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Abstract. This paper describes a tool-supported method for the formal
verification of Ada programs. It presents ATOS, a tool that automati-
cally extracts a model in SPIN from an Ada Program, together with
a set of properties that state the correctness of the model. ATOS is
also capable of extracting properties from user-provided annotations in
Ada programs, inspired by the Spark Annotation language. The goal of
ATOS is to help in the verification of sequential and concurrent Ada pro-
grams based on model checking. The paper introduces the details of the
proposed mechanisms, as well as the results of experimental validation,
through a case study.

1 Introduction

Ada [18] is a programming language highly recommended for the development
of critical software systems, due to its careful and safe design, and the existence
of clear guidelines for building this kind of systems. Given that high integrity
systems failures may have severe consequences, the use of formal verification
techniques can be of high value. The tool presented in this paper enhances the
relationship between formal methods and critical systems, enabling model check-
ing of Ada programs.

Formal methods encompass several verification techniques such as deductive
verification [12,13], model checking [16], and theorem proving [7]. Model checking
is notably one of the most successful and is at the core of the solution presented
in this paper. Given a model of a system and a property to verify, model checking
answers yes or no to the question “Does the model satisfy the property?”.

The application of the model checking technique to software is seen as very
promising and had led to the creation of a new research area, designated soft-
ware model checking [8,15]. This technique is not simply the application of model
checking to software, it involves the resolution of some obstacles in its applica-
tion, like state explosion or model construction problems (see Section . The
main goal of the ATOS tool is to help overcoming some of these obstacles in the
application of model checking to sequential and concurrent Ada programs, with
a special focus on the concurrent ones.
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Software model checking tools follow essentially two main approaches: (i)
either generate input models for one or more different existing model checkers,
where ATOS is included, or (ii) include their own model checking algorithms,
to check the correctness of the models, like BLAST [5] or SLAM [1]. ATOS uses
the SPIN model checker [14] to check the correctness of the translated models.
SPIN is a model checking tool focused on verifying the correctness of concurrent
systems models which clearly matches our intents. The models are described in
PROMELA, the SPIN modeling language, and correctness claims can be stated
through Linear Temporal Logic (LTL) [17] formulas or PROMELA assertions.

ATOS takes an Ada program and extracts from it a PROMELA model, which
simulates the runtime behavior of the first. The correctness of the generated
models, and consequently of the Ada program, is stated through a set of desire
properties in the model. These can be automatically inferred by ATOS or spec-
ified in the Ada program using an annotation language inspired by SPARK [2].

1.1 Software Model Checking Challenges

The application of model checking in the verification of software systems poses
several challenges. Most notably:

Model construction: Manual model construction of software systems is an
error prone process and time consuming due to the complexity of these
systems. In addition, there is a gap between the semantics of programming
languages for software systems (e.g. C, Ada, or Java) and the input languages
of model checking tools. Programming languages have richer features with
more complex semantics than modeling languages.

State explosion: This is recognizably the biggest problem of model checking.
In software model checking the problem can become even more serious, due
to the size of software systems, which leads to the generation of models with
a lot of states. Thus, more aggressive abstractions must be considered.

Property specification: Typically, properties are specified in some variant of
temporal logic. This encompasses two difficulties: Firstly, it requires some
level of expertise for expressing the desired system properties in temporal
logic. Second, the mapping of these properties to the properties of the model
may not be straightforward, since the typical specification languages are
designed to state properties of mathematical models rather than source code
properties.

Output interpretation: When a property does not hold in a given model, the
model checker reports a counter-example illustrating a trace that evidences
the violation of the property. Large models can produce very long traces.
As such, manually matching up the provided trace with the model’s source
code can be really a hard job.

ATOS directly addresses the first and third identified challenges: given an
Ada program, it is capable of automatically extracting a PROMELA model from
it, and also inferring properties directly from the program. ATOS is an ongoing



project; at this stage the remaining two challenges have still not been considered.
However, by converting Ada programs into models of such a powerful model
checking tool like SPIN, ATOS profits from all of its abstraction techniques,
which can be a great help in dealing with the state explosion problem.

2 Running Example

The case-study is a solution to the Readers-Writers well known concurrency
computing problem. It is extracted from [3] and covers some of the Ada fea-
tures that ATOS can translate. The Ada program is constituted by the main
Readers Writers procedure that contains the declaration of a single protected
object RW, a single Writer task, and a task type Reader, which is instantiated
twice. The main procedure has only one statement (mandatory), which is the
null statement. The details of the other components will be discussed next.

