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ABSTRACT 

A series of novel donor-acceptor chromophores designed to have good second order nonlinear optical responses has been 

synthesized and characterized. This series of compounds was designed to explore the consequence of using different 

electron accepting moieties which were linked through an arylthiophene bridge to a pyrrole heterocycle that plays the 

role of an auxiliary donor group. These new push-pull chromophores have been extensively characterized using cyclic 

voltammetry, thermogravimetric analysis and hyper-Rayleigh scattering (HRS) in solution. The measured molecular first 

hyperpolarizabilities and the observed electrochemical behavior showed that they were very sensitive to the acceptor 

strength of the acceptor moieties. Moreover, the combination of their good nonlinearity and high thermal stability make 

them good candidates for potential device applications. 

Keywords: nonlinear optics (NLO), hyper-Rayleigh scattering (HRS) technique, push-pull heterocyclic systems, redox 

potentials, thermal stability, auxiliary donor heterocycle, pyrrole, thiophene. 

 

1. INTRODUCTION 

Over the last two decades there has been an intense research effort aimed at improving the nonlinear optical response of 

push-pull type organic chromophores, motivated by their strong potential to make fundamental improvements in organic 

modern communication technology, e.g. ultrafast image-processing, optical data processing, transmission, and storage. 

In particular attention has recently been focused on optimizing the second-order nonlinear optical (NLO) response of the 

ground-state polarization of molecules by using different combinations of electron donor (D), electron acceptor (A), and 

-conjugated bridges,
1-2

 known as D--A NLO chromophores. A combination of synthetic innovations reinforced by 

theoretical chemical calculations and confirmed by structural and optical characterizations has shown that the usage of 

easily delocalized five-membered heteroaromatic rings (usually thiophene, furan and thiazole) instead of benzene ring 

results in an enhanced molecular nonlinear response as quantified through the first molecular hyperpolarizability, .
3-4

 

Although a large variety of donor, acceptor and spacer groups have been used for the design of NLO chromophores, the 

use of pyrrole heterocycle as conjugated bridge and/or as a strong donor moiety has rarely appeared in the NLO 

literature
5-7 

probably due to the difficulty of their synthesis.
 
Recently we were able to overcome these difficulties and 

reported on the interesting electrochemical and solvatochromic properties and the first hyperpolarizabilities of pyrrole-

containing NLO chromophores with potential application as nonlinear optical compounds.
8-12

 We were therefore 

motivated to extend these studies and explore the potential of a novel series 1-(4-(thiophen-2-yl)phenyl)-1H-pyrroles 1 as 

efficient push-pull systems bearing pyrrole as donor group and dicyanovinyl, rhodanine, thiobarbituric acid and 

indanonedicyanovinyl as acceptor moieties linked through an arylthiophene spacer. 

 

2. EXPERIMENTAL TECHNIQUE OF HYPER-RAYLEIGH SCATTERING 

2.1 Measurement 

Hyper-Rayleigh scattering was used to measure the first hyperpolarizability  of response of the molecules studied. The 

experimental set-up for hyper-Rayleigh measurements is similar to the one presented by Clays et al.
13-14

 (Fig. 1). 

Particular care was taken to avoid common pitfalls with this method that can lead to erroneous values for the 

hyperpolarizability.  



The incident laser beam came from a Q-switched Nd:YAG laser operating at a 10 Hz repetition rate with approximately 

10 mJ of energy per pulse and a pulse duration (FWHM) close to 12 ns at the fundamental wavelength of 1064 nm. The 

incident power could be varied using a combination of a half wave-plate and Glan polarizer. The incident beam was 

weakly focused (beam diameter ~0.5 mm) into the solution contained in a 5 cm long cuvette. With this cuvette length we 

are able to aperture only the central region and thereby avoid detecting second harmonic signal from the cell windows. 

