A nilpotent-generated semigroup associated with a semigroup of full transformations

John M. Howie

Mathematical Institute, University of St Andrews, North Haugh, St Andrews KY16 9SS, Scotland, U.K.

M. Paula O. Marques-Smith*

Area de Matematica, Universidade do Minho, 4700 Braga, Portugal

Synopsis

Let X be a set with infinite regular cardinality \mathbf{m} and let $\mathcal{T}(X)$ be the semigroup of all self-maps of X. The semigroup $Q_{\mathbf{m}}$ of 'balanced' elements of $\mathcal{T}(X)$ plays an important role in the study by Howie $[\mathbf{3},\mathbf{5},\mathbf{6}]$ of idempotent-generated subsemigroups of $\mathcal{T}(X)$, as does the subset $S_{\mathbf{m}}$ of 'stable' elements, which is a subsemigroup of $Q_{\mathbf{m}}$ if and only if \mathbf{m} is a regular cardinal. The principal factor $P_{\mathbf{m}}$ of $Q_{\mathbf{m}}$, corresponding to the maximum \mathcal{J} -class $J_{\mathbf{m}}$, contains $S_{\mathbf{m}}$ and has been shown in $[\mathbf{7}]$ to have a number of interesting properties.

Let N_2 be the set of all nilpotent elements of index 2 in $P_{\mathbf{m}}$. Then the subsemigroup $\langle N_2 \rangle$ of $P_{\mathbf{m}}$ generated by N_2 consists exactly of the elements in $P_{\mathbf{m}} \backslash S_{\mathbf{m}}$. Moreover $P_{\mathbf{m}} \backslash S_{\mathbf{m}}$ has 2-nilpotent-depth 3, in the sense that $N_2 \cup N_2^2 \subset P_{\mathbf{m}} \backslash S_{\mathbf{m}} = N_2 \cup N_2^2 \cup N_2^3$.

1. Introduction and background

Let X be a set with infinite cardinality \mathbf{m} and let $\mathcal{T}(X)$ be the full transformation semigroup of X. (For this and other undefined semigroup notions see [4].) In his study of idempotent-generated subsemigroups of $\mathcal{T}(X)$, Howie [3, 5] made use of the following subsets associated with an element α of $\mathcal{T}(X)$:

$$S(\alpha) = \{x \in X : x\alpha \neq x\}, \quad Z(\alpha) = X \setminus X\alpha,$$

$$C(\alpha) = \bigcup \{y\alpha^{-1} : y \in X\alpha \text{ and } |y\alpha^{-1}| \ge 2\}.$$

The cardinal numbers $|S(\alpha)|$, $|Z(\alpha)|$ and $|C(\alpha)|$ are called, respectively, the *shift*, the *defect* and the *collapse* of α , and the subsemigroup

$$Q_{\mathbf{m}} = \{ \alpha \in T(X) : |S(\alpha)| = |Z(\alpha)| = |C(\alpha)| = \mathbf{m} \}$$

of balanced elements of weight m is an important part of the subsemigroup of $\mathcal{T}(X)$ generated by the idempotents.

The principal factor $P_{\mathbf{m}}$ associated with the maximum \mathcal{J} -class $J_{\mathbf{m}}$ in $Q_{\mathbf{m}}$ is the Rees quotient $Q_{\mathbf{m}}/I_{\mathbf{m}}$, where $I_{\mathbf{m}} = \{\alpha \in Q_{\mathbf{m}}: |X\alpha| < \mathbf{m}\}$. It is usually convenient to think of it as $J_{\mathbf{m}} \cup \{0\}$, where $J_{\mathbf{m}} = \{\alpha \in Q_{\mathbf{m}}: |X\alpha| = \mathbf{m}\}$, and where the product of two elements of $J_{\mathbf{m}}$ is taken to be zero if it falls in $I_{\mathbf{m}}$.

The importance of cardinals in semigroup theory was demonstrated by Preston

^{*} Research supported by Instituto Nacional de Investigação Científica, Portugal.

