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Abstract- Three series of bithiophene azo dyes functionalized with thiazol-2-yl or 

benzothiazol-2-yl-diazene acceptor moieties were synthesized through azo coupling reaction 

using 2,2´-bithiophene, 5-alkoxy-2,2´-bithiophenes, 5-N,N-dialkylamino-2,2´-bithiophenes 

and thiazolyl and benzothiazolyl diazonium salts as coupling components. The 5-alkoxy-2,2´-

bithiophene precursors yielded the 5-thiazolylazo-5´-alkoxy-2,2´-bithiophenes, while the azo 

coupling reaction of 5-N,N-dialkylamino-2,2´-bithiophenes with the thiazolyldiazonium salt 

gave 4-thiazolyl-azo-5-N,N-dialkylamino-2,2´-bithiophenes. A different reactivity behavior 

was observed for 2,2-bithiophene with thiazolyl diazonium salts which gave rise to the 

expected azo dyes together with several arylation products. The redox behavior, thermal 

stability, and the first hyperpolarizability of the novel chromophores were evaluated through 

cyclic voltammetry, thermogravimetric analysis (TGA) and hyper-Rayleight scattering (HRS) 

respectively. By varying the position of the thiazolyldiazene acceptor group on the 

bithiophene system, the electrochemical behavior as well as the optical (linear and nonlinear) 

properties of the donor-acceptor -conjugated systems can readily be tuned. Push-pull 5-

thiazolylazo-5´-alkoxy-2,2´-bithiophenes exhibit the most promising redox and the 

solvatochromic properties and second order nonlinear optical response. The redox and the 

optical properties also show notable variations for the different heterocyclic spacers and were 

also sensitive to the electronic acceptor strength of the (benzo)thiazolyldiazene moieties. 
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1. Introduction 

 

Heterocyclic azo dyes are a versatile class of colored compounds that have attracted the 

interest of many research groups, in part because of their multiple industrial applications in 

the fields of textiles, papers, leather, additives, foodstuffs, cosmetics, holographic data storage 

materials, laser materials, xerography, laser printing and as materials for organic solar cells 

and chemosensors [1]. In addition, other heterocyclic azo dyes have found uses as organic 

second order nonlinear optical materials (NLO) suitable for applications such as harmonic 

generation and optical switching [2]. 

 

Previously the two lowest singlet excitation energies of 18 azo dyes have been studied by ab 

initio quantum-chemical methods within the second-order polarization propagator 

approximation (SOPPA) by Åstrand et al.. Various combinations of five-membered rings 

such as furan, thiophene, pyrrole, oxazole, thiazole, and imidazole have been investigated as 

diazo components for a potential use in optical data storage materials. Diazo compounds with 

two heterocyclic five-membered rings are found to have * excitation energies 

corresponding to laser wavelengths in the region 450–500 nm whereas one five-membered 

ring and a phenyl group as diazo components have excitation wavelengths in the 400–435 nm 

region. The results of these theoretical chemical calculations suggest that they could be used 

as suitable azo components in optical data storage materials. In particular, it was shown that 

azo dyes with two five-membered rings (e.g. thiophene, pyrrole and thiazole) as diazo 

components can, in principle, be obtained with excitation energies corresponding to laser 

wavelengths considerably longer than for azobenzenes, which would be desirable for some 

optical data storage devices. 

 

Prior theoretical and experimental and studies [1, 2a-c] have stimulated a strong interest in 

our research group to engage in the synthesis and characterization of novel heterocyclic azo 

dyes bearing thiophene, pyrrole and thiazole heterocycles. The optical and electronic 

characterization of several novel chromophores previously synthesized by us, confirmed that 

they possess the essential characteristics necessary for use as efficient solvatochromic probes, 



nonlinear optical and photochromic materials [3-4], supporting the main conclusions of 

Åstrand et al. theoretical studies described above. 

Our compounds were obtained through an azo coupling reaction using bithiophene [5] or 

thienylpyrroles derivatives [6] and aryl or heteroaryldiazonium salts as coupling components. 

We have recently employed this synthetic metodology to obtain thienylpyrrole derivatives 

functionalized with phenyldiazene [3a-b] and thiazolyldiazene groups [3d], and bithiophene 

chromophores bearing phenyldiazene [4a-c] acceptor moieties. The electrochemical, thermal 

and optical properties of these compounds indicate that they have good potential to be used in 

applications as nonlinear optical [3d, 4a-b] and photochromic materials [3c-3d, 4d].  

In view of these facts and as a continuation of our recent studies on the synthesis and 

characterization of heterocyclic azo dyes for optical applications, we considered it worthwhile 

to synthesize bithiophene derivatives functionalized with thiazolyl and benzothiazolyldiazene 

moieties and evaluate their electrochemical, thermal and optical (linear and nonlinear) 

properties. 

