

As related work, Alitheia Core [GS09] must be cited. This is an exten-
sible platform designed specifically for performing large-scale software quality
evaluation through the extraction and combination of a number of metrics
on open source projects, resorting both to white-box test and code analysis.
A central issue in this project is scalability to huge volumes of data, which
entails the need for complex mirroring schemes and multicore execution. Sev-
eral other projects exist proposing solutions for Open Source Software testing
and evaluation. For example, Qsos (www.qsos.org/) is a methodology to
assess, select and compare, open source components in an objective, traceable
way. Project Osstmm www.isecom.org/osstmm/ developed a peer- reviewed
methodology for performing security tests on Open Source Software. What
distinguishes our own proposal is the explicit aim of incorporating formal
methods in addressing Open Source Software certification.

But, of course, a lot of questions remain to be answered. To mention just
one we have not addressed so far: security. Security requires a specific anal-
ysis, since open source development does not usually follow the best security
practices. As [DAI09] notices, in a recent book on security certification of
Open Source Software, the lower number of security events involving Open
Source Software may be ascribed to its smaller market share rather than to its
robustness. Tools for security analysis must definitively be pluged-in into the
certification infrastructure suggested above.

Another main issue, requiring further experimental research, is the study
of the potential impact of such an infrastructure in the concrete open source
communities to which it is directed. In any case such an integration, or
synergy, needs to be non disturbing of the community principles and (best)
practices.

11



Acknowledgements. This research was partially supported by the Cross
project, under contract PTDC/EIA-CCO/108995/2008 with Fct, the Por-
tuguese Foundation for Science and Technology. Several ideas discussed in
this paper and pursued in the Cross project benefited from discussions with
Antonio Cerone, Bernhard Aichernig and Siraj Shaikh on possible roles for
formal methods in Open Source Software certification, namely in the context
of the OpenCert workshops. Collaboration with Daniela da Cruz, Jorge Sousa
Pinto and José Barros in the development of the Gamma toolkit, as well
as with Nuno Oliveira and Nuno Rodrigues in the design of CoordPat, is
greatly acknowledged.

References

[Abe07] M. Aberdour. Achieving quality in open source software. IEEE
Software, pages 58–64, 2007.

[Aea02] L. Angelis and et al. Code quality analysis in open source software
development. Information Systems Journ., pages 43–60, 2002.

[BCPS10] L. S. Barbosa, A. Cerone, A. K. Petrenko, and S. A. Shaikh.
Certification of open-source software: A role for formal methods?
International Journal of Computer Systems Science and Engineering,
(4):273–281, 2010.

[BCS10] L. S. Barbosa, A. Cerone, and S. Shaikh, editors. Foundations and
Techniques for Open Source Software Certification, Proc. OpenCert
2010, Pisa, September, 2009. Electronic Communications of the
EASST, volume 33, 2010.

[BdCHP10] J. Bernardo Barros, Daniela da Cruz, Pedro Rangel Henriques,
and Jorge Sousa Pinto. Assertion-based slicing and slice graphs.
In SEFM’10 — 8th IEEE International Conference on Software
Engineering and Formal Methods, pages 93–102. IEEE Computer
Society, Conference Publishing Services (CPS), Sept 2010.

[CCPS09] L. Correnson, P. Cuoq, A. Puccetti, and J. Signoles. Frama-
C User Manual. http://frama-c.cea.fr/download/user-manual-

Beryllium-20090902.pdf., November 2009.

[DAI09] Ernesto Damiani, Claudio Agostino Ardagna, and Nabil El Ioini. Open
Source Systems Security Certification. Springer, 2009.

[dCHP10] Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto.
Gamaslicer: an online laboratory for program verification and analysis.

12



In Proceedings of the Tenth Workshop on Language Descriptions, Tools
and Applications - LDTA ’10, pages 3:1–3:8. ACM, 2010.

[Fog05] Karl Fogel. Producing open source software - how to run a successful
free software project. O’Reilly, 2005.

[GC92] D. Gelernter and N. Carrier. Coordination languages and their
significance. Communication of the ACM, 2(35):97–107, February 1992.

[GS09] G. Gousios and D. Spinellis. Alitheia core: An extensible software
quality monitoring platform. In 31st International Conference on
Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver,
Canada, Proceedings, pages 579–582. IEEE, 2009.

[HRB88] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. In PLDI ’88: Proceedings of the ACM SIGPLAN
1988 Conf. on Programming Usage, Design and Implementation, pages
35–46. ACM Press, 1988.

[LC03] Gwendolyn K. Lee and Robert E. Cole. From a firm-based to a
community-based model of knowledge creation: The case of the linux
kernel development. Organization Science, 14:633–649, November 2003.

[MFH02] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two
Case Studies of Open Source Software Development: Apache and
Mozilla. ACM Transactions on Software Engineering and Methodology,
11(3):309–346, July 2002.

[MHP05] Martin Michlmayr, Francis Hunt, and David Probert. Quality practices
and problems in free software projects. In Marco Scotto and Giancarlo
Succi, editors, Proceedings of the First International Conference on
Open Source Systems, pages 24–28, Genova, Italy, 2005.

[ORHB10] Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques, and
Lus Soares Barbosa. A pattern language for architectural analysis.
In SBLP 2010 14th Brazilian Symposium in Programming Languages,
volume 2, pages 167–180. SBC — Brazilian Computer Society (ISSN:
2175-5922), 2010.

[RB08] N. F. Rodrigues and L. S. Barbosa. Coordinspector: a tool for
extracting coordination data from legacy code. In Proc. IEEE 8th
Inter. Working Conference on Source Code Analysis and Manipulation
(SCAM’08), Beijing, 2008. IEEE Computer Society, 2008.

[RB10] N. F. Rodrigues and L. S. Barbosa. Slicing for architectural analysis.
Sci. Comput. Program., 75(10):828–847, 2010.

[Spi11] D. Spinellis. Choosing and using open source components. IEEE
Software, 28(3):96, 2011.

13


	Introduction
	Quality, Formal Methods and Open Source Software
	The reverse perspective
	Gamma: A plug-in for assertion-based slicing
	CoordPat: A plug-in for architectural analysis
	Conclusions and future work
	References