[9] when he showed that the set

$$M = \{ \alpha \in \mathcal{T}(X) : |X\alpha| = \mathbf{m} \text{ and } (\forall y \in X\alpha) |y\alpha^{-1}| < \mathbf{m} \}$$

is a subsemigroup of $\mathcal{T}(X)$ if and only if **m** is a *regular* cardinal, i.e. if and only if $|\Lambda| < \mathbf{m}$ and $\mathbf{m}_{\lambda} < \mathbf{m}$ for all λ in Λ together imply that

$$\sum_{\lambda \in \Lambda} \mathbf{m}_{\lambda} < \mathbf{m}.$$

The same equivalence holds good for the set $S_{\mathbf{m}} = M \cap Q_{\mathbf{m}}$ considered in [6] by Howie, who also showed that, in the case where \mathbf{m} is regular, $S_{\mathbf{m}}$ is a regular, bisimple, idempotent-generated semigroup.

In an analogous manner Marques [7] showed that $P_{\mathbf{m}}$ is a regular, 0-bisimple, idempotent-generated semigroup.

The semigroup $P_{\mathbf{m}}$ has a zero element and is easily seen to contain nilpotent elements. If \mathbf{m} is regular then (see Theorem 2.17) the subsemigroup $\langle N \rangle$ generated by the nilpotent elements is $P_{\mathbf{m}} \backslash S_{\mathbf{m}}$. In fact one requires only the set

$$N_2 = \{ \alpha \in P_{\mathbf{m}} : \alpha^2 = 0, \ \alpha \in 0 \}$$

of nilpotents of index 2, and

$$N_2 \cup N_2^2 \subset P_{\mathbf{m}} \setminus S_{\mathbf{m}} = N_2 \cup N_2^2 \cup N_2^3$$

2. Regular cardinals

Throughout this section X will be a set with infinite cardinal \mathbf{m} , and \mathbf{m} will be regular. Hence, as remarked in the last section, the set

$$S_{\mathbf{m}} = \{ \alpha \in Q_{\mathbf{m}} : |X\alpha| = \mathbf{m} \text{ and } (\forall y \in X\alpha) |y\alpha^{-1}| < \mathbf{m} \}$$
 (2.1)

is a subsemigroup of $P_{\mathbf{m}} = J_{\mathbf{m}} \cup \{0\}$, where

$$J_{\mathbf{m}} = \{ \alpha \in Q_{\mathbf{m}} : |X\alpha| = \mathbf{m} \}. \tag{2.2}$$

We also have the following proposition:

PROPOSITION 2.1. The set $P_{\mathbf{m}} \setminus S_{\mathbf{m}}$ is a regular subsemigroup of $P_{\mathbf{m}}$.

Proof. Let $\alpha \in P_{\mathbf{m}} \backslash S_{\mathbf{m}}$. Then the equivalence relation $\ker \alpha (=\{(x,y): x\alpha = y\alpha\})$ on X has at least one class $y\alpha^{-1}$ $(y \in X\alpha)$ with cardinality \mathbf{m} . For all β in $P_{\mathbf{m}}$ we have $\ker (\alpha\beta) \supseteq \ker \alpha$ and so certainly $\ker (\alpha\beta)$ has at least one class of cardinality \mathbf{m} . Thus $\alpha\beta$ is in $P_{\mathbf{m}} \backslash S_{\mathbf{m}}$. Notice that we have actually shown that $P_{\mathbf{m}} \backslash S_{\mathbf{m}}$ is a right ideal of $P_{\mathbf{m}}$. It is not hard to see that the left ideal property does not hold.

To see that the semigroup is regular, consider the **m** sets $y\alpha^{-1}$, where $y \in X\alpha$, and choose an element x_y in each $y\alpha^{-1}$. Define $\xi \in \mathcal{F}(X)$ by the rule that

$$y\xi = x_y \quad (y \in X\alpha),$$

 $x\xi = x_0, \quad (x \in Z(\alpha)),$

where x_0 is some arbitrarily chosen fixed element of X. Then $\alpha \xi \alpha = \alpha$. Moreover,

$$S(\xi) \supseteq Z(\alpha) \setminus \{x_0\}, \quad C(\xi) \supseteq Z(\alpha), \quad X\xi \supseteq \{x_v : y \in X\alpha\},$$

from which it follows that $|S(\xi)| = |C(\xi)| = |X\xi| = \mathbf{m}$. Also, at least one of the sets $y\alpha^{-1}$ is of cardinality \mathbf{m} ; hence $Z(\xi)$ contains $y\alpha^{-1}\setminus\{x_y\}$ and so $|Z(\xi)| = \mathbf{m}$. Finally, $x_0\xi^{-1} = Z(\alpha)$, of cardinality \mathbf{m} , and we conclude that $\xi \in P_{\mathbf{m}}\setminus S_{\mathbf{m}}$.

