A Visual Inspector for Boogie Programs

Marcio Coelho, Daniela da Cruz, Pedro R. Henriques, and Jorge S. Pinto
{marciocoelho,danieladacruz,prh, jsp}@di.uminho.pt

Departamento de Informatica / CCTC
Universidade do Minho, 4710-057 Braga, Portugal

Abstract. Design-by-Contract is an approach that allows a program-
mer to specify the expected behavior of a component by means of pre-
conditions, postconditions and invariants. These annotations (or logical
assertions that complement the code) can be seen as a form of enriched
software documentation and they can be used to verify that a program
is correct with respect to its contracts.

Boogie is an intermediate verification language that is being used by more
and more software verification tools as a target language. Actually, sev-
eral annotation languages are nowadays translated to Boogie language.
Despite of its efficiency and popularity, Boogie, that is also a program
verifier, does not contain visual information for the user. So, understand-
ing how it works is a difficult task.

In this paper, we will discuss a visual tool that we developed to help in
comprehending Boogie programs.

Keywords: Program Verification, Verification Condition Generators,
Design-by-Contract, Boogie, Software Visualization

1 Introduction

Nowadays, more than ever, there is a strong concern to verify software systems.
Hospitals, banks, governments and industries use software systems that can not
have errors. Such errors can have drastic economic and human consequences. In
the past (before the year 2000) the aerospace industry lost over a billion dollars
due to severe bugs in software [10].

In this context of safe software, people were seeking for formal approaches
(semantic oriented) to establish that a program performs according to some
intended specification. Typically, what is meant by this is that the input/output
behavior of the implementation matches that of the specification (this is usually
called the functional behavior of the program), and moreover the program does
not ‘go wrong’, for instance no errors occur during evaluation of expressions (the
so-called safety behavior).

Following this thread, in the eighties born an approach called Design by
Contract [8], introduced by Bertrand Meyer, which main idea is to include in
a software system the mutual obligations and benefits between a “client” and a
“supplier”. Both agree on a contract that should be expressed in the source code.
This is the metaphor upon which the Design by Contract approach relies.

Thus, by including a specification (using for instance JML [7] or Specf [1]) in
the source code it would be possible to establish a proof of correctness. A proof
of correctness should mainly detect if a program is inconsistent with respect to
its assertions. However, a proof itself can be erroneous. As a mathematician can
err in formulating a proof, a program prover can make a similar mistake. The
use of verification tools can help in reducing this kind of errors.

Boogie[5] is such kind of tool. Boogie compiler acts like a Verification Condi-
tion Generator (VCGen for short) and generates a set of Verification Conditions
(VCs) from a program together with its specification. These verification con-
ditions are usually generated in SMT-LIB language [2]. After this first step of
generating the VCs, they are sent to a SMT Prover (Z3 [9] is the default one) to
check if all they are correct. If all the verification conditions generated can be
proved, then the program is guaranteed to be correct with respect to its speci-
fication. With Boogie, several provers can be used (e.g. Simplify [6]), but SMT
provers are the most popular due to their efficiency.

In the other hand, Boogie is an intermediate verification language. Boogie
language is a typed imperative language with procedures and arrays. It can be
used to represent programs written in an imperative source language and is
accepted as input to Boogie compiler.

A Boogie file includes a lot of information, such as axioms, procedures and
their implementations. Due to the amount of information generated from a source
program, it may be difficult to understand it. With this in mind we developed a
tool that allows us to inspect a Boogie file and understand not only the source
code but the process of translation and the process of generating the verification
conditions.

In this paper we introduce GamaBoogie, a tool that contains a visualizer for
Boogie programs. This visualizer displays the internal Identifier Table containing
all the source identifiers and those introduced in the translation process. More-
over, it shows the control flow graph, that is an effective aid on understanding the
translation /verification process. Some examples will be introduced, to illustrate
the tool usefulness.

This tool makes part of a bigger effort of applying slicing algorithms to Boogie
programs. However, before the implementation of such algorithms, a deep study
of Boogie was required resulting in the construction of this visualizer.

Structure of the Paper Section 2 explains the main features of the visual inspec-
tor. The paper closes in Section 3 with some conclusions and future work.

2 The visual inspector

In this section we will present the different features offered by the visual inspector
of GamaBoogie. These include: source code visualization, identifier table and flow
graphs of a procedure.

11

13

15

17

19

21

23

Program example Listing 1.1 calculates the maximum number in an array and
will be used as example to illustrate the features of GamaBoogie. Translating
this source code into BoogiePL results in a file with a total of 1205 lines. Most
of these lines corresponds to axioms and functions needed for the generation of
the VCs (for instance, types disappear during the VCs generation; they are, if
necessary, encoded as axioms).

public class maxarray
{
int max;
int [] vec = new int[100];

private void maxarrayl ()
requires vec!=null;
ensures 0 <= max && max <= vec.Length;
ensures forall{int a in (0:vec.Length) ; vec|a]<=vec[max]};
{
int i = 03
max = 0;

while (i < vec.Length)

invariant 0 <= i && i <= vec.Length;

invariant 0 <= max && max <= 1 ;

invariant forall{ int a in (0:1); vec|a] <= vec|[max]|}

{

)

if'(ve(.:[i] > vec[max]|) { max = i; }
i =1 +1;

Listing 1.1. Program example: Maximum of an Array

Source code In order to display the code to the user in a friendly manner, we
are using the ScintillaNet! component for syntax highlighting. With this feature,
the user can get a better visualization of the source code and explore it.

Figure 1 depicts this feature. As can be seen at right, the relevant information
about the program is shown — the procedures, marked with a red P, and the
implementations of that procedures, marked with a green I. This way, the user
can inspect each one of these entities by clicking on it, and thus being redirected
to the line that corresponds to such declaration. Besides that, the user can
ask to hide the code automatically generated by Boogie with respect to types
and axioms, displaying only the code for procedures and implementations. This
allows the user to focus only on the code he is interested in.

Identifier Table After a Boogie program be loaded, an Identifier Table is shown.
This table is built during the parsing phase of the program provided by the
Boogie compiler. This table contains information about the identifiers declared
in each implementation. The information displayed in this table includes: name
of variable; class where it belongs; method where it is declared; type; and line
where it first appears declared.

Figure 2 shows the Identifier Table for the program in Listing 1.1.

! http:/ /scintillanet.codeplex.com /

Flow Graphs Boogie compiler already builds a graph structure for a given pro-
gram. Thus, we took advantage of this fact to display it to the user.

There are two kinds of graphs shown to the user: the Control Flow Graph
(CFG) and the Directed Acyclic Graph (DAG).

The user can filter, once again, the information he wants to see: he can start
with a global perspective of the graph and then go deeper by inspecting the
control flow of a block inside the implementation. Figure 3 shows the CFG of an
implementation and Figure 4 shows the CFG of a block inside such implemen-
tation.

The visualizer allows to go to the previous graph at any time. When first
running, the visualizer shows the available classes in the file. Choosing a class,
the user can filter which CFG’s method he is interested in. At this point we have
two graphs for the same block: with and without dead blocks.

gt T | | it
ﬁ Home

B %

Open Boogie
File

Source Code Boogie

O — Options &
|]
S Show only:
@ maxarrayl
@ ctor = i [7] Procedures
812 procedure maxarray maxarrayl(this: ref where SLsNotlull(this, maxarray) 24 SHeap[thic, Sallocated]); -
@ ctor 513 // user-declared preconditions
@ cotor 814 requires Seap[this, maxarray.vec] != null
815 // target object is peer c
‘@lccoy 816 requires (forall Spc: ref typeof(Spc) | { SHeap[Spc, $localinv]) { SHeap[Spc, Sinv] } { SHeap[Spc, SownerFrame] | { SHeap[Spc, SownerRef
817 // target object is peer c t (owner must not be valid)
818 requires $Heap[this, Sownerframe] -- $PeerGroupPlaceholder || !($Heap[$Heapthis, SownerRef], $inv] <: $Heap[this, SownerFrame]) || $Heap|SHeap
819 free requires $Beinglonstructed — null;
820 free requires $PurityAxiomsCanBeAssumed;
821 modifies SHeap, SActivityIndicator;
82 // user-declared postconditions
823 ensures 0 <= SHeap[this, maxarray.max
24 ensures Steap[this, maxarray.max] <= Steap|ClassRepr(maxarray), maxarray.LENGTHI:
825 ensures (forall “a: int :: 0 <= “a &4 "a <- Sheap[ClassRepr(maxarray), maxarray.LENGTH] - | ==» ArrayGet(SHeap[SHeap| this, maxarray.vec], Selem
826 // nenly allocated objects are fully valid
827 free ensures (forall Bo: ref :: { $Heap[So, $localinv] } { $Heap[So, $inv] } $o !~ null 82 lold($Heap) [$o, $allocated] 55 SHeap[$o, $allocated
828 // first consistent ouner unchanged if its exposeVersion is
829 free ensures (forall $o: ref :: | $Heap[$o, SFirstConsistentOuner] } old($Heap)[old(SHeap)[$o, $FirstConsistentOwner], SexposeVersion] - $Heap
830 // frame condition
831 free ensures (forallcalpha So: ref, $7: Field alpha :: [SHeap[So, $f] } $o != null &2 IncludeInMainframeCondition(§F) 22 old($Heap)(So, Sallo
832 free ensures SHeapSucc(old(SHeap), SHeap)
83 // inv/Localinv change only in blocks
834 free ensures (forall So: ref :: { SHeap(So, Slocalinv] } [SHeap[So, Sinv]) old(SHeap)[So, Sallocated] -=> old(SHeap)[So, Sinv] -- SHeap[So, §
835 free ensures (forall So: ref :: { $Heap(So, Sallocated]) old(SHeap)[So, $allocated] -- SHeap[$o, Sallocated]) 22 (forall Sot: ref :: { Steap|
836 free ensures (forall So: ref :: { $Heap[So, Ssharinglode] | old($Heap(So, $sharinghode]) - $Heap[So, $sharingMode])
837
838
a39
820 implementation maxarray.maxarrayl(this: ref)
841 [
842 var i: int where InRange(i, System.Int32)
843 var stackei: int; -
844 ver tempo: exposeversionType; El
845 var stackbo: ref: m
886 var stacklo: ref.
847 var stacksb: bool;
88 var stackli: int;
849 var stack2i: int
850 var templ: exposeVersionType
851 var SHeapSblock25165LoopPreneader: HeapType
85,
853 entry:
854 goto block2159
855
856 block21so:
as7 goto block2363;
858 o
B m ’