The hyper- Rayleigh signal was collected at right angles to the incident beam and collimated using a high numerical 

aperture lens (0.8 N.A.). To detect only light emitted near 532nm the signal  passed first through an infrared blocking 

filter then through a narrow band interference filter centred at the second harmonic wavelength before being detected by 

a photomultiplier (Hamamatsu model H9305-04). The current pulse from the photomultiplier was
 
integrated using a 

Stanford Research Systems gated box-car integrator (model SR250) with a 25 ns gate centred on the temporal position of 

the incident laser pulse. The hyper-Rayleigh signal was normalized at each pulse using the second harmonic signal from 

a 1 mm quartz plate to compensate for fluctuations in the temporal profile of the laser pulses due to longitudinal mode 

beating.
  

Dioxane was used as a solvent, and the  values were calibrated using a reference solution of p-nitroaniline (pNA)
15-16

 

also dissolved in dioxane at a concentration of 1 x 10
-2

 mol dm
-3

 (external reference method). The hyperpolarizability of 

pNA dissolved in dioxane is known from EFISH measurements carried out at the same fundamental wavelength.
 
The 

concentrations of the solutions under study were chosen so that the corresponding hyper-Rayleigh signals fell well within 

the dynamic range of both the photomultiplier and the box-car integrator. All solutions were filtered (0.2 m porosity) to 

avoid spurious signals from suspended impurities.  
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Figure 1.  Scheme of assembly for hyper-Rayleigh scattering measurements. P = polarizer, λ/2 = half-waveplate, L = lens, E = mirror, 

PD = pellin broca disperser prism, F’= infrared cutoff filter (KG3) F = narrowband interference filter, FD = photodetector, FM = 

photomultiplier. 

 

2.2 Calculations 

The small hyper Rayleigh signal that arises from dioxane was taken into account according to the equation 1  
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where the factor G is an instrumental factor that takes into account the detection efficiency (including geometrical factors 

and linear absorption or scattering of the second harmonic light on its way to the detector) and local field corrections.  



We took especial care to avoid reporting artificially high hyperpolarizibilities due to a possible contamination of the 

hyper Rayleigh signal by molecular fluorescence near 532 nm. Measurements were carried out using two different 

interference filters with different transmission pass bands centred near the second harmonic at 532 nm. The transmission 

band of the narrower filter (CVI model F1.5-532-4) was 1.66 nm (full width at half maximum) with a transmission of 

47.6% at the second harmonic, while the corresponding values for the wider filter (CVI model F03-532-4) were 3.31 nm, 

with a transmission of 63.5% at the second harmonic. The transmission of each filter at the second harmonic wavelength 

was carefully determined using a crystalline quartz sample. We assume that any possible fluorescence emitted from the 

solutions is essentially constant over the transmission of both interference filters. Then by comparing the signals 

obtained with the two different filters we can determine the relative contributions of the hyper-Rayleigh and possible 

fluorescence signals. The relevant equations (2 and 3) are: 
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Here 2

NBS is the hyper-Rayleigh scattering contribution to the signal, i.e. the signal that would have been measured using 

the “narrow” band filter if there were no fluorescence present. The fluorescence contribution to the signal measured 

using the narrow band interference filter is F

NBS . The signals NBS  and WBS  are the actual signals measured (after 

correction for the solvent contribution) using the “narrow” (CVI model F1.5-532-4) and “wide” (CVI model F03-532-4) 

band interference filters. The transmissions NBT  and WBT  are respectively the transmission of the “narrow” and “wide” 

band interference filters at the second harmonic wavelength (47.6% and 63.5%), NBA  and WBA  represent the area under 

the respective filter’s transmission curve. The respective transmission curves were obtained using a dual-beam 

spectrophotometer with slits adjusted to give 0.1 nm resolution. We obtained values of 1.29 nm and 2.18 nm for NBA
 

and WBA  respectively. These values allow us to confidently characterize the first molecular hyperpolarizabilities even 

when the multi-photon induced fluorescence leads to a contamination of the measured signal by as much as 60%.  

After determining the amount of signal due solely to hyper-Rayleigh scattering by applying the above procedure the 

hyperpolarizability of each compound was estimated using the following expression,  

2
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Here Nchom and NpNA are respectively the molar densities of the chromophore and p-nitroaniline solutions. In using this 

expression we assume, as is typical, that the hyperpolarizability tensor is dominated by a single longitudinal element. 