2.1 The RW Protected Object

The protected object RW is composed by four protected operations and two data
structures declared in the private part. Its declaration is shown in list

Listing 1.1. Protected Object

Protected RW is
procedure EndRead;
procedure EndWrite;
entry StartRead;
entry StartWrite;

private
Readers: natural range 0..2:=0;
Writing : boolean :=false;

end RW;

Protected body RW is
procedure EndRead is
begin
Readers:=Readers — 1;
end EndRead;

procedure EndWrite is
begin
Writing:=false ;
end EndWrite;

entry StartWrite when not Writing and Readers = 0 is
begin
Writing:=true;
end StartWrite;

entry StartRead when not Writing is
begin
Readers:=Readers + 1;
end StartRead;
end RW;




The variable Readers contains the number of readers along the program exe-
cution, while the boolean Writing signals whether there is a writer writing. The
values of these two variables are altered by four protected operations, two entries
(StartWrite and StartRead) and two procedures (EndWrite and EndRead). The
entries have a barrier, which in the case of StartWrite means that in order for
a writer to start writing there can be no readers reading and no writers writing,
while in the case of StartRead it indicate that there can be no writers writing
in order for readers to start reading.

2.2 The Writer and Reader Tasks

The Writer task is a single task, while the Reader task is a task type, which
means that several instantiations of it may be created during the program exe-
cution. In our example, as mentioned, it is instantiated twice. Lists and
correspond to the bodies of Reader and Writer tasks, respectively. The behavior
defined by these two body tasks is similar: it is a loop trying to start and end
the read/write of the protected object.

Listing 1.2. The body of task Reader

Listing 1.3. The body of Task Writer

task body Reader is
begin
loop
RW. StartRead ;
RW. EndRead ;
end loop;
end Reader;

task body Writer is
begin
loop
RW. StartWrite ;
RW. EndWrite;
end loop;
end Writer;

3 Model Extraction

The ATOS tool is capable of translating a subset of the Ada language into
PROMELA models. All the syntax and semantic information of Ada Programs
required for the translation is provided by Ada Semantic Interface Specifications
(ASIS) [6], a library that offers an excellent interface to the Ada syntax tree
programs (AST). ATOS handles the following Ada declarations: subprograms
(procedures and functions), packages, concurrency primitives (tasks, protected
objects, and entries), variable declarations (including arrays and basic records),
integer constants, and new integer types and subtypes. The translation of many
statements as well as logical operators conversion or the support for the Ada
inheritance mechanism are also provided by ATOS. Next, the translation details
for some of these primitives are given.

3.1 Encapsulation

Encapsulation is a well known mechanism used by most of programming lan-
guages, including Ada, which restricts and hides object’s data. This mechanism
is not directly matched with PROMELA semantics; nevertheless, it is partially
assured by the ATOS translation. The encapsulation is guaranteed for variables



declarations; all other declarations must have different names in order to avoid
the redefinition of these along the extracted model.

ATOS preserves the encapsulation of variables declaring them globally in the
model, prefixed with the name of its “mother entity”. For example, the variable
Readers from the protected object RW is declared globally as RW_Readers. The
variable renaming process is performed automatically by ATOS. This solution
was reached after finding difficulties in the use of PROMELA primitives scopes,
namely due to the fact that PROMELA processes (tasks) do not allow the
declaration of inlines inside its “body”, which are used, for example, to translate
procedures and functions. This restriction forced inlines primitives to be declared
globally (i.e. not encapsulated) as well as its variables, so that tasks can access
them.

This approach allows the use of local variables in the specification of global
properties (see section . However, for this case, the user must provide the
prefix of the variable with the name of the mother entity, so that ATOS can
know which variable he is referring to.

3.2 Subprograms

Subprograms encompass functions and procedures whose execution can be in-
voked through a procedure call. Subprograms parameters have a mode (in, out,
or in out), and they can be passed either by copy or by reference. A param-
eter passed by copy denotes a separate object from the actual parameter and
the information transfered between the two happens only in two moments: im-
mediately before and after the subprogram execution. To simulate this, ATOS
creates an auxiliary variable for each, which is assigned with the value of pa-
rameter before the beginning of the procedure execution and all occurrences of
this parameter inside the procedure are replaced by the corresponding auxiliary
variable. At end of the procedure execution, the parameter is assigned with the
corresponding auxiliary variable. A parameter passed by reference is updated
along the subprogram execution.