We know that $S_{\mathbf{m}}$ is a subsemigroup of $P_{\mathbf{m}}$ not containing the zero element of $P_{\mathbf{m}}$. It follows that no element α of $S_{\mathbf{m}}$ can be nilpotent, since $\alpha^k \in S_{\mathbf{m}}$ for every k and so cannot be zero. Thus N, the set of nilpotents in $P_{\mathbf{m}}$, is contained in $P_{\mathbf{m}} \setminus S_{\mathbf{m}}$. and it now follows from Proposition 2.1 that $\langle N \rangle$, the smallest subsemigroup of $P_{\mathbf{m}}$ containing N, is also contained in $P_{\mathbf{m}} \setminus S_{\mathbf{m}}$; that is

$$\langle N \rangle \subseteq P_{\mathbf{m}} \backslash S_{\mathbf{m}}.$$
 (2.3)

We now aim to show that $P_{\mathbf{m}} \setminus S_{\mathbf{m}} \subseteq \langle N_2 \rangle$ ($\subseteq \langle N \rangle$), from which our first main result will follow. First, we give an alternative characterisation of the set

$$N_2 = \{ \eta \in Q_{\mathbf{m}} : |X\eta| = \mathbf{m} \text{ and } |X\eta^2| < \mathbf{m} \}.$$

Proposition 2.2. Let α be a non-zero element of $P_m \setminus S_m$, and let

$$A = \bigcup \{y\alpha^{-1}: y \in X\alpha, |y\alpha^{-1}| < \mathbf{m}\}.$$

Then $\alpha \in N_2$ if and only if (i) $|X\alpha \cap A| < \mathbf{m}$ and (ii) $|\{y \in X\alpha : |y\alpha^{-1}| = \mathbf{m} \text{ and } X\alpha \cap y\alpha^{-1} \neq \emptyset\}| < \mathbf{m}$.

Proof. Let
$$B = \bigcup \{ y\alpha^{-1} : y \in X\alpha, |y\alpha^{-1}| = \mathbf{m} \}. \tag{2.4}$$

Since X is the disjoint union of A and B, it follows that

$$X\alpha = (X\alpha \cap A) \cup (X\alpha \cap B), \ X\alpha^2 = (X\alpha \cap A)\alpha \cup (X\alpha \cap B)\alpha.$$
 (2.5)

Suppose now that α satisfies (i) and (ii).

From (i) it follows that $|(X\alpha \cap A)\alpha| < \mathbf{m}$. Also

$$y \in (X\alpha \cap B)\alpha \Rightarrow y\alpha^{-1} \cap X\alpha \cap B \neq \emptyset$$
$$\Rightarrow |y\alpha^{-1}| = \mathbf{m} \quad \text{and} \quad y\alpha^{-1} \cap X\alpha \neq \emptyset, \tag{2.6}$$

and so from (ii) it follows that $|(X\alpha \cap B)\alpha| < \mathbf{m}$. Hence $|X\alpha^2| < \mathbf{m}$ and so $\alpha \in N_2$ as required.

Conversely, let $\alpha \in N_2$. By (2.5) it follows that both $|(X\alpha \cap A)\alpha|$ and $|(X\alpha \cap B)\alpha|$ are less than **m**. Now

$$y \in (X\alpha \cap A)\alpha \Rightarrow y\alpha^{-1} \cap X\alpha \cap A \neq \emptyset$$
$$\Rightarrow |y\alpha^{-1}| < \mathbf{m}.$$

Hence by the regularity of m the set

$$X\alpha \cap A \subseteq \bigcup \{y\alpha^{-1}: y \in (X\alpha \cap A)\alpha\}$$

has cardinality less than \mathbf{m} . To show (ii) we simply observe that the sequence of implications (2.6) is reversible.