This is the case for the reference molecule, pNA with a value of βzzz = 16.9 x 10
-30 

esu as measured using the EFISH 

technique.
15-16 

 

3. RESULTS 

3.1 Synthesis 

A series of 1-(4-(thiophen-2-yl)phenyl)-1H-pyrroles 1b-e were synthesized in moderate to good yields by Knoevenagel 

reaction between formyl-pyrrole 1a and methylene active compounds in ethanol at reflux, in the presence of a catalytic 

amount of piperidine (Fig. 2, Table 1). The novel NLO-chromophores consists of several derivatives based on pyrrole 



heterocycle as the electron donor group which are connected via an arylthiophene spacer to formyl, dicyanovinyl, 

rhodanine, thiobarbituric acid and 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile acceptor groups. 

The novel chromophores were characterized through the usual spectroscopic techniques. The details of the synthesis and 

the full characterization of compounds 1 will be described elsewhere. 
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Figure 2. Chemical structures of the push-pull chromophores investigated: 1a 5-(4-(1H-pyrrol-1-yl)phenyl)thiophene-2-carbaldehyde); 

1b 2-((5-(4-(1H-pyrrol-1-yl)phenyl)thiophen-2-yl)methylene)malononitrile); 1c 3-((5-(4-(1H-pyrrol-1-yl)phenyl)thiophen-2-

yl)methylene)-5-thioxopyrrolidin-2-one); 1d 5-((5-(4-(1H-pyrrol-1-yl)phenyl)thiophen-2-yl)methylene)-1,3-diethyl-dihydro-2-

thioxopyrimidine-4,6(1H,5H)-dione and 1e 2-((Z)-2-((5-(4-(1H-pyrrol-1-yl)phenyl)thiophen-2-yl)methylene)-1,2-dihydro-1-

oxoinden-3-ylidene)malononitrile. 

 

Table 1. Yields, IR and Td data for 1-(4-(thiophen-2-yl)phenyl)-1H-pyrroles 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a The IR spectra were obtained in Nujol. 

b The IR spectra were obtained in liquid film (CHCl3).
 

c Decomposition temperature (Td) measured at a heating rate of 20 ºC min–1 under a nitrogen atmosphere, obtained 

by thermogravimetric analysis (TGA). 

 

 

Pyrrole Yield
  

(%) 


a 

(cm
-1

) 

Td
c
 

(
o
C) 

1a 41 1648 (C=O)
b
 199 

1b 65 2221 (C=N) 277 

1c 37 1698 (C=O)
 

1580 (C=S)
 

1462 (N-H) 

_
 

1d 65 1684 (C=O)
 

1461 (C=S)
 

270
 

1e 88 1698 (C=O) 

2214 (C=N) 
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3.2 Redox properties 

The redox properties of pyrroles 1a-e were studied by cyclic voltammetry in DMF containing tetrabutylammonium 

tetrafluoroborate (0.10 M) as the supporting electrolyte. These studies were performed using a potentiostat/galvanostat 

(AUTOLAB /PSTAT 12) with the low current module ECD from ECO-CHEMIE and the data analysis processed by the 

General Purpose Electrochemical System software package also from ECO-CHEMIE. Three electrode-two compartment 

cells equipped with vitreous carbon-disc working electrodes, a platinum-wire secondary electrode and a silver-wire 

pseudo-reference electrode were employed for cyclic voltammetric measurements. The concentration of the compounds 

were 1 mmol dm
-3

 and 0.1 mol dm
-3 
NBu4BF4 was used as the supporting electrolyte in dry N,N-dimethylformamide 

solvent. The potential is measured with respect to ferrocinium/ferrocene as an internal standard. 