There is no direct equivalent to an Ada procedure in PROMELA; ATOS
translates procedures as inlines, a primitive which simply defines a replacement
code for a designated name possibly with parameters. The procedure statements
are converted into inline statements, whereas the declarations are made global
as explained in Section The procedure parameters are translated into inline
parameters. However, unlike parameters of subprograms, they do not have a type
and a mode associated, they are simple names. This does not become a problem
since ATOS only converts an Ada program if its compilation was successfully,
therefore the parameters type and mode checking are guaranteed up-front.

3.3 Concurrency

The concurrency model of Ada is based on three main primitives: tasks, protected
objects, and shared data. The communication between concurrent primitives
follows the rendezvous mechanism, which is reproduced in the extracted models.



Concurrent Ada programs may be executed on a single processor (interleavead)
or on multiprocessors. The concurrency model of SPIN is different from Ada’s,
the behavior of SPIN models is defined simply by the arbitrarily interleaving of
the processes statements.

Tasks: The definition of an Ada task is divided in two parts: the specification,
which describes the interface with other tasks, and a body that contains the
code defining the task’s behavior. A task can either be declared as a single task
or a type task. The first becomes active from the moment it is declared; whereas
the type task simply creates a new type which can be instantiated later.

A task of an Ada program is translated into a PROMELA process. Similarly
to Ada tasks, processes in PROMELA are the only primitive that can represent
parallel activities. Single tasks are converted into active proctypes, which be-
come active from the moment they are declared. The type tasks are translated
into PROMELA proctypes, which simply creates a new process type that can
be instantiated later. However, ATOS creates a new type for each instantiation
due to encapsulation issues: Because all the variables from an Ada program are
declared globally, the variables of a task type would be the same for any number
of instantiations because they are not encapsulated. To overcome this, ATOS
creates a new type and new declarations for each instantiation. Lists and
illustrate the conversion of the task type Reader.

Listing 1.4. First instantiation of task
type Reader

Listing 1.5. Second instantiation of
task type Reader

proctype Reader0(){ proctype Readerl (){
do do
StartRead ( ); StartRead ( );
EndRead ( ); EndRead ( );
od } od }

A process has associated an ID number which univocally identifies its sent
messages. Processes have also an associated channel through which it can receive
messages from other processes.

Protected Objects: They are a structured mechanism which provide mutually-
exclusive access to shared data. A protected object is relatively similar to a
package, the main difference is the fact that all operations of a protected object
are mutually-exclusive. The operations encompass three different declarations:
procedures, functions, and entries.

Similarly to tasks, protected objects can be either declared as single or type,
and are translated to PROMELA processes, i.e, active proctype or proctype,
respectively. Associated to the process, ATOS also creates two PROMELA chan-
nels, one for queuing the blocked entries and another for communicating with
other processes, in order to ensure the correct simulation of Ada protected ob-
jects. Only one operation is allowed to start at each time, except functions which
can execute more than one simultaneously. If the operation is an entry, it must
evaluate the barrier expression before executing: If the barrier is open the oper-
ation is executed; otherwise the process (an Ada task) which is trying to execute



the operation communicates to the corresponding protected object process that
the barrier is closed and is enqueued. Every time a process finishes the execution
of a protected operation, it communicates this to the protected object process,
which then activates the enqueued processes to test again the entries barriers
before opening the semaphore again.

The procedures and functions operations are translated equally to other pro-
cedures and functions. The only difference is that, in the beginning of the oper-
ation, there is a small piece of code that tries to acquire permission to execute.
The translation of entries is similar to the conversion of procedures. Entries are
converted as inlines and its parameters as inline parameters. However, they have
a few extra statements which test the barrier expression and communicate the
result to the protected object, in order for this to know if it is closed or not.

3.4 Types and Variable Declarations

The Ada and PROMELA type systems are very different, the first one offers a
much more powerful and wide type system. Table[I]illustrates the correspondence
between Ada predefined types and the PROMELA types defined by ATOS.
The range of values that PROMELA types can represent is always greater or
equal to the corresponding Ada types ranges. As such, when corresponding types
have different ranges, overflow errors could stay undetected in the model. For
example, a variable with type short in PROMELA can represent the number
—215 which it is not possible with correspondent Ada type. This is easily avoided
adding an LTL formula which asserts that a variable respects its range values.

Type Ada| Range Ada | Type PROMELA| Range PROMELA
boolean false, true bool false, true
integer |—21° +1.275 —1 short —215 215 1
positive 1.2 -1 unsigned 0.2"=P —1
natural 0.215 -1 unsigned 0.2"=P _1

Table 1. Correspondence between Ada predefined types and PROMELA types

ATOS is capable of converting variables with the Ada predefined types from
Table [I] and with new integer types and subtypes defined in an Ada program.
ATOS also allows the use of range constraints in variables declarations and
takes advantage from this range to reduce the size of variables. For example,
the natural variable Readers with range 0..2 is declared as an unsigned with the
smallest number of bits that can represent the upper bound of range (2 bits in
this case), instead of being declared as an unsigned with 15 bits.

