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1 Introduction

Throughout the paper and unless otherwise specified, R denotes an arbitrary ring
with identity 1, Matm×n (R) the set of m× n matrices and Matm (R) the ring of
m×m matrices over R.

An involution ∗ in a ring is a unary operation a → a∗ such that

(a∗)∗ = a, (ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗,

for all elements a, b of a ring.
Given a ∈ R, a is (von Neumann) regular if there exists a− ∈ R such that

aa−a = a.

The set of von Neumann inverses of a will be denoted by a {1}. That is,

a {1} = {x ∈ R : axa = a} .

a is said to be Moore-Penrose (MP) invertible with respect to * , see [15] and
[19], if there exists a a† such that:

aa†a = a

a†aa† = a†(
aa†
)∗ = aa†(

a†a
)∗ = a†a.

(1)

If the Moore-Penrose with respect to * exists then it is unique, see [1].
Necessary and sufficient conditions for the existence as well as expressions for

a† can be found in [16], [17], [22] and [23].
Also, the group inverse of a exists if there is a a# such that

aa#a = a

a#aa# = a#

aa# = a#a.

(2)

If the group inverse exists then it is unique, see [1].
Necessary and sufficient conditions for the existence as well as expressions for

a# can be found in [21].
An element a ∈ R is said to have a Drazin inverse if there exists x ∈ R such

that


am = am+1x, for some non-negative integer m

x = x2a

ax = xa.

(3)
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If a has a Drazin inverse, then the smallest possible non-negative integer
involved in (3) is called the Drazin index of a. We denote by aDk the Drazin
inverse of index k of a.

As for group and Moore-Penrose inverses, if the Drazin inverse exists then it
is unique, see [1], [20].

In [1], the authors define the notion of “range -Hermitian” matrix A over the
field C of complex numbers as a matrix satisfying Im A = Im A+, in which A+ de-
notes the hermitian conjugate of A. This is clearly equivalent with A Matn (C) =
A+ Matn (C) and generalizes the notion of hermitian matrix. Then it is known,
see [1, pg 164], that a complex matrix A is range-Hermitian iff A# = A† with
respect to the involution +. They refer also to the concept of EPr matrix intro-
duced by H. Schwerdtfeger in 1950. There, however, EPr matrices are matrices
A of rank r over the complexes satisfying Im A = Im AT , in which AT denotes
the transpose of A. This is clearly equivalent with A Matn (C) = AT Matn (C).
The matrix [

1 i

i −1

]
=

[
1 i

i 1

][
1 0
0 0

][
1 i

i 1

]
over the field C of complex numbers is an EP1 matrix by a theorem of H. Schw-
erdtfeger, see page 131 of [27], but this matrix is clearly not range-Hermitian.
This shows that the concept of EPr matrices was introduced with respect to the
involution T on Matn (C). Therefore, we can avoid this misunderstanding about
EP in Matn (C) by using the different notions of +–EP and T –EP in Matn (C).

The generalization of the notion of EPr-matrices to an EP -morphism φ in a
category appeared in [25] as a morphism φ such that φ and φ∗ have images and
co-images and imφ = imφ∗, coim φ = coim φ∗. Here, it is clear that EP means
∗–EP.

The notion of EP was also used by R.E. Hartwig, see [6], for elements in a
*-regular ring, which are rings with the property that every element of it has
a Moore-Penrose inverse with respect to *. Indeed, he defined an element a in
a *–regular ring EP iff aR = a∗R and showed that this is equivalent with the
existence of a# together with a# = a†. Here, it is also clear that EP in a *–
regular ring means ∗–EP. It generalizes +–EP, but not T –EP, in Matn (C) since
Matn (C) is a +–regular ring and not a T -regular ring.

But, defining ∗–EP in rings R with involution * as elements a for which
aR = a∗R and expect an equivalence with a† = a#, as for ∗–regular rings, is not
possible. Indeed, an element a in a ring R with involution * can have the property
that aR = a∗R without having a MP-inverse with respect to the involution *.

As a consequence, there is the problem of characterizing the elements in a ring
with involution * having a group inverse a# and a MP-inverse a† with respect
to *, that are equal. These elements can be called *–group–Moore-Penrose (*–
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gMP) invertible and we show that these elements can be characterized by means
of classical invertibility together with an equivalence. Moreover, there is a parallel
with a result of I.J. Katz for range-Hermitian matrices over the complexes.