Fig. 1. Source Code visualization feature

3 Conclusions

This work sets up a new visualization tool for Boogie programs, in order to
helping users to have a better understanding of the internals of Boogie programs

Identifier Class Method Type Line

stacklo maxarray maxarrayl ref Bdg
tempd maxarray .ctor ref 1080
stacklo maxarray maxarrayl ref B45
stacklo maxarray .ctor ref 1079
tempd Maxarray maxarray 1 exposeVersionType 844
stack(i maxarray maxarray int B43
stackli maxarray .cctor int 1184

i maxarray maxarrayl int B42

Fig. 2. Part of the Identifier Table

and build the gap existing between the translation of a source program into a
Boogie program.

Currently, a promising feature is being implemented: slicing. In [3,4], the
authors have shown that slicing a program using its specification produces more
aggressive slices — in the sense that they are semantic-sensitive rather than
syntactic, as is usual in tradicional slicing algorithms. Originally, this assertion-
based slicing algorithm was implemented in GamasSlicer, and was applied to
a subset of the Java programming language (with JML annotations). However,
since Boogie system provides all the pieces necessary to cover a more broad range
of programming languages, all these ideas are being carried to GamaBoogie.

References

1. Barnett, M., Leino, K., Schulte, W.: The Spec# programming system: An overview.
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices pp.
49-69 (2005)

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (Edinburgh, England) (2010)

3. Barros, J.B., da Cruz, D., Henriques, P.R., Pinto, J.S.: Assertion-based slicing and
slice graphs. In: Proceedings of the 2010 8th IEEE International Conference on
Software Engineering and Formal Methods. pp. 93-102. SEFM ’10, IEEE Com-
puter Society, Washington, DC, USA (2010), http://dx.doi.org/10.1109/SEFM.
2010.18

4. da Cruz, D., Henriques, P.R., Pinto, J.S.: Contract-based slicing. In: Proceedings of
the 4th international conference on Leveraging applications of formal methods, ver-
ification, and validation - Volume Part I. pp. 106-120. ISoLA’10, Springer-Verlag,
Berlin, Heidelberg (2010), http://portal.acm.org/citation.cfm?id=1939281.
1939294

5. DeLine, R., Leino, K.R.M.: Boogiepl: A typed procedural language for checking
object-oriented programs. Tech. rep. (May 2005)

http://dx.doi.org/10.1109/SEFM.2010.18
http://dx.doi.org/10.1109/SEFM.2010.18
http://portal.acm.org/citation.cfm?id=1939281.1939294
http://portal.acm.org/citation.cfm?id=1939281.1939294

[
008

© N o

©

10.

block2363

(block25165LooDPreheader)

block2516

block2856

true2856to3060
false2856t02805

block3060 | stackli:=1; |
block2805
block2958 stackii :=i + stackli;
false2805t0300%
' true2805to2618 '

assume false;

l
)l
/8

block3

Fig. 3. CFG for an Implementation Fig. 4. CFG for a Block

. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-

ing. J. ACM 52(3), 365-473 (2005)

Flanagan, C., Leino, K.: Houdini, an annotation assistant for ESC/Java. FME

2001: Formal Methods for Increasing Software Productivity pp. 500-517 (2001)

. Meyer, B.: Design by contract. Technical report tr-ei-12/co, Interactive Software
Engineering Inc. (1986)

. de Moura, L.M., Bjgrner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS. Lecture Notes in Computer Science, vol. 4963, pp. 337—

340. Springer (2008)

Tassey, G.: The economic impacts of inadequate infrastructure for software testing.

National Institute of Standards and Technology, RTI Project (2002)

	A Visual Inspector for Boogie Programs
	1 Introduction
	2 The visual inspector
	3 Conclusions