Notice that from this proof it follows that for every α in N_2

$$|X\alpha \cap B| = \mathbf{m}.\tag{2.7}$$

Also,

$$(X\alpha \cap B)\alpha = \{ y \in X\alpha : |y\alpha^{-1}| = \mathbf{m} \text{ and } X\alpha \cap y\alpha^{-1} \neq \emptyset \}.$$

Notice now that for each non-zero α in $P_m \setminus S_m$ the set $Y(\alpha)$ defined by

$$Y(\alpha) = \{ y \in X\alpha \colon |y\alpha^{-1}| = \mathbf{m} \}$$
 (2.8)

is non-empty.

PROPOSITION 2.3. Let α be a non-zero element of $P_{\mathbf{m}} \backslash S_{\mathbf{m}}$. If there exists y in $Y(\alpha)$ such that $|X\alpha \cap y\alpha^{-1}| < \mathbf{m}$ then $\alpha \in N_2^2$.

Proof. Suppose that $|X\alpha \cap y_0\alpha^{-1}| < \mathbf{m}$, where $y_0 \in Y(\alpha)$. Let θ be a bijection from $X\alpha$ onto $y_0\alpha^{-1}$ and define $\eta_1 = \alpha\theta$. Then ker $\eta_1 = \ker \alpha$ and $X\eta_1 = y_0\alpha^{-1}$, from which it follows that $\eta_1 \in P_{\mathbf{m}} \setminus S_{\mathbf{m}}$. Also $X\eta_1^2 = \{y_0\theta\}$ and so certainly $\eta_1 \in N_2$. Next, if $x \in X\eta_1 = y_0\alpha^{-1}$, we define

$$x\eta_2 = x\theta^{-1} (\in X\alpha).$$

Otherwise we define $x\eta_2 = a$, where a is some arbitrarily chosen element in $X\alpha$. Then $\eta_2 \in P_{\mathbf{m}} \backslash S_{\mathbf{m}}$. Also

$$X\eta_2^2 = (X\alpha)\eta_2$$

$$= (X\alpha \cap y_0\alpha^{-1})\eta_2 \cup (X\alpha \setminus y_0\alpha^{-1})\eta_2$$

$$= (X\alpha \cap y_0\alpha^{-1})\eta_2 \cup \{a\}$$

and so $|X\eta_2^2| < \mathbf{m}$. Thus $\eta_2 \in N_2$.

It is now clear that $\eta_1 \eta_2 = \alpha$, and so $\alpha \in \mathbb{N}_2^2$ as required.

The converse of Proposition 2.3 is not true, as the next proposition makes clear.

PROPOSITION 2.4. Let α be a non-zero element of $P_{\mathbf{m}} \backslash S_{\mathbf{m}}$ and suppose that $|X\alpha \cap y\alpha^{-1}| = \mathbf{m}$ for all y in $Y(\alpha)$. Then $\alpha \in N_2^2$ if and only if there exists z in $Y(\alpha)$ for which $|z\alpha^{-1} \backslash X\alpha| = \mathbf{m}$.

Proof. Suppose first that there is an element z_0 in $Y(\alpha)$ such that $|z_0\alpha^{-1}\backslash X\alpha| = \mathbf{m}$. We may write $z_0\alpha^{-1}\backslash X\alpha$ as a disjoint union $A\cup B$, where $|A|=|B|=\mathbf{m}$. Let θ be a bijection from $X\alpha$ onto A, and define $\eta_i=\alpha\theta$. Then $\eta_i\in P_{\mathbf{m}}\backslash S_{\mathbf{m}}$, $|X\eta_1|=|A|=\mathbf{m}$, $X\eta_1^2=\{z_0\theta\}$; hence $\eta_1\in N_2$.

Then by analogy with Proposition 2.3 we define $\eta_2: X \to X$ by

$$x\eta_2 = \begin{cases} x\theta^{-1} & (x \in A) \\ t & (x \notin A) \end{cases}$$

where t is an arbitrarily chosen element of $X\alpha$. Then $\eta_2 \in P_{\mathbf{m}} \setminus S_{\mathbf{m}}$ and $X\eta_2^2 = \{t\}$. Hence $\eta_2 \in N_2$, and it is clear that $\eta_1 \eta_2 = \alpha$.

To prove the converse implication, we need the following simple lemma concerning regular semigroups with zero:

LEMMA 2.5. Let S be a regular semigroup with zero. Let a = zb, where $a,b \neq 0$ and z is a nilpotent of index 2. Then there exists a nilpotent z_1 of index 2 in S such that $a = z_1b$ and $z_1\Re a$.