We also define the elements in a ring with involution * for which for some
smallest natural k,

(
ak
)# =

(
ak
)† with respect to the involution *. These ele-

ments are called *–Drazin-Moore-Penrose (*–DMP) invertible of index k. Among
other characterizations, we show that a is *–DMP if and only if the core part of
a is *–gMP invertible.

As an application, we characterize the +–DMP invertibility in the ring of
square matrices of order m over a projective free ring R with involution − such
that Rm is a module of finite length, providing a new characterization for range-
Hermitian matrices over the complexes.

2 Results

In a ring R with involution *, we introduce the following

Definition 1. 1. An element a in a ring R with involution * is called *–EP
if aR = a∗R.

2. An element a in a ring R with involution * is called *–group-Moore-Penrose
(*–gMP) invertible, if a† and a# exist and a† = a#.

Remarks.

1. The matrix A =

[
1 i

i −1

]
over the field C of complex numbers is clearly

T –EP but not +–EP (not range Hermitian) since A Mat2(C) = AT Mat2(C)
and A Mat2(C) 6= A+ Mat(C).

2. In the ring Z of integers with respect to the identity involution ι : n → n,
all elements are ι–EP but only 0, 1,−1 are ι–gMP.

3. In *–regular rings, such as Matn(C) with respect to the involution “hermi-
tian conjugate”, an element is *–EP iff it is *–gMP, see [6].

Proposition 2. Given a in a ring R with involution *, the following conditions
hold:

1. If aR = a∗R then a† exists with respect to * iff a# exists, in which case
a† = a#.

2. If a† exists with respect to *, a# exists and a† = a# then aR = a∗R.
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Proof. (1) Suppose aR = a∗R and a† exists. Then also Ra = Ra∗ and

a ∈ aa∗R ∩Ra∗a = a2R ∩Ra2,

which implies the group invertibility of a, see [7] or [24, page 145]. Analogously,
if aR = a∗R and a# exists then a† exists, see [22, page 133].

In order to show a# = a†, it follows from aR = a∗R and the definition of a†

that
a†R = a∗R = aR = a† ∗R

which imply
a2R = a†R = a† ∗R = a∗ 2R.

So, there exist y, z ∈ R such that a† = a2y, a† ∗ = a∗ 2z∗ and a2y = a† = za2.

Therefore, a2 (aya) = a = (aza) a2 which implies a# = (aza) a (aya) (see [7, page
45]). This gives

aa# = a (aza) a (aya)

= a2a†aya

= a2ya = a†a

which is symmetric with respect to the involution *. Similarly,

a#a = (aza) a (aya) a

= azaa†a2

= aza2 = aa†

and a#a is also symmetric with respect to the involution *. This leads to a† = a#,

by the uniqueness of the Moore-Penrose inverse.
(2) The proof is clear since aR = aa†R = a†aR = a∗a† ∗R = a∗R.

Corollary 3. The following conditions are equivalent:

1. a is *–gMP.

2. a is *–EP and a# exists.

3. a is *–EP and a† exists with respect to *.

Recently, see [21], the group inverse a# of a von Neumann regular element a

in a ring has been characterized by the invertibility of the element a2a−+1−aa−,
or equivalently, by the invertibility of the element a−a2 + 1− a−a. Moreover,

a# =
(
a2a− + 1− aa−

)−2
a = a

(
a−a2 + 1− a−a

)−2
.
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Also recently, see [16], [17], the Moore-Penrose inverse a† of a von Neumann
regular element a in a ring has been characterized by the invertibility of the
element aa∗aa− + 1 − aa−, or equivalently by the invertibility of the element
a−aa∗a + 1− a−a. Moreover,

a† = a∗
(
aa∗aa− + 1− aa−

)∗−1 =
(
a−aa∗a + 1− a−a

)∗−1
a∗.

We now combine these two results to obtain the following characterization:

Theorem 4. Let R be a ring with identity and with ring involution *. If a is
von Neumann regular in R and if a− denotes a von Neumann inverse then the
following are equivalent and independent from the choice of a−:

1. a is *–gMP.

2. aa∗aa− + 1− aa− and a2aa− + 1− aa− are invertible and[(
aa∗aa− + 1− aa−

)−1
a
]∗

=
(
a2aa− + 1− aa−

)−1
a.