 

2. Results and discussion 

 

2.1. Synthesis 

 

Usually thiophene azo dyes are synthesized through azo coupling reaction of 2-

aminothiophenes with arylamines [2a, 2j, 7], although the difficulties of synthesizing 2-

aminothiophenes are well known. To overcome these difficulties, we have recently developed 

a novel methodology of synthesis for bithienyl-aryldiazenes using as coupling components 5-

alkoxy- or 5-N,N-dialkylamino-2,2´-bithiophenes and aryldiazonium salts. In our recent work, 

5-alkoxy- and 5-N,N-dialkylamino-2,2´-bithiophenes were shown to be highly reactive with 

aryldiazonium salts. Moreover, we also demonstrated that the position of the electrophilic 

substitution on the bithiophene moiety, depends on the electronic nature of the group 

substituted on 5-position of the bithiophene system (alkoxy or N,N-dialkylamino). For 

instance,  azo coupling reaction of 5-alkoxy-2,2´-bithiophenes with aryldiazonium salts gave 

5´-phenylazo-5-alkoxy-2,2´-bithiophenes 8 [4a-b]. On the other hand, the coupling reaction of 

the 5-N,N-dialkylamino-2,2´-bithiophenes under the same reaction conditions occurs in the 

activated 4-position to yield 4-phenylazo-5-N,N-dialkylamino-bithiophenes 9-10, [4c] (Figure 

1). Despite the steric hindrance, the 4 position is still favored for the electrophilic reaction, as 

compared to the 5´-position. 



<Figure 1> 

 

Having in mind these earlier results we were motivated to study the reactivity of the azo 

coupling reaction of 5-alkoxy-, 5-N,N-dialkyamino-bithiophenes and also the unsubstituted 

bithiophene with heterocyclic thiazolyl- and benzothiazolyl- diazonium salts. 

 

In previous studies, we have synthesized and studied the solvatochromic and the redox 

properties of 5-N,N-dialkyamino bithienyl-aryldiazenes. In this manuscript, we report on the 

use of the hyper-Rayleigh scattering technique to characterize the second-order optical 

nonlinearities of some of these azo dyes and compare them with the novel bithienyl-

thiazolyldiazenes. The thienylpyrrole azo dye 12c (Figure 2) was also synthesized in order to 

compare the difference of the -conjugated bridge/donor auxiliary effect of the bithiophene 

system with thienylpyrrole heterocyclic spacer [3d] on the electronic and optical properties of 

these push-pull compounds. Alternatively, thiazolyl and benzothiazolyl diazonium salts were 

chosen as coupling components for the synthesis of heterocyclic azo dyes 4-7 having in mind 

that the substitution of a phenyl group by electron-deficient 2-thiazole or 2-benzothiazole 

heterocycle in a donor-acceptor organic chromophore significantly enhances the respective 

first hyperpolarizaibility values, β [8-9]. 

 

Therefore, 2,2´-bithiophene 1a, 5-alkoxy- 1b-c and 5-N,N-dialkylamino-2,2´-bithiophenes 1d-

e [5] have been used as coupling components together with thiazolyl 2a-c and benzothiazolyl 

diazonium salts 3 in order to prepare heterocyclic azo dyes 4-7 (Scheme 1, Table 1). 

Diazotation of 2-amino-thiazole derivatives and 2-aminobenzothiazole  with NaNO2 in HCl 

(6N) at 0-5 
º
C in water gave rise to the corresponding diazonium salts 2-3, which reacted 

immediately with bithiophenes 1a-e in acetonitrile at 0 
o
C given thiazolyldiazenes 4-6 and 

benzothiazolyldiazene 7 in fair to good yields (9-80%). Generally, higher yields were obtained 

in the synthesis of thiazolyldiazenes 4-6, probably due to the higher stability of diazonium 

salts 2 when compared to 3. 

<Scheme 1> 

<Table 1> 

 

The thienylpyrrole azo dye 12c (Figure 2) was also synthesized with yields of 61% under the 

same experimental conditions described above using 1-(4-methoxyphenyl)-2-thieno-2-yl-

pyrrole 11 [6] and thiazol-2-yl-diazonium salt 2c as coupling components. A higher yield was 



obtained for 12c compared to 6a probably due to the stronger donor electronic character of 

thienylpyrrole as coupling component compared to 2,2´-bithiophene, making it more activated 

to react through an electrophilic aromatic substitution such the azo coupling reaction. 1-(4-

Methoxyphenyl)-2-thieno-2-yl-pyrrole exhibits an analogous reactivity with thiazol-2-yl-

diazonium salt 2c when compared to the reaction with aryldiazonium salts [3a-b]. As a result, 

the corresponding azo dye 12c was obtained having the thiazolyldiazene moiety substituted at 

5-position of the pyrrole ring. 