The cyclic voltammetry study which was performed at different scan rates and potential ranges enabled the establishment 

of reversible and irreversible electrode processes. Table 2 lists the reduction and oxidation onsets and the 

electrochemical band gap values. On the basis of these potentials values, we estimated the HOMO and LUMO energy 

levels according as described from the potentials of the anodic and cathodic processes.
17-18

 

All compounds displayed one irreversible oxidation process under the experimental conditions which can be attributed to 

the formation of radical cation of the pyrrole ring. The variation of the peak potential for oxidation of the pyrrole moiety 

reflects the electronic strength of the terminal electron acceptor group substituted in the thiophene ring. All compounds 

exhibit two reductions processes except compound 1c functionalized with a rhodanine acceptor moiety. These potentials 

are strongly influenced by the electronic nature of the acceptor group linked to the thiophene ring where the reduction 

process occurs (Fig. 3).
9,12

 

 

Table 2. Electrochemical data for coumpounds 1a-e. 

Pyrrole 

Reduction
a
 Oxidation

a
  

-EHOMO
c 

(eV) 

 

-ELUMO
c 

(eV) 

 

Band gap
d
 

(eV) 
-
1
Epc (V) ΔE

b
 (mV) -

2
Epc (V)  

1
Epa (V) 

1a 2.06 81 2.70  0.92 5.31 2.33 2.98 

1b 1.41 _ 2.91  0.91 5.30 2.98 2.32 

1c 2.01 _ _  0.85 5.24 2.38 2.86 

1d 1.22 _ 2.19  0.98 5.37 3.17 2.20 

1e 1.96 90 2.17  1.04 5.43 2.43 3.00 

aMeasurements made in dry DMF containing 1.0 mM in each compounds and 0.10 M [NBu4][BF4] as base electrolyte at a carbon 

working electrode with a scan rate of 0.1 V s-1. All E values are quoted in volts vs the ferrocinium/ferrocene -couple. Epc and Epa 

correspond to the cathodic and anodic peak potentials, respectively; 
bΔE = |Ered - Eox|; 
c EHOMO = -(4.39 + Eox) (eV) and ELUMO = -(Ered + 4.39) (eV). 

dCalculated form the difference between the onset potentials for oxidation and reduction. 

 

3.3 Linear and nonlinear optical properties of the chromophores 

The studied chromophores showed good solubility in common polar and non-polar organic solvents such as dioxane and 

DMF. The extinction coefficients (ε) in dioxane and wavelength maxima lmax of compounds 1a-e in dioxane were 

obtained using a Shimadzu UV/2501PC spectrophotometer and are summarized in Table 3.
 
The electronic absorption 

spectra of the chromophores in dioxane solutions (10
-4

 M) showed an intense lowest energy charge-transfer (CT) 

absorption band in the UV-visible region. The position of this band was strongly influenced by the electronic nature of 

the acceptor moiety. The absorption maxima (lmax) of pyrrole-based chromophores 1a-e, in dioxane are located at the 



range of 348 to 510 nm. As observed earlier for other pyrrole push-pull systems, a bathochromic shift in the UV-Vis. 

spectra is observed when stronger acceptor groups are linked to the heterocyclic system.
8-12,19-20 

As a result the 

substitution of a formyl group for a 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile moiety leads to a red shift of 170 

nm from 348 nm (1a)  to 510 nm (1e). Within the series 1a-e the CT bands moves to lower energy as the electron 

accepting ability of the acceptor moiety increases, in the order CHO < dicyanovinyl < rhodanine < thiobarbituric acid < 

2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (Fig. 4). 

 

 

Figure 3. Cyclic voltammograms of compound 1a and 1b (1.0x10-3 mol dm-3) in DMF, 0.1 mol dm-3 [NBu4][BF4] at a vitreous carbon 

electrode between -0.50 V and -3.0 V vs. fc+/fc, scan rate 0.1 Vs-1. 
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Figure 4. Comparative absorption spectra of 1a-e in dioxane at room temperature. 

 

Previous studies have demonstrated that donor-acceptor substituted pyrroles exhibit a positive solvatochromism.
8-12,19-20 

In this case a moderate to large positive solvatochromism (max = 488-981 cm
-1

) was observed moving from diethyl 

ether to DMSO solutions for derivatives 1a-e. The UV-visible spectra of 1b in ethyl ether and in DMSO are given in figure 5. 
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Figure 5. Comparative absorption spectra of 1b in ethyl ether and in DMSO at room temperature showing a large positive 

solvatochromism (max = 786 cm-1). 