Proof. Let $z_1 = aa'z$, where a' is an inverse of a. Then

$$z_1b = aa'zb = aa'a = a$$

and it is clear that $z_1 \Re a$. Also

$$z_1^2 = aa'zaa'z = aa'z^2ba'z = 0.$$

We now return to the proof of Proposition 2.4. Let $\alpha = \eta_1 \eta_2 \in N_2^2$, with $|X\alpha \cap y\alpha^{-1}| = \mathbf{m}$ for all y in $Y(\alpha)$. By the lemma we may assume that $\ker \eta_1 = \ker \alpha$. Now assume by way of contradiction that $|z\alpha^{-1} \setminus X\alpha| < \mathbf{m}$ for every z in $Y(\alpha)$.

Consider the set

$$D = \{ y \in X\eta_1 : |y\eta_1^{-1}| = \mathbf{m} \text{ and } X\eta_1 \cap y\eta_1^{-1} \neq \emptyset \}.$$

By Proposition 2.2 this set has cardinality less than \mathbf{m} . On the other hand, in the notation of (2.4),

$$\bigcup \{X\eta_1 \cap y\eta_1^{-1} \colon y \in D\} = X\eta_1 \cap B$$

and so, by (2.7), has cardinality m. Hence, by the regularity of m,

$$|X\eta_1 \cap y_0\eta_1^{-1}| = \mathbf{m}$$

for some y_0 in D.

We illustrate the situation in the Venn diagram below:

We have just established that $|R_1 \cup R_2| = \mathbf{m}$ and we are assuming that $R_2 \cup R_4$ (= $(y_0\eta_2)\alpha^{-1}\backslash X\alpha$) has cardinality less than \mathbf{m} . Hence $|R_2| < \mathbf{m}$. Hence certainly $|R_1 \cup R_3| = \mathbf{m}$; that is,

$$|X\alpha \cap X\eta_1| = \mathbf{m}.$$

Now, from the fact that ker $\eta_1 = \ker \alpha$ it follows that η_2 must map $X\eta_1$ in a one-one fashion. Hence

$$|(X\alpha \cap X\eta_1)\eta_2| = \mathbf{m}.$$

But $X\eta_2 \supseteq X\alpha$ and so $X\eta_2^2 \supseteq X\alpha\eta_2 \supseteq (X\alpha \cap X\alpha \cap X\eta_1)\eta_2$. It follows that $|X\eta_2^2| = \mathbf{m}$, contrary to the assumption that $\eta_2 \in N_2$.

This completes the proof of Proposition 2.4.

Propositions 2.3 and 2.4 give a characterisation of those elements of $P_{\mathbf{m}} \setminus S_{\mathbf{m}}$ that can be expressed as products of 2 nilpotents of index 2. The remaining elements can be expressed as products of length 3:

PROPOSITION 2.6. Let α be a non-zero element in $P_{\mathbf{m}} \backslash S_{\mathbf{m}}$, and suppose that $|X\alpha \cap y\alpha^{-1}| = \mathbf{m}$ and $|y\alpha^{-1} \backslash X\alpha| < \mathbf{m}$ for all y in $Y(\alpha)$. Then there exist η_1 , η_2 , η_3 in N_2 such that $\alpha = \eta_1 \eta_2 \eta_3$.

Proof. Choose y_0 in $Y(\alpha)$ and express $y_0\alpha^{-1}$ as a disjoint union $A \cup B$, where $|A| = |B| = \mathbf{m}$. Let $\theta: X\alpha \to A$ be a bijection, and define $\eta_1: X \to X$ by $\eta_1 = \alpha\theta$. Then $\eta_1 \in N_2$.

Next, let

$$P = Z(\alpha) \setminus y_0 \alpha^{-1}, \quad Q = Z(\alpha) \cap y_0 \alpha^{-1} \quad (= y_0 \alpha^{-1} \setminus X\alpha);$$

then $Z(\alpha) = P \cup Q$, $|P| = \mathbf{m}$, $|Q| < \mathbf{m}$. Define η_2 as a bijection from $X\eta_1$ onto P, and complete the definition by specifying that

$$(X \setminus X \eta_1) \eta_2 = a$$

where a is arbitrarily chosen in P. Then $\eta_2 \in N_2$. In fact $X\eta_2^2 = P\eta_2 = \{a\}$, since

$$P \subseteq X \setminus y_0 \alpha^{-1} \subseteq X \setminus A = X \setminus X \eta_1$$
.