The 5-alkoxy- and 5-N,N-dialkylamino-2,2´-bithiophenes also exhibit a similar reactivity in 

azo coupling reactions with thiazolyl and benzothiazolyldiazonium salts when compared to 

aryldiazonium salts [4a-b]. In effect, azo coupling of 5-alkoxy-2,2´-bithiophenes 1b-c with 

thiazolyldiazonium salts 2a-b gave 5´-thiazolylazo-5-alkoxy-2,2´-bithiophenes 4b-c and 5b-c 

and azo coupling reaction of 5-N,N-dialkylamino-2,2´-bithiophenes 1d-e with 

thiazolyldiazonium salt 2a, gave selectively, 4-thiazolylazo-5-N,N-dialkylamino-2,2´-

bithiophenes 4d-e (Scheme 1). These results can be explained by taking in account several 

factors such as the increase of the electron density at the 4-position of the bithiophene moiety 

due to the 5-N,N-dialkylamino- substituents keeping in mind that the thiazolyl diazonium salt 

are not sterically a bulky species. 

 

However an unexpected reactivity was observed for the azo coupling reaction of 2,2´-

bithiophene 1a with thiazolyl diazonium salts 2a-c. This suggests that, under conditions in 

which thiazolyl diazonium salts 2a-c couples with 5-alkoxy- and 5-N,N-dialkylamino-2,2´-

bithiophenes to yield the corresponding azo dyes 4b-e and 5b-c the same ions interact with 

bithiophene giving complex reaction mixtures constituted by several deeply colored 

compounds (TLC).  Therefore, using the same reaction conditions that were applied for the 

preparation of 5-alkoxy and 5- N,N-dialkylamino-bithiophenes (0.5 equiv. of bithiophene 1a 

and 1 equiv. of diazonium salts 2a-c) all the coupling reactions gave the expected azo dyes 

4a, 5a and 6a in 23,  10  and 15% yields respectively, together with the arylation products 14 

(17%) and traces (3%) of 15a (Figure 2). The arylation compounds 14 and 15a were isolated 

and completely characterized by the usual spectroscopic techniques. 

In order to study the reactivity of bithiophene with thiazolyldiazonium salts 2a-c under 

different conditions, equimolar amounts of both coupling components were used. In these 

conditions more complex reaction mixtures were obtained and the yields of the expected azo 

dyes 4a and 6a decreased markedly from 23 to 10% (4a) or from 15% to 4% (6a). 

Concurrently we also observed an increase of the yields of the arylation products. The by-



product 13 was obtained at a 5% yield in a mixture with the corresponding azo dye 4a (10%). 

In the case of the azo coupling with diazonium salt 2c, the pure azo dye 6a was obtained at 

4% yield together with a fraction which seems to be a mixture (
1
H NMR and HPLC-MS) of 

the arylation products 15a and 15b in a 63% yield. An opposite behavior was observed for 

azo dye 5a; in this case the yield increased from 10 to 21% together with the decrease of the 

arylation product 14 from 17 to 6% yield (Table 1). 
1
H NMR and HPLC-MS were used in 

order to identify the components of the fractions that were not possible to separate by column 

chromatography. The arylation product 13 (5%) was identified in a mixture together with the 

corresponding azo dye 4a (10%). On the other hand both arylation products 15a-b were 

recognized in a mixture at a yield of 63%. These unexpected arylation products 13-15 

probably arise because the same diazonium salts 2a-c can interact also with the bithiophene 

with evolution of nitrogen to give the arylation products 13-15 [10a] (Figure 2).  

 

<Figure 2> 

 

In fact, Tedder et al. reported earlier the arylation of thiophene under conditions in which 2,4-

dinitrobenzenediazonium salts couple with anisole to yield the corresponding azo dye. Using 

thiophene as coupling component, these investigators obtained the arylation coupling  product 

5-(2,4-dinitrophenyl)thiophene [10a]. However when the thiophene ring was substituted by t-

butyl, phenyl and dimethyl groups the azo coupling using the same diazonium salt gave the 

corresponding azo-thiophenes [10b]. 

The fact that arylation occurs with bithiophene derivatives suggests that there is a competition 

between arylation and azo coupling reactions; if the nucleus is sufficiently activated (e.g. by 

alkoxy or N,N-dialkylamino groups) azo coupling is preferred. 

 

2.2. Electronic structure analysis 

The electronic structures of the heterocyclic azo dyes were first analyzed by 
1
H NMR 

spectroscopy (Table 2) and cyclic voltammetry (Table 3). 

 

<Table 2> 

 

The structures of bithiophene azo dyes 4-7 were unambiguously confirmed by their analytical 

and spectral data. For example in the 1H NMR spectrum of 5´´-alkoxy-5-thiazolylazo-2,2´-

bithiophene derivatives 4b-c, in CDCl3, two signals at about 6.21-6.23 and 7.11-7.12 ppm, 



were detected. Both signals appear as doublets with coupling constants of 4.2 Hz indicating 

the presence of two adjacent protons in a di-substituted thiophene ring. These signals were 

attributed to the 4´´-H and 3´´-H protons respectively. On the other hand in the 
1
H NMR 

spectrum of 5-N,N-dialkylamino-4-thiazolylazo-2,2´-bithiophene derivