An Efficient Parallel Algorithm for the
Symmetric Tridiagonal Eigenvalue Problem

Maria Anténia Forjaz! and Rui Ralha

Departamento de Matematica
Universidade do Minho
Campus de Gualtar
4710-057 Braga, Portugal
Tel +351 253604340, Fax +351 253678982

maf@math.uminho.pt, r_.ralha@math.uminho.pt

Abstract. An efficient parallel algorithm, farmzeroinNR, for the eigen-
value problem of a symmetric tridiagonal matrix is implemented in a
distributed memory multiprocessor with 112 nodes [forjaz2000]. The ba-
sis of our parallel implementation, is an improved version of the zeroinNR
method [ralha93]. It is consistently faster than simple bisection and pro-
duces more accurate eigenvalues than the QR method. As it happens with
bisection, zeroinNR exhibits great flexibility and allows the computation
of a subset of the spectrum with some prescribed accuracy. Results were
carried out with matrices of different types and sizes up to 10* and show
that our algorithm is efficient and scalable.

1 Introduction

The computation of the eigenvalues of symmetric tridiagonal matrices is one of
the most important problems in numerical linear algebra. The reason for this
is the fact that in many cases the initial matrix, if not already in tridiagonal
form, is reduced to this form using either orthogonal similarity transformations,
in the case of dense matrices, or the Lanczos method, in the case of large sparse
matrices.

Essentially we can consider three different kinds of methods for this problem:
the QR method and their variations [parlett80], [demmel97], the divide-and-
conquer methods? [cuppen81], [dongarra87], and the bisection-multisection me-
thods [wilkinson65], [ralston78], [parlett80], [bernstein84]. The bisection method
is a robust method but is slower than the other methods for the computation of
the complete set of eigenvalues. However, because of the excellent opportunities
it offers for parallel processing, several parallel algorithms have been proposed
which use bisection to isolate each eigenvalue and then some additional technique

! Candidate to the Best Student Paper Award

2 Available as LAPACK routine sstevd; a good choice if we desire all eigenvalues
and eigenvectors of a tridiagonal matrix whose dimension is larger than about 25
[demmel97, pg. 217].



with better convergence rate to compute the eigenvalue to the prescribed accu-
racy [phillipe87], [jessup90], [kalambouskis90], [baserman92], [demmel93]. One
of such methods, dubbed zeroinNR, has been proposed in [ralha93] and uses an
original implementation of the Newton-Raphson’s method for this purpose.

2 A Sequential Algorithm: zeroinNR

Let A be a real, symmetric tridiagonal matrix, with diagonal elements aq, . .., a,
and off-diagonal elements by, ..., b,—1. The sequence of leading principal minors
of A is given by

po()\) =1

P1 ()\) =a; — A (].)

pz()\) = (ai - )\)p(i,l) ()\) — blzp(i,m ()\), 1= 2,3, cee, N

It is well known that the number of variations of sign in this sequence equals the
number of eigenvalues of A which are strictly smaller than .
To avoid overflow problems, the sequence (1) can be modified to the form

0(A) =1
aq1 ()\) =a; — )\ (2)
qt(A) = pi(A)/pi—l(A)ﬂ 1=2,3,...,n

and the terms of the new sequence can be obtain by the following expressions,

q0o(A) =1
q1 (A) =a; — )\ (3)
gi(A) = (ai = A) =62 /qi-1(N), i =2,3,...,n

where the number of negative terms ¢;(\), ¢ = 0,...,n, is equal to the number
of eigenvalues strictly smaller than A. This is the basis for the bisection method
implemented in [barth67], which is known to have excellent numerical properties
in the sense that it produces very accurate eigenvalues. The drawback of bisec-
tion is its linear convergence rate® that makes the method slower than others,
at least for the computation of the complete system. Different authors have pro-
posed modifications of the simple bisection method in order to accelerate its
convergence. One such proposal, dubbed the zeroinNR method, has been given
in [ralha93] and essentially uses Newton-Raphson’s method to find an eigen-
value after it has been isolated by bisection. The correction py(zy)/pl,(2r), in
the iterative formula of the Newton-Raphson method,

p(zg)

is obtained without explicitly calculating the values of the polinomial p,(z),
and its derivative pl (xy), therefore avoiding overflow and underflow in such