Finally, define η_3 for each x in $X\eta_1\eta_2$ by

$$x\eta_3 = x\eta_2^{-1}\theta^{-1}$$

and complete the definition by putting

$$(X\backslash X\eta_1\eta_2)\eta_3=b,$$

where b is chosen arbitrarily in $X\alpha$. Then

$$X\eta_3 = X\alpha \subseteq X \setminus P = X \setminus X\eta_1\eta_2$$

and so $X\eta_3^2 = \{b\}$. Since it is clear that $\eta_3 \in P_{\mathbf{m}} \setminus S_{\mathbf{m}}$, we thus have $\eta_3 \in N_2$. It is easily seen that $\eta_1 \eta_2 \eta_3 = \alpha$.

We have now shown that every non-zero element of $P_{\mathbf{m}} \setminus S_{\mathbf{m}}$ belongs to $\langle N_2 \rangle$. It is evident that $0 = \eta^2 \in N_2^2 \subseteq \langle N_2 \rangle$, where η is any element of N_2 . Thus we have the following result:

THEOREM 2.7. Let X be a set with infinite cardinality \mathbf{m} , where \mathbf{m} is regular, and let $P_{\mathbf{m}}$, $S_{\mathbf{m}}$ be defined by equations (2.1) and (2.2). Let N be the set of nilpotents in $P_{\mathbf{m}}$, and let N_2 be the set of nilpotents of index 2. Then $\langle N \rangle$, the subsemigroup of $P_{\mathbf{m}}$ generated by N, is equal to \tilde{T} . Moreover,

$$N_2 \cup N_2^2 \subset P_m \setminus S_m = N_2 \cup N_2^2 \cup N_2^3$$
.

Remark. It is not hard to see that the restriction of regularity is necessary. If **m** is irregular, then the subset $S_{\mathbf{m}}$ (no longer a semigroup) contains nilpotent elements. To see this, write $X = A \cup B$, where $|A| = |B| = \mathbf{m}$ and $A \cap B = \emptyset$, and suppose that

$$A = \{ \{ A_{\lambda} : \lambda \in \lambda \},$$

where $|\Lambda| < \mathbf{m}$ and $|A_{\lambda}| < \mathbf{m}$ for all λ . Let $\theta : \Lambda \cup B \to A$ be a bijection and define $\eta : X \to X$ by

$$x\eta = \begin{cases} \lambda\theta & \text{if} \quad x \in A_\lambda & (\lambda \in \Lambda) \\ x\theta & \text{if} \quad x \in B \end{cases}.$$

Then the (ker η)-classes are A_{λ} ($\lambda \in \Lambda$) and $\{b\}$ ($b \in B$) and so $\eta \in S_{\mathbf{m}}$. However $X\eta^2 = \Lambda\theta$, of cardinality less than \mathbf{m} , and so η is a nilpotent of index 2 in $P_{\mathbf{m}}$.

A nilpotent-generated semigroup

References

A. H. Clifford and G. B. Preston. The algebraic theory of semigroups, vols. 1 and 2 (Providence, R.I.: American Mathematical Society, 1961 and 1967).
 P. R. Halmos. Naive set theory (New York: Van Nostrand, 1960).
 J. M. Howie. The semigroup generated by the idempotents of a full transformation semigroup. J. London Math. Soc. 41 (1966), 707-716.

4 J. M. Howie. An introduction to semigroup theory (London: Academic Press, 1976).

- 5 J. M. Howie. Some subsemigroups of infinite full transformation semigroups. *Proc. Roy. Soc. Edinburgh Sect. A* 88 (1981), 159–167.
- J. M. Howie. A class of bisimple, idempotent-generated congruence-free semigroups. Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 169-184.
- 7 M. Paula O. Marques. A congruence-free semigroup associated with an infinite cardinal number. Proc. Roy. Soc. Edinburgh Sect. A 93 (1983), 245-257.
 8 M. Paula O. Marques. Infinite Transformation Semigroups (Ph.D. Thesis, University of St.
- G. B. Preston. A characterization of inaccessible cardinals. Proc. Glasgow Math. Assoc. 5 (1962),