3. a−aa∗a + 1− a−a and a−aa2 + 1− a−a are invertible and[
a
(
a−aa∗a + 1− a−a

)−1
]∗

= a
(
a−aa2 + 1− a−a

)−1
.

Moreover, if u = a2aa− + 1− aa−, v = a−aa2 + 1− a−a, ũ = aa∗aa− + 1− aa−

and ṽ = a−aa∗a + 1− a−a then

a# = a† = u−1a = av−1 =
(
ũ−1a

)∗ =
(
aṽ−1

)∗
and equals a

(
a2
)−

a
(
a2
)−

a.

Proof. Follows directly from the results in [17] and [21] if we can replace a2a− +
1−aa− by a2aa−+1−aa−, and analogously a−a2 +1−a−a by a−aa2 +1−a−a.
Indeed,

a2a− + 1− aa−

is invertible iff(
a2a− + 1− aa−

)2 =
(
a2a− + 1− aa−

) (
a2a− + 1− aa−

)
= a2a−a2a− + 1− aa−

= a3a− + 1− aa−

is invertible. Then,(
a2a− + 1− aa−

)−2 =
[(

a2a− + 1− aa−
)2]−1

=
(
a3a− + 1− aa−

)−1
.
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The remaining fact to prove is that a# = a† = a
(
a2
)−

a
(
a2
)−

a. Indeed, if
a# exists then a2 is von Neumann regular and(

a2a− + 1− aa−
)−1 = a

(
a2
)−

aa− + 1− aa−

since(
a2a− + 1− aa−

) (
a
(
a2
)−

aa− + 1− aa−
)

= a2a−a
(
a2
)−

aa− + 1− aa−

= a2
(
a2
)−

aa− + 1− aa−

= a2
(
a2
)−

a2a#a− + 1− aa−

= a2a#a− + 1− aa−

= 1

and

(
a
(
a2
)−

aa− + 1− aa−
) (

a2a− + 1− aa−
)

= a
(
a2
)−

aa−a2a− + 1− aa−

= a
(
a2
)−

a2a− + 1− aa−

= a#a2
(
a2
)−

a2a− + 1− aa−

= a#a2a− + 1− aa−

= 1.

Therefore, (
a3a− + 1− aa−

)−1 =
(
a2a− + 1− aa−

)−2

=
(
a
(
a2
)−

aa− + 1− aa−
)2

and

a# = a† =
((

a
(
a2
)−)2

aa− + 1− aa−
)

a = a
(
a2
)−

a
(
a2
)−

a.

Remark.
A von Neumann regular element a in a ring R with involution * has a group

inverse a# and a MP-inverse a† with respect to * such that a# = a† iff(
a3a− + 1− aa−

)−1 and
(
a−aa∗a + 1− a−a

)−1 exist

and
a∗ =

[(
a−aa∗a + 1− a−a

)∗
a
(
a2
)−

a
(
a2
)−]

a,
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for any choice of a−, since

a
(
a−a3 + 1− a−a

)−1 =
(
a3a− + 1− aa−

)−1
a = a

(
a2
)−

a
(
a2
)−

a.

This property can be considered as the generalization of a result of Katz, I.J.
and of its extension to Dedekind finite rings. Indeed, Katz proved, see [1, pag.
166, ex. 18], that for any square matrix A over the complexes, A† = A# if and
only if there is a matrix Y such that

A∗ = Y A.

His result can be lifted up to the following:

Fact 5. If a belongs to a Dedekind finite ring with a general involution * and a†

exists, then a∗ = ya, for some y ∈ R, if and only if a# exists and a† = a#.

Proof. If a† exists then also (a†)∗ exists and equals (a∗)†. Since a∗ = ya then
a = a∗y∗ and hence aR ⊆ a∗R.

Moreover, aR ∼= a∗R since φ : aR → a∗R, with φ(ax) = a†ax, is a R-module
isomorphism. Then, also aa†R ∼= a†aR, which implies aa†R = a†aR, or aR = a∗R

by using Theorem 1 (iii) of [8]. By Proposition 2(1), a# exists and a† = a#.
Conversely, if a# exists and a† = a# then

a∗ = (aa†a)∗ = a∗aa† = a∗aa# = a∗a#a.

It suffices to take y = a∗a#.