Arrays: An array is a data structure which aggregates a list of elements, all
of the same type. This structure exist both in Ada and PROMELA. However,
in Ada it is a more powerful data structure, since it allows the declaration of



complex expressions which define the range of an array. In PROMELA, the range
of an array can only be defined within 0..N — 1, where N € N and represents the
number of elements. In Ada, the range of an array is defined within N..M, where
N,M € Z and N < M, thus allowing the definition of the lower and the upper bound
of an array range unlike in PROMELA arrays, where just the upper bound is
defined.

ATOS can convert all declarations of arrays in Ada, except those which have a
predefined range such as: Character or Positive. In the conversion of an Ada
array to a PROMELA array, ATOS firstly calculates the number of elements
defined in Ada’s array, which is given by this formula:

Nr_Of_Arrays_Elements = Upper_Bound — Lower_Bound + 1,

where Upper _Bound and Lower_Bound are the upper and lower bound, respec-
tively, of an Ada array range. With the number of elements ATOS can declare the
array in PROMELA, but the translation work it is not over, because PROMELA
arrays can only be accessed from indexes between 0..Nr_Elements — 1. This
problem is solved calculating the difference between 0 (the lower bound of a
PROMELA array) and the lower bound of an Ada array; the calculated offset is
then added to the indexes value of a PROMELA array every time it is accessed.

3.5 Statements

Statements are a familiar concept to most of programming languages, including
Ada. This concept also known as instruction exists in PROMELA too. ATOS is
able to convert the following Ada statements: if, null, assignment, case, loop, exit,
while loop, for loop, goto, procedure call, accept, selective accept, return, entry
call, and block. As an example, the details of translating an accept statement
are given here.

The accept statements are declared in the specification part of a task (as an
entry declaration) and identify the interaction points of a task. The translation of
this statement is done by just mapping its semantic into PROMELA models. In
PROMELA, processes (tasks) communicate with each other through channels,
so an accept statement is mapped simply as an execution point where a task is
listening on a channel that will eventually receive a message from other task,
where the message contains the sender identification and the parameters of the
accept statement. The general PROMELA code for the translation of an accept
statement is given in the below List.

*AcceptNamex 7 *SenderIDx,*xParametersx —>
*Statementsx*
Processes [*SenderID %] ! xAcceptNamex

A sender task remains suspended until the requested task finishes the accept
statement execution. When the requested task reaches the end of an accept
statement, it sends a message to the sender task in order to activate it again, as
it happens in Ada.




3.6 Main Program

The concept main program exists in Ada, despite not being identified with a
special name as it happens in other programming languages (e.g. Java or C).
The main of an Ada program is translated into a PROMELA init, which is
an parameterless active process that can be declared only once per model. The
init process contains the correspondent Ada main program statements and
possibly instantiations of task types. The processes instantiations in PROMELA
are performed inside other processes because they are executed through the run
statement, rather than by a declaration as in Ada. The procedure Readers-
Writers is the main subprogram of the running example (see Section [2)) and is
converted to PROMELA as shown in the below List.

init{ run Reader0();
run Readerl ();
//statements
skip;

4 Properties Specification

A model checker verifies whether a model fulfills a given (set of) property(ies).
Hence, the specification of properties is a crucial step in the process. ATOS offers
high level mechanisms for the verification of extracted models, based on (SPARK
inspired) annotations at source code and on automatic inference of properties
from Ada programs. To exemplify the mechanisms supported by ATOS, we start
by enumerating a set of expected requirements (properties) for the Readers-
Writers example:

The numbers of readers lies between 0 and 2 (the max number of readers).
Before a reader finishes to read there must be at least one reader reading.
After a reader ends to read, the number of readers is decreased in one.
Readers and writers can not execute simultaneously.

CUp W o=

A writer does not change it status (writing or not writing) when a reader
finishes reading.
6. The system is deadlock free.