Tyl < T —

% The bisection method converges linearly, with one bit of accuracy for each step.



computations. For this purpose the following algorithm has been derived. From
(2) we have,

Pbi = qipi—1
and by differentiation
Py = ;i1 + i Py
and carrying out the division by p;, we obtain the following expression

Ii; — q_i + p_;_l
Di qi Di

()

which relates the arithmetic inverses of the Newton-Raphson correction for the
polynomials p;—; and p;, and their quotient g;.
From the recursive expression, (3), we have that,

!
di—1
2

! 2
q; =—1+0b;
i [ @,

, 1=2,3,...,n

and carrying out the division by ¢;,

q_éz—_1<_1+b_12q£__1> i=923 n
a; a; Gic1 qi-1)’ o ’

Using the notation

Ag; = q;/qz'; Ap; = p;/pi

the complete computation of,

Apn, = pl(x)/pn(2)
is expressed in the following equations,

g1 =a3 —%
A = Apr = —-1/¢

¢i = a;—x—b}/qi (6)
Agi = (=1+b/qi1*Agi1)/qi pi=2,...,n
Ap; = Ag; + Api—1

where Ag; = ¢i(x1)/qi(zr) and Ap; = pi(xr)/pi(zy).

It is important to observe that in the computation of Ap,, using the formulae
(6), the values ¢;,i = 1,...,n, are obtained, and its signs can be used to derive a
method that combines bisection and Newton-Raphson’s iteration. We will refer
to this method as the zeroinNR algorithm.

So, given an interval [, 5] which contains an eigenvalue, and given an ap-
proximation x € [a, ], the zeroinNR method will produce, in each step, an
approximation z1 to the eigenvalue.



The zeroinNR method although not as fast as the QR method (according
to [ralha93], zeroinNR is about two to four times slower than QR for the com-
putation of all eigenvalues, depending on the characteristics of the spectrum) is
consistently faster than simple bisection (generally, twice as fast) and retains the
excellent numerical properties of simple bisection. In the present work we have
introduced some modifications in the original zeroinNR method which actually
make it faster. Numerical tests were carried out in a transputer based machine
using double precision arithmetic. The methods were implemented in Occam 2,
the official transputer’s language.

We were able to find out the errors in the computed eigenvalues since we
have used matrices for which analytic expressions for the eigenvalues are known.
We conclude that, for small matrices, the accuracy of zeroinINR is comparable
to that of the QR method as implemented in the MatLab system [matlab5], but
as the size of the matrices grows, the zeroinNR method provides more accurate
eigenvalues than QR method.

This can be appreciated in Figure 1, where the absolute erros of a matrix
of size 1000, are plotted. We have used the tridiagonal matrix with a; = 2 and
b; = 1 which eigenvalues are given by

/\i:2+2cos<z—7r>, i=1,...,n.
n+1

9,0E-15
8,0E-15 - gh e
70B-15 1 - g,‘.‘f’ 2 - ms
5 6.0E-15 judfrhihds E e
o soms RS TR v oo
% 4,0E-15 ﬂ‘.:‘ N “e || zeroinNR
£ soeas| Ee o :
2,0E-15 - - e aaa “
1,0E-15 - o “ns
0,0E+00 it T N———————
0 100 200 300 400 500 600 700 800 900

Fig. 1. Absolute errors of the eigenvalues of a matrix (n = 1000) computed with
zeroinNR and QR.

3 An Efficient Parallel Algorithm: farmzeroinNR

The sequential zeroinNR method can be readily adapted to parallel processing
since several disjoint intervals can be treated simultaneously by different proces-
sors. We have developed a parallel organization under a processor farm model



and we will refer to this parallel implementation as the farmzeroinNR method.
The typical architecture for this model is a pipeline of processors (workers),
where the master sends tasks to workers and gets back the results produced.

Each time a processor produces two disjoint intervals containing eigenvalues,
as the result of a bisection step, it keeps only one of them and passes back to the
master the second interval which is kept in a queue of tasks. As soon as there
is an available worker somewhere in the line, a new task is fed into the pipeline.
Because of this mechanism, the algorithm achieves dynamic load balancing.

