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Synopsis
Let X be a set with infinite regular cardinality m and let T (X) be the semigroup of all self-maps of X.
The semigroup Q,, of *balanced’ elements of J(X) plays an important role in the study by Howie
[3,5, 6] of idempotent-generated subsemigroups of F(X), as does the subset Sy, of ‘stable’ elements,
which is a subsemigroup of Q,, if and only if m is a regular cardinal. The principal factor B, of Ow-

corresponding to the maximum $-class J,,, contains S, and has been shown in [7] to have a number of
interesting properties.

Let N, be the set of all nilpotent elements of index 2 in P Then the subsemigroup (N,) of P,
generated by N, consists exactly of the elements in Fo\S. Moreover P\S,, has 2-nilpotent-depth 3,
in the sense that N, U N3 < P\S,, = N, UNZUN3.

1. Introduction and background

Let X be a set with infinite cardinality m and let J(X) be the full transformation
semigroup of X. (For this and other undefined semigroup notions see [4].) In his
study of idempotent-generated subsemigroups of J(X), Howie [3, 5] made use of
the following subsets associated with an element « of (X):-

S(@)={xeX:xa#x}, Z(a)=X\Xg,
Cla)=U{yae™" y e X and [ya~"| Z2).

The cardinal numbers |S(a)|, |Z(a)| and |C(a)] are called, respectively, the shift,
the defect and the collapse of «, and the subsemigroup

Om={aeT(X):|S(a)| =|Z(a)| = |C(a)| = m}

of balanced elements of weight m is an important part of the subsemigroup of
I (X) generated by the idempotents.

The principal factor P, associated with the maximum F-class J, in Q,, is the
Rees quotient O,/ I, where I, = {a € Oy [Xa| <m). It is usually convenient to
think of it as Ji, U {0}, where J, = {a € Q. | Xa| = m}, and where the product of
two elements of J, is taken to be zero if it falls in I,,.

The importance of cardinals in semigroup theory was demonstrated by Preston
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[9] when he showed that the set
M={aeJ(X):|Xe|=m and (Vy € Xa) |ya™!| <m}

is a subsemigroup of 7(X) if and only if m is a regular cardinal, i.e. if and only if
|A| <m and m, <m for all 4 in A together imply that
E m; <m.
AeA
The same equivalence holds good for the set S, =M N Q,, considered in [6] by
Howie, who also showed that, in the case where m is regular, S, is a regular,
bisimple, idempotent-generated semigroup.
In an analogous manner Marques [7] showed that P, is a regular, 0-bisimple,
idempotent-generated semigroup.
The semigroup P, has a zero element and is easily seen to contain nilpotent
elements. If m is regular then (see Theorem 2.17) the subsemigroup (N)
generated by the nilpotent elements is P,\S,,. In fact one requires only the set

N, ={aePy a*=0, ¥ 0}
of nilpotents of index 2, and
N, UNZc P \S,,=N,UNZUN;.

2. Regular cardinals

Throughout this section X will be a set with infinite cardinal m, and m will be
regular. Hence, as remarked in the last section, the set

Sp={a€Qn: |Xe|=m and (Vy € Xe) |ya~"| <m} (2.1)
is a subsemigroup of P, =J, U {0}, where
Jo={aeQn |Xa|=m}. (2.2)
We also have the following proposition:
PROPOSITION 2.1. The set P,\S,, is a regular subsemigroup of Py,.

Proof. Let a € P,\S,. Then the equivalence relation ker a(={(x, y): xa =
ya}) on X has at least one class ya~" (y € X&) with cardinality m. For all §in P,
we have ker (aff) oker @ and so certainly ker (aff) has at least one class of
cardinality m. Thus «f is in P,\S,. Notice that we have actually shown that
P,\S,, is a right ideal of P,. It is not hard to see that the left ideal property does
not hold.

To see that the semigroup is regular, consider the m sets ya™", where y € Xa,
and choose an element x, in each ya™'. Define & € 7(X) by the rule that

1

yE=x, (yeXa),
xE=xy, (xeZ(a)),

where x, is some arbitrarily chosen fixed element of X. Then a§a = a. Moreover,
S(E) 2 Z(a)\xe}, C(E)2Z(a), XEo{x,:yeXal,
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from which it follows that |S(&)| =|C(&)| =|XE|=m. Also, at least one of the
sets yor~ ' is of cardinality m; hence Z(&) contains ya~"\{x,} and so |Z(§)| =m.
Finally, xo& ™' = Z(«), of cardinality m, and we conclude that & € P,\S,,.