To introduce the notion of *–DMP invertibility in a ring R, we first need to
remark that if a is Drazin invertible with index k then ak is *–gMP iff ak+1 is
*–gMP. Indeed, if the Drazin index of a equals k and ak is *–gMP, then ak+1R =
akR = ak ∗R = (a∗)k R = (a∗)k+1 R. In addition, ak+1 is Moore-Penrose invertible
since ak+1

(
ak+1

)∗
R = a2k+2R = ak+1R,R

(
ak+1

)∗
ak+1 = Ra2k+2 = Rak+1, and

so ak+1 ∈ ak+1
(
ak+1

)∗
R ∩R

(
ak+1

)∗
ak+1. The converse is analogous.

Definition 6. An element a in a ring R with involution * is called *–DMP
(Drazin-Moore-Penrose) of index k if k is the smallest natural number such that(
ak
)# and

(
ak
)† exist with respect to * and

(
ak
)# =

(
ak
)†.

Examples.

1. The element 212 in Z12, with respect to the identity involution ι : n → n

is not ι–gMP, but it is ι–DMP of index 2 since 412 =
(
22
12

)† =
(
22
12

)#.
Remark that 212 has no MP-inverse with respect to ι, i.e., has no group
inverse.
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2. Every nonzero nilpotent element with index k in the Jacobson radical of a
ring with involution * is *–DMP with index k but these elements, clearly not
von Neumann regular, are not group invertible nor Moore-Penrose invertible
with respect to *.

Other characterizations of *–DMP of index k can be given as follows:

Theorem 7. Let a be an element in a ring R with involution *. Then the
following are equivalent:

1. a is *–DMP with index k.

2. aDk and
(
ak
)† exist with aDk = ak−1

(
ak
)†

.

Proof. Firstly, we will show that if a is *–DMP with index k then aDl exists and
l ≤ k. From ak is group invertible with

(
ak
)# =

(
ak
)† follows that aDl exists

with l ≤ k.

Now, suppose l < k. Then, since ak is *–EP,(
ak
)∗

R = akR = ak−1R,

since k > l. By another hand,(
ak
)∗

R =
(
Rak

)∗
=
(
Rak−1

)∗
=
(
ak−1

)∗
R.

Therefore,
(
ak−1

)∗
R = ak−1R and ak−1 is also *–EP, which is absurd since k is

the smallest natural number for which ak is *–EP.
To end this part of the proof, we remark that since k is the smallest k for

which ak is group invertible and ak is *–EP, then aD = ak−1
(
ak
)# = ak−1

(
ak
)†

(see [20]).
To show the converse, we will prove that if aDk = ak−1

(
ak
)†, then

(
ak
)# =(

ak
)†

. We will simply check the group inverse equations. The first and second
equations are trivially verified as they coincide with the first two Moore-Penrose
equations. It suffices to show

ak
(
ak
)†

=
(
ak
)†

ak.

By one hand, ak
(
ak
)† = aak−1

(
ak
)† = aaDk = aDka, and therefore ak

(
ak
)† =(

aDka
)∗. By another hand, and since ∗ commutes with (·)† and (·)D , then(

ak
)†

ak =
((

ak
)†

ak
)∗

= a∗ k
(
a∗ k
)† = a∗a∗ k−1

(
a∗ k
)† = a∗a∗D = a∗

(
aDk

)∗ =(
aDka

)∗
. So, ak

(
ak
)† =

(
ak
)†

ak.
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Let a ∈ R be Drazin invertible with Drazin index k and consider

ca = aaDka,

na =
(
1− aaDk

)
a = a− ca.

It should be remarked that a and 1− aaDk commute, and also that na is nilpo-
tent. Indeed, nk

a =
((

1− aaDk
)
a
)k = ak

(
1− aaDk

)
= ak − ak+1aDk = 0. The

following elementary results hold, as for matrices over the complexes (see [2]):

Lemma 8. Let a ∈ R be Drazin invertible with Drazin inverse aDk of index k.
Let ca = aaDka and na =

(
1− aaDk

)
a = a− ca. Then

1. a = ca + na.

2. cana = naca = 0.

3. ca is group invertible with (ca)
# = aDk .

4. nk
a = 0.

5. aj = cj
a + nj

a, if j < k.

6. aj = cj
a, if j ≥ k.

Definition 9. For a, ca, na as above, the sum

a = ca + na

is called the core nilpotent decomposition of the element a, ca is the core part of
a and na is the nilpotent part of a (compare with [1], [2] for the ring of matrices
over the complexes).