A dynamic distribution of tasks results from the fact already mentioned, as
soon as a worker finishes a task, it will get a new one from the queue (which is
managed by master), if such queue is not empty. The advantage of such dynamic
workload distribution gets more important as n grows. It must be noted that,
because some tasks take longer to finish than others, workers may not execute
the same number of tasks, but will spend about the same time working.

The pseudocode to the master and worker processors are given in Algorithm
1 and Algorithm 2, respectively.

eig < 0
for k<~ 1..p—1do
{ worker[k] < initial_interval[k]
procs 0
while eig < n do
case input_channel is_a
( if procs > 0 do
output < interval to workers
interval —»> procs < procs — 1
else —
L { queue < interval
(eig < eig+1
if queue not empty do
etgenvalue —» { output < interval to workers
else —
L {procs < procs + 1

\
send signal to terminate

Algorithm 1: FarmzeroinNR master processor pseudocode.

It must be noted that messages exchanged between the master and some
worker in the pipeline need to be routed through the processors that lay in
between. For the global performance of the system it is important that messages
reach their destination as quickly as possible, therefore communication must be
given priority over the computation.

To compute eigenvectors, once we have computed (selected) eigenvalues, we
can use inverse iteration. Convergence is fast but eigenvectors associated with
close eigenvalues may not be orthogonal. The LAPACK’s routine sstein uses re-



while not receive signal to terminate do
(interval < input_channel
if interval has more than one eigenvalue do
intervals < bisection method(interval)
output < intervals (to the master)
else —
etg < extract isolate eigenvalue
L output < eig (to the master)

Algorithm 2: FarmzeroinNR worker processor pseudocode.

orthogonalization of such eigenvectors. This does not solve the problem when
there is a cluster with many close eigenvalues [demmel97, pg. 231], and recent
progress on this problem appears to indicate that inverse iteration may be re-
paired to provide accurate, orthogonal eigenvectors without spending more than
O(n) flops per eigenvector. This will make bisection, or zeroinNR and repaired
inverse iteration the algorithm of choice in all cases, no matter how many eigen-
values and eigenvectors are desired.

4 Performance Analysis

As already mentioned, a typical architecture for the processor farm model con-
sists of a bidirectional array, forming a single pipeline (SP), with the master
placed at one end of the array (Fig. 2).

7 77

Fig. 2. Single pipeline, with 112 nodes.

It is predictable that as the number of workers increases, the communication
overhead becomes more significant and processors that are further away from the
master take longer to communicate with him. Furthermore, the activity in the
links of the processors which are closer to the master grows with the number of
processors and some congestion is to be expected if the computational complexity
of each task is not sufficiently large. In an attempt to overcome the problems just
mentioned, we decided to test the parallel algorithm with a modified topology,
referred to as multiple pipeline (MP), which consists of seven pipelines, each one
with 16 transputers; the masters of such pipelines are themselves connected in
a single pipeline (Fig. 3).

At the beginning, the interval that contains all the eigenvalues is decom-
posed in 7 subintervals of equal width which are distributed among the different
pipelines.



Fig. 3. Multiple pipeline, with 112 nodes.

Although this may reduce to some extent communication overhead and wai-
ting times, it has an important disadvantage which is an eventual deterioration of
the load balancing, which becomes critical when some of the subintervals contain
a much larger number of eigenvalues than others. Therefore, the spectral distri-
bution of the matrix is an important factor to be considered when comparing
the performance of the SP and MP architectures. For this reason we have used
four different types of matrices (see Table 1 where a;,7 = 1,...,n, represents
the diagonal elements b;,i = 1,...,n — 1, represents the sub-diagonal elements)
with different spectral distributions (see Figures 4, and 5),and sizes n ranging

from one thousand to ten thousand.

‘ Matrix ‘ Elements

‘Analitical Formula

n

I ai=a {a+2bcos ko }
bi =0 n+1 b1
ar=a—">
i=a,i=1,..., _ "

II @ @ " a+2bcosM
an, =a-+b 2n =1
b;=b,i=1,...,n

m |4 =0 {—n+2k—1}
biZ z(n—z) k=1
i=—[2i-1D(n-1)-2@G—-1)2 "

W |@ =i Dm -1 -2 )]{_k(k_l)}

Table 1. Matrix Types.