We know that S, is a subsemigroup of F,, not containing the zero element of
P,,. It follows that no element « of S, can be nilpotent, since a* € S,, for every k
and so cannot be zero. Thus N, the set of nilpotents in P,,, is contained in P, \S,,-
and it now follows from Proposition 2.1 that (N), the smallest subsemigroup of
P, containing N, is also contained in P,\S,; that is

(N) S Po\San. (2.3)

We now aim to show that P,\S,, = (N,) (= (N)), from which our first main result
will follow. First, we give an alternative characterisation of the set

No={neQu|Xn|=m and |Xn? <m).
ProrosiTION 2.2. Let a be a non-zero element of P,\S,,, and let
A= U{ya " yeXa,|ye'[<m}.
Then a €N, if and only if (1) | XaNA|<m and (i) |{y € Xa: |ya™'|=m and
XaNya '#T} <m.

. Let
Frogy Le B=U{ya "1y e Xa, [ya”!|=m). (2.4)

Since X is the disjoint union of A and B, it follows that
Xe=XaeNA)UXaNB), Xa’=(XaeNA)aU (XaN B)a. (2:5)
Suppose now that o satisfies (i) and (ii).
From (i) it follows that [(Xa N A)a|<m. Also
ye(XeNB)a>ya 'NXaNB+J
>lya”'!=m and yo 'NXa#T, (2.6)

and so from (ii) it follows that [(X@ N B)a| <m. Hence |Xa?| <m and so a € N,

as required.
Conversely, let aeN,. By (2.5) it follows that both |(XaNA)a| and
|(Xae N B)a| are less than m. Now

ye(XaNAa>ya 'NXaNA+D
>lya™| <m.
Hence by the regularity of m the set
XaenAc|{ya iye(XanA)a)

has cardinality less than m. To show (ii) we simply observe that the sequence of
implications (2.6) is reversible.
Notice that from this proof it follows that for every « in N,

| XN B| =m. 2.7)
Also,

(XeNB)a={yeXa:|ya '|=m and XaNya '+
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Notice now that for each non-zero « in F,\S, the set Y(«) defined by
Y(@) = (y € Xa: |ya~!| = m} (2.8)
is non-empty.

ProprosITION 2.3. Let o be a non-zero element of Py\Sy. If there exists y in Y (&)
such that | Xa Nya™!| <m then a € N3

Proof. Suppose that |Xa Ny,a~!| <m, where y, € Y(a). Let 0 be a bijection
from Xa onto y,a~! and define 1, = @6. Then ker 17, = ker a and X1, =ya™ ",
from which it follows that 1, € Py\S,. Also Xn7= {y,0} and so certainly 7, € N,.

Next, if x € X1, = y,a™!, we define
x1, =x0 (e Xa).

Otherwise we define xt); = a, where a is some arbitrarily chosen element in Xa.
Then 1, € P,\S,. Also

X’?%: (Xa)n,
= (Xa Ny~ Y, U (Xa\yoa ™ )n,
=(Xa r]J’oafA])T?z U{a}

and so |X7n3| <m. Thus 7, € N,.

It is now clear that 1,1, = a, and so « € N3 as required.

The converse of Proposition 2.3 is not true, as the next proposition makes
clear.

ProposITION 2.4. Let o be a non-zero element of P,\S,, and suppose that
| XaeNya™'|=m for all y in Y(&). Then a e N3 if and only if there exists z in
Y(w) for which |za "\ Xa| =m.

Proof. Suppose first that there is an element z, in Y(a) such that |zya "\ X«|
=m. We may write zoo~\Xa« as a disjoint union AU B, where |4|=|B|=m.
Let @ be a bijection from Xa onto A, and define n;, = af. Then 7, € P,\S,,,
|Xn1| = |A| =m, Xn?={2,0}; hence 1, € N,.

Then by analogy with Proposition 2.3 we define 7,: X — X by

e {x@l (xeA)
N VR €77
where ¢ is an arbitrarily chosen element of Xa. Then %, € P,\S, and Xn3= {¢}.
Hence 1, e N;, and it is clear that 7, = «.