 

We have used the hyper-Rayleigh scattering (HRS) method
13-14 

to measure the first hyperpolarizability  of the 

compounds using the 1064 nm fundamental wavelength of a laser laser beam as described above. Dioxane was used as 

the solvent, and the   values were measured against a reference solution of p-nitroaniline (pNA)
15-16

 in order to obtain 

quantitative values, while particular care was taken to properly account for possible fluorescence of the dyes (see 

experimental section for more details). The static hyperpolarisability 0 values were calculated using a very simple two-

level model neglecting damping. They are therefore only indicative and should be treated with caution (Table 3). 

 

Table 3. Linear and nonlinear optical properties of chromophores 1.a
 

Compounds 
l

max
 

(nm) 

ε
max

 

(M
-1

cm
-1

) 

b
 

(10
-30

esu) 

0
c
 

(10
-30

esu) 

1a 348 32,740 28 14±2 

1b 419 39,180 92 30±3 

1c 441 32,930 _ _ 

1d 479 45,790 1048 158±5 

1e 510 30,840 358 22±2 

pNA 352 _ 16.9
15-16

 8.5 

a Experimental first hyperpolarizabilities  and spectroscopic data measured in dioxane solutions. 
b All compounds are transparent at the 1064 nm fundamental wavelength. 
c Data corrected for resonance enhancement at 532 nm using the two-level model with 0 =  [1-(lmax/1064)2][1-(lmax/532)2]; damping 

factors not included 1064 nm.21-23 
 

NLO chromophores 1b and 1d-e exhibit good to excellent molecular nonlinearities as their  values are 5-62 times 

higher that of the well known pNA molecule for an incident laser wavelength of 1064 nm (the corresponding 0 values 

are 3 to 19 times higher than that of pNA). From Table 3 it can be seen also that the static 0 and the experimental  

values for compounds 1a-e follow the same ordering as deduced for the electron acceptor strength ordering found from 



the absorption band. Only one exception was observed in the sequence CHO < dicyanovinyl < rhodanine < thiobarbituric 

acid < 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile for the absorption band concerning compound 1e which gave 

lower 0 and  values than expected. 

 

3.4 Thermal stability 

Thermogravimetric analysis of the samples was carried out using a TGA instrument model Q500 from TA Instruments, 

under high purity nitrogen supplied at a constant 50 mL min
-1 

flow rate. All samples were subjected to a 20 ºC min
–1 

heating rate and were characterized between 25 and 500 ºC. As shown in Table 1 compounds 1b-e exhibit good to 

excellent thermal stability with decomposition temperatures varying from 239 to 277 ºC. Compounds 1b (Fig. 6) and 1d 

functionalized with dicyanovinyl and thiobarbituric acid accepting groups are the more thermally stable push-pull 

derivatives, exhibiting higher decomposition temperatures (Td = 270–277 ºC). This property would benefit the practical 

applications of these chromophores when incorporated into actual optical devices.  
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Figure 6. Thermal analysis data for compound 1b through TGA recorded under a nitrogen atmosphere, measured at a heating rate of 

20 ºC min–1. 

 

4. SUMMARY 

In this work we report the synthesis, the redox properties and extensive physical characterization of several novel push-

pull pyrrole derivatives. The static hyperpolarisability 0 was calculated using the two level method and the experimental 

first hyperpolarizability  were obtained using the hyper-Rayleigh scattering method. The experimental results obtained 

for theses derivatives showed that the electronic nature of the acceptor groups had significant influence on their thermal 

stability as well as their respective linear and nonlinear optical properties. In general when stronger electron acceptor 

groups are used in these chromophores, stronger hyperpolarizabilities are obtained. Finally, we verified that good optical 

nonlinearities are complemented by satisfactory thermal stability for chromophores 1b and 1d-e which makes them good 

candidates for NLO applications. 
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