300

300

] H

3 250 + 3 250 -

g S

E, 200 + g,’ 200 +

® 150 + D 150 +

s s

E 100 + g 100 +

E 50+ E 50+

=] =]

z 0 Il Il Il Il z 0 Il Il Il Il Il Il
~ < ~ ) © ® 1) ~ < - o © ) =)
o = ~ Q& 3§ 9 o = s~ @ < S
o - — o~ o (3] < o — - o o~ o <

Subintervals of [0,4] Subintervals of [0,4]

Fig. 4. Spectral distributions for matrix I (left) and matrix II (right), with n = 1000.

@ 150 @ 400
2 3 350 1
2 2 300 +
§ 007 5 250 |
@ B 200 +
> 50t o 150 ¢
é é 100 +
2l
2 o 2 o [ ; ; ; ; ‘ ‘
~ < N — < ~ Q 3 g 8 3 8 8 8
s 3 = R 3 B 3 s g 8 8 8 g 8
@ ¥ & & ©w © g9 A
— N <T < N - D 0 - ~ ~ © < S
& N - = ™~ © @ ~ L3 ¥ o = °
Sublntervals of [-999, 999] Subintervals of [-999000, 0]
Fig. 5. Spectral distributions for matrix III (left) and matrix IV (right), with n = 1000.

We have computed the efficiency in the usual way, i.e.,
Ty
112 Ty

where T} represents the time taken by a single transputer executing the sequen-
tial implementation of zeroinNR, and Tj;2 is the time taken by farmzeroinNR
with 112 processors. In Table 2 such ratios are given, representing by FE(SP)
and E(MP) the efficiency obtained for the single pipeline and multiple pipeline
implementations, respectively.

FE =

Matrix I Matrix II Matrix III Matrix IV
n | E(SP) E(MP)| E(SP) E(MP)| E(SP) E(MP)| E(SP) E(MP)
1000 | 55% 45% 60% 2% 61% 1% 60% 35%
5000 | 80% 56% 92% 80% 92% 89% 90% 38%
7000 | 93% 64% 91% 80% 91% 85% 94% 39%
10000| 95% 56% 99% 85% 99% 91% 97% 39%
Table 2. Efficiency of farmzeroinNR, for matrices of type I, II, IIT and IV.

As it can be appreciated from this table, the MP implementation is less effi-
cient than the SP implementation, except for the case of Matrices II and III of



size n = 1000. In general, we have obtained better efficiency values with the SP
architecture and we conclude that, for n sufficiently large, the communication
overhead is not as important as the unbalance in the distribution of tasks intro-
duced by the MP architecture. This is particularly clear in the case of matrix
IV since for the larger values of n the efficiency for SP is about 2.4 times better
than the efficiency for MP. The explanation for this can be found in Figure 5
(right side): the number of eigenvalues received by each one of the seven pipelines
presents, in the case of matrix IV, a large variation, from about 70 to about 370.
Another important aspect that must be taken into account is that in the MP
implementation there are only 105 workers, since 7 processors are playing the
role of master. However, even if we had used the modified formula

105 Thro
to compute the efficiency for the MP implementation, the values produced in

this way would still be lower than those obtained for the SP architecture in most
cases.

E

5 Conclusions

We have carried out a parallel implementation of an efficient algorithm, dubbed
zeroinNR, for the eigenvalue problem of a symmetric tridiagonal matrix, on a
distributed memory system. The sequential zeroinNR method, although not as
fast as QR, is consistently faster than simple bisection and retains the excellent
numerical properties of this method. We have numerical evidence to support
the claim that our method produces eigenvalues with smaller errors than those
produced by QR. For the parallel implementation we used a farm model with
two different topologies: a single pipeline (SP) of 112 processors and a multiple
pipeline implementation (MP) consisting of seven pipelines, each one with 16
processors. The MP architecture reduces the communication overhead to some
extent but is not able to retain fully the excellent load balancing of the SP
implementation. This trade-off is not clear since it depends on the spectral dis-
tribution of each particular matrix. We have used matrices of different types to
study this trade-off and conclude that for matrices sufficiently large, the parallel
algorithm under the SP architecture performs better than the MP architecture.
It must be emphasized that the parallel algorithm under the SP architecture is
very efficient: for matrices of size n = 10000 we got efficiency values which are
in all cases tested larger than 95%.