To prove the converse implication, we need the following simple lemma
concerning regular semigroups with zero:

Lemma 2.5. Let S be a regular semigroup with zero. Let a = zb, where a,b #0
and z is a nilpotent of index 2. Then there exists a nilpotent z; of index 2 in S such
that a = z,;b and z;Ra.

Proof. Let zy=aa’z, where a’ is an inverse of a. Then

zib=aa'zb =ga'a=a,
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and it is clear that z;%a. Also
z3i=aa'zaa'z = aa'z*ha’'z = 0.

We now return to the proof of Proposition 2.4. Let o« =mnn, €N with

[ XaNya™'|=m for all y in Y(a). By the lemma we may assume that
ker 1, = ker a. Now assume by way of contradiction that lza™"\X&| <m for every
z in Y(a).

Consider the set
D={yeXn:|yni'|=mand Xn,Nyni'#@)}.

By Proposition 2.2 this set has cardinality less than m. On the other hand, in the
notation of (2.4),
UfXn nyni'sy e Dy =Xn, N B

and so, by (2.7), has cardinality m. Hence, by the regularity of m,
| X7 N yon7!|=m

for some y, in D.
We illustrate the situation in the Venn diagram below:

X

yoni!
ﬁ Xn,

)
-

We have just established that [R; UR,|=m and we are assuming that R, UR,
(= (yom2)a~"\Xa) has cardinality less than m. Hence |R,|<m. Hence certainly
|R; U R3] = m; that is,

[Xae N X1y =m.

Now, from the fact that ker 1, = ker a it follows that 7, must map X7, in a
one—one fashion. Hence

(XN X )1, =m.

But X7, 2 Xa and so X035 Xan, o (X N Xa N Xn,)n,. It follows that [Xn3| =
m, contrary to the assumption that 7, € N;.
This completes the proof of Proposition 2.4.

Propositions 2.3 and 2.4 give a characterisation of those elements of P\S,, that
can be expressed as products of 2 nilpotents of index 2. The remaining elements
can be expressed as products of length 3:

ProrosiTion 2.6. Let o be a non-zero element in P,\S,,, and Suppose that
[XeNya™'|=m and |ya "Xo| <m for all y in Y(a). Then there exist N1y M2y M3
in Ny such that & = 1,1m,n;.
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Proof. Choose y, in Y(«) and express yor™ " as a disjoint union A U B, where
|A|=|B| =m. Let 6: Xaa— A be a bijection, and define n;: X— X by n,=ab.
Then n, € N,.

Next, let

P=Z(aN\pa ', Q=Z(@)Nya™" (=ya \Xa);

then Z()=PUQ, |P|=m, |Q| <m. Define 1, as a bijection from X, onto P,
and complete the definition by specifying that

(X\Xn)n.=a,
where a is arbitrarily chosen in P. Then n, € N,. In fact Xn3=Pn,={a}, since
P X\yo ' X\A = X\X7,.
Finally, define 7, for each x in X717, by
xny=xnz'07"
and complete the definition by putting
(X\X717m2)715= b,
where b is chosen arbitrarily in Xa. Then
Xn3=Xac X\P=X\Xm1n,

and so Xn3={b}. Since it is clear that 13 € Pp\Sy, we thus have N €N, It is
easily seen that 1,7,7; = a.

We have now shown that every non-zero element of P,\S,, belongs to {(N;). It
is evident that 0 =n%e N2c (N,), where 7 is any element of N,. Thus we have
the following result:

TuroreM 2.7. Let X be a set with infinite cardinality m, where m is regular, and
let P, Sw be defined by equations (2.1) and (2.2). Let N be the set of nilpotents in
P, and let N, be the set of nilpotents of index 2. Then (N), the subsemigroup of
P,, generated by N, is equal to T. Moreover,

NQUN%C:Pm\Sm=N2UN%UNg.

Remark. It is not hard to see that the restriction of regularity is necessary. If m
is irregular, then the subset S, (no longer a semigroup) contains nilpotent
elements. To see this, write X = A U B, where |A| =|B|=m and AN B ={J, and
suppose that

A=|J{A, Aed),
where |A] <m and |4;| <m for all A. Let : AUB—A be a bijection and define
n: X— X by
B _{16 if xeA, (AeA)
T=1x0 it xeB ‘

Then the (ker n)-classes are A, (Ae A) and {b} (b € B) and so n € 5, However
Xn*= A#, of cardinality less than m, and so 7 is a nilpotent of index 2 in Py
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