Range Checking: This mechanism extracts an LTL formula for each variable
declared with a range constraint, which checks whether the range constraint is
violated or not. The requirement [I] can be translated at code level, checking if
the variable Readers does not violate its range constraint. The specification of
this property is done automatically by ATOS, which generates the following LTL
formula:

Itl RCO { [ |(RW _Readers >= 0 && RW _Readers <= 2)}




Temporal properties: The specification of temporal properties in ATOS is
restricted by the temporal logic allowed in SPIN, which is the LTL. ATOS offers
a high level mechanism for the specification of temporal properties, based on the
properties pattern for LTL defined in [9]. These are composed of five basic pat-
terns: universal, absence, response, existence and precedence. The five patterns
have variations which are defined in terms of five basic pattern scopes:

— a pattern holds globally along the program execution;

— a pattern holds after the first execution of a specified event;

— a pattern holds before the first execution of a specified event;

— a pattern holds between the occurrence of a designated event and the occur-
rence of another specified event;

— a pattern holds after the occurrence of a specified event and until the next
occurrence of another event, or throughout the rest of program execution if
there is no further occurrence of that event before the end of program.

Requirement [4] of the current example can be specified using these patterns:
- -3 property RW _Readers > 0 and RW Writing is_false globally

This annotation is then converted by ATOS into the LTL formula:
1l prop0 {[ ] ( {(RW _Readers > 0 && RW Writing) )}

In addition to these set of patterns, the user can yet specify its own temporal
properties. By default, ATOS adds automatically the property stating deadlock
freedom (requirement @

Asserts, Preconditions and Postconditions: These annotations allow for
the verification of conditions at a certain point during a program execution and
are converted into PROMELA asserts. An annotation corresponding to an assert
can be specified anywhere in an Ada program where statements are allowed. Pre-
and postcondition annotations are defined only in the body of the followings Ada
primitives: functions, procedures and entries. Precondition statements (assert)
appear at the beginning of the corresponding primitives; postconditions appear
at the end.

Requirement [2| and [3| can be expressed by a precondition and a postcondition
annotation, respectively, in procedure EndRead. The precondition states that the
value of RW_Readers must be greater than zero:

- -# pre RW _Readers > 0,

while the post condition checks if the value of RW_Readers at the end of the
procedure is equal to the value of RW_Readers at the beginning of procedure
(old value) less one:

- -# post RW _Readers = RW _Readers ~ —1

In order to simulate the old value of a variable, ATOS creates an auxiliary
variable which is assigned with the value of the corresponding variable at the
beginning of the Ada primitive.



Invariants: This mechanism allows for the specifications of properties for
checking whether a given logic expression is valid along the execution of one
of these Ada primitives: procedure, functions and entries. An invariant annota-
tion is given in the body of the enunciated Ada primitives like preconditions and
postconditions.

Requirement [5| can be verified stating that the boolean RW_Writing is not
altered along the procedure EndRead execution:

- -# invariant RW _Writing = RW _Writing ~

ATOS converts the invariant annotations in several LTL formulas, one for
each task that possibly executes the Ada primitive. In this example, there are
two processes (tasks) which can possibly execute the procedure EndRead (the two
instantiations of Reader task), so ATOS generates two LTL formulas equivalent
to this pattern annotation:

RW Writing = RW _Writing ~ is_true between ) andOp R

where Q/R corresponds to the states whereupon the Reader processes begin/end
the EndRead execution. The invariant is verified if the two LTL formulas are valid.

5 Related Work

Software model checking is a wide research area. Several projects have been
developed with the intention of applying model checking techniques to software.
Among these, some are directly related with Ada programs, namely Quasar [11]
and Ada Translating Toolset [10]. The first also extracts models directly from
Ada programs, but it uses Colored Petri Nets to represent the extracted models.
The second one uses an intermediate representation of Ada programs before it
generates the correspondent models.

The approach followed by ATOS and Quasar allows the extraction of more
accurate models comparing to Ada Translating Toolset because some program
details are lost due to the intermediate representation in this last. However, the
Ada Translating Toolset has the capability to extract more easily models for
different model checkers because its intermediate representation is closer to a
model than Ada programs.

6 Conclusions and Future Work

The tool presented in this paper provides mechanisms to extract models and
property specifications from Ada programs to the SPIN model checker. Although
the use of a modeling language to represent programming language features im-
poses some natural restrictions, the model extraction covers a wide variety of
Ada features and generates models that closely relate to the correspondent Ada
programs. Yet, there is still a gap in the simulation of Ada concurrent programs
which is the absence of a scheduler implemented in SPIN that would approximate
even more the behavior of Ada concurrent programs to the extracted models.



A solution to solve this gap and the development of mechanisms which address
other software model checking challenges (state explosion and output interpre-
tation) remains as future work. ATOS has been tested with several concurrent
small/medium case studies, like readers-writers or producers-consumers, and it
is currently being tested with a bigger case study.
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