We remark the fact that the core nilpotent decomposition is unique in the
following sense: if aDk exists and x, y are such that a = x + y, x# exists, yk = 0
and xy = yx = 0, then x = ca and y = na (see [1]).

Theorem 10. Given an element a in a ring R with involution *, the following
are equivalent:

1. a is *–DMP with index k.

2. aDk exists and the core part of a is *–gMP.

3. aDk exists and is *–gMP.

4. aDk exists and aaDk is symmetric.
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Proof. (1 ⇔ 2) Suppose a is *–DMP with index k. Then aDk exists and ak = ck
a

is *–gMP. This means that ck
aR = c∗ k

a R, and as ca is group invertible, also that
caR = c∗aR. So,

cac
∗
aR = c2

aR = caR,

Rc∗aca = Rc2
a = Rca,

and ca ∈ cac
∗
aR ∩Rc∗aca, which implies that ca is Moore-Penrose invertible.

Conversely, if ca is *–gMP, then all powers of ca are *–gMP. In particular if k

is the Drazin index of a then ck
a = ak is *–gMP, and thus a is *–DMP of index k.

(2 ⇔ 3) Suppose ca = aaDka is *–gMP. Then(
aDk

)∗
R =

(
RaDk

)∗
=

(
RaaDk

)∗
=

(
RaDka

)∗
=

(
RaaDka

)∗
=

(
aaDka

)∗
R

= c∗aR

= caR

= aaDkaR

= aaDkR

= aDkaR

= aDkR.

Moreover, aDk
(
aDk

)∗
R =

(
aDk

)2
R = aDkR, and analogously, R

(
aDk

)∗
aDk =

RaDk , and therefore aDk is Moore-Penrose invertible. Hence, by corollary 1, aDk

is *–gMP.
Conversely, and analogously to the above, if aDkR =

(
aDk

)∗
R then caR =

c∗aR. Moreover, cac
∗
aR = c2

aR = caR, and also Rc∗aca = Rca. Therefore (ca)
†

exists, which together caR = c∗aR imply ca is *–gMP.
(2 ⇔ 4) If ca is *–gMP then c†a = c#

a = aDk . Hence,

aaDk =
(
aaDk

)2
= caa

Dk

= cac
†
a,

which is symmetric.
Conversely, if aaDk = aDka is symmetric then we prove that aDk is the Moore-

Penrose inverse of ca. Indeed, caa
Dk and aDkca are symmetric. Obviously,

caa
Dkca = ca,

aDkcaa
Dk = aDk .
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Therefore, c†a = aDk = c#
a and ca is *–gMP.

Theorem 11. If a is *–DMP with index k and with core part ca and nilpotent
part na, the following hold:

1. If n†a exists then a† exists with a† = c†a + n†a = c#
a + n†a.

2. If a† exists then n†a exists with n†a =
(
1− aaDk

)
a†naa

† (1− aaDk
)
.

Proof. We remark that ca belongs to the ring aaDkRaaDk and na belongs to the
ring

(
1− aaDk

)
R
(
1− aaDk

)
. Also, the previous theorem implies that c†a exists

with c†a ∈ aaDkRaaDk (see [18]).
(1) If na is Moore-Penrose invertible then also

n†a ∈
(
1− aaDk

)
R
(
1− aaDk

)
,

see [18]. The equality a† = c†a + n†a follows easily from

0 = cana

= can
†
a

= n†aca

= c†ana

= c†an
†
a.

(2) It is easy to show that

a†
(
1− aaDk

)
,
(
1− aaDk

)
a† ∈ na {1} .

In addition,
naa

† (1− aaDk
)

=
(
1− aaDk

)
aa†

(
1− aaDk

)
is symmetric, and therefore a†

(
1− aaDk

)
is a 1-3 inverse of na. Also,(

1− aaDk
)
a†na =

(
1− aaDk

)
a†na =

(
1− aaDk

)
a†a

(
1− aaDk

)
is symmetric, which makes

(
1− aaDk

)
a† a 1-4 inverse of na. Hence

n†a =
(
1− aaDk

)
a†naa

† (1− aaDk
)
,

see [28].

It should be pointed that in the previous theorem, a† = c†a + n†a is not neces-
sarily a core nilpotent decomposition. Let

A =

 0 0 0
1 0 0
1 1 0

 ∈ Mat3 (C)
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with transposed conjugation as the involution. 0 + A is the core nilpotent de-
composition of A, but since

A† =

 0 1 0
0 −1 1
0 0 0


is not nilpotent, 0† + A† is not the core nilpotent decomposition of A.