References

[wilkinson65] J. H. Wilkinson: The Algebraic Eigenvalue Problem. Oxford University
Press, (1965).

[barth67] W. Barth and R. S. Martin and others: Calculation of the eigenvalues of a
symmetric tridiagonal matrix by the bisection method. Num.Mathematics, 9 (1967)
386-393.



[barlow78] R. H. Barlow, D. J. Evans: A Parallel Organization of the Bisection Algo-
rithm. The Computer Journal. 22, n°3 (1978).

[ralston78] A. Ralston and P. Rabinowitz: A First Course in Numerical Analysis.
McGraw-Hill, (1978).

[parlett80] B. N. Parlett: The Symmetric Eigenvalue Problem. PrenticeHall, Engle-
wood Cliffs, NJ, USA, (1980).

[cuppen81] J. J. Cuppen: A Divide and Conquer Method for the Symmetric eigenvalue
problem. Numer. Math. 36, 177-195 (1981).

[bernstein84] H. J. Bernstein: An Accelerated Bisection Method for the Calculation of
Eigenvalue of A Symmetric Tridiagonal Matrix. Numer. Math. 43, 153—160 (1984)).

[dongarra87] J. J. Dongarra and D. C. Sorense: A Fully Parallel Algorithms for the
Symmetric Eigenproblem. SIAM J. SCI. STAT. COMPUT. 8, n°2 (March, 1987).

[phillipe87] S. S. Lo, B. Phillipe and A. Sameh: A Multiprocessor Algorithm for the
Symmetric Eigenproblem. SIAM J. SCI. STAT. COMPUT. 8, 155—-165 (1987).

[jessup90] I. C. F. Ipsen and E. R. Jessupe: Solving the Symmetric Tridiagonal Eigen-
value Problem on the Hypercube. STAM J. SCI. STAT. COMPUT. 11, n°2, 203-229
(1990).

[kalambouskis90] T. Z. Kalambouskis: The symmetric tridiagonal eigenvalue problem
on a transputer network. Parallel Computing. 15, 101-106. North Holland (1990).

[ralha90] R. Ralha: Parallel Computation of Eigenvalues and Eigenvectors using Oc-
cam and Transputers. PhD thesis, University of Southampton, (1990).

[baserman92] A. Baserman and P. Weidner: A Parallel Algorithm dor Determining all
Eigenvalue of Large Real Symmetric Tridiagonal Matrices. Parallel Computing. 18,
1129-1141.(1920).

[scalapack97] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker and R. C.
Whaley: ScaLAPACK User’s Guide. Software, Enviroements and Tools 4. STAM,
Philadelphia, PA, (1997).

[lapack95] E. Anderson, Z. Bai, C. Bischop, J. Demmel, J. Dongarra, S. Hammarling,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and S.
Sorensen : LAPACK User’s Guide (2nd edition). STAM, Philadelphia, PA, (1995).

[demmel93] J. Demmel, M. Heath and H. van der Vorst: Parallel Numerical Linear
Algebra. In A. Iserles, Acta Numerica, Volume 2. Cambridge University Press, UK,
(1993).

[ralha93] R. Ralha: Parallel Solution of the Symmetric Tridiagonal Eigenvalue Problem
on a Transputer Network, Proceedings of the Second Congress of Numerical Methods
in Engineering, Spanish Society of Numerical Methods in Engineering, (1993).

[badia96] José Manuel Badia Contelles: Algoritmos Paralelos para el Célculo de los
Valores Propios de Matrices Estructuradas. PhD thesis, Universidad Politecnica de
Valencia, (1996).

[demmel97] J. Demmel: Applied Numerical Linear Algebra. SIAM, Philadelphia,
(1997).

[matlabb] Using MatLab, The Math Works Inc. (1999).

[forjaz2000] Maria Anténia Forjaz: Algoritmos Paralelos para o Célculo de Valores e
Vectores Préprios em Sistemas de Multiprocessadores de Meméria Distribuida. PhD
thesis, Universidade do Minho, (2000) (submitted).