The A of this example is nilpotent of index 3. For *–DMP matrices with
index 2, the following positive results hold.

Lemma 12. If a2 = 0 and a† exists then also
(
a†
)2 = 0.

Proof. The result is clear since
(
a†
)2 = a†a† = a†aa†a†aa† = a†a†∗a∗a∗a†∗a† and

a∗ 2 = 0.

Lemma 13. If a is *–DMP with index 2 and a† exists then ca† = c†a and na† = n†a.

Proof. Since a is *–DMP then ca is *–gMP by Theorem 9 and therefore c†a = c#
a .

So,
(
c†a
)#

exists and equals ca. Also, since ca ∈ aaD2RaaD2 then c†a ∈ aaD2RaaD2 .

As in the previous theorem, the existence of a† implies the Moore-Penrose invert-
ibility of na, with

n†a =
(
1− aaD2

)
a†naa

† (1− aaD2
)
∈
(
1− aaD2

)
R
(
1− aaD2

)
.

So,
c†an

†
a = n†ac

†
a = 0.

Finally,
(
n†a
)2

= 0 since n2
a = 0, and a† = c†a + n†a. Using the uniqueness of the

core nilpotent decomposition, the result follows.

3 Application

Let R be a projective free ring with identity and involution r 7→ r such that
Rm be a module of finite length, which means that Rm has ACC and DCC for
submodules, see [3], [13]. Let + : (aij) → (aij)

T be the involution on Matm(R).
It follows from Fitting’s Decomposition Theorem, see [3], [5], [10] and [13], that
every matrix A is similar to a matrix of the form G ⊕N, with G invertible and
N nilpotent with an index k, since R is also supposed to be projective free. So,

A =
(

Q1 Q2

)( G 0
0 N

)(
P1

P2

)

13



with
(

Q1 Q2

)
=

(
P1

P2

)−1

.

By Theorem 9, A is +–DMP of index k if and only if AADk is symmetric with
respect to +. But,

AADk = Ak
(
Ak
)#

=
(

Q1 Q2

)( Gk 0
0 0

)(
P1

P2

)(
Q1 Q2

)( G−k 0
0 0

)(
P1

P2

)

=
(

Q1 Q2

)( I 0
0 0

)(
P1

P2

)
= Q1P1

and, the symmetry of Q1P1 together with P1Q1 = I implies that

Q1 = P †
1 .

But also P2P
†
1 = 0, i.e., P2P

+
1

(
P1P

+
1

)−1 = 0 or P2P
+
1 = 0 and P1P

+
2 = 0. This

means that P+
2 is a cokernel of P1 in the sense of [26], and Theorem 3.1 (page

77) implies [
Q1 Q2

]
=

[
P1

P2

]−1

=
[

P †
1 P †

2

]
.

Therefore,

1.

A is +–gMP iff A =
[

P †
1 P †

2

] [ G 0
0 0

][
P1

P2

]
iff A = P †

1GP1

(P1 retraction, G invertible)

It is easy to verify A# = A† by means of the product formulas (paq)# and
(paq)†, see [21], [17]. Indeed,

A# =
(
P †

1GP1

)#

=
(
P+

1

[(
P1P

+
1

)−1
G
]
P1

)#

= P+
1

(
P1P

+
1

)−1
G−1P1

= P †
1G−1P1

= A† with respect to +.

14



2. A is +–DMP of index k iff

A =
[

P †
1 P †

2

] [ G 0
0 N

][
P1

P2

]
= P †

1GP1 + P †
2NP2

(G invertible, N nilpotent of index k and

[
P1

P2

]−1

=
[

P †
1 P †

2

]
). Clearly,

(
Ak
)#

=
(
Ak
)†

= P †
1G−1P1.

Remark
In [2], we can find the following characterization for range-Hermitian matrices

over C:

- there exists a unitary matrix U =

[
U1

U2

]
and an invertible r × r matrix G,

r = rank A, such that

A =
[

U+
1 U+

2

] [ G 0
0 0

][
U1

U2

]
= U+

1 G U1.

Since C is projective free and Cn has finite length, the following is now a
unitary free characterization for range-Hermitian matrices over C:

- there exists an r × n matrix P1 of full rank and an invertible r × r matrix G,
r = rank A, such that

A = P †
1GP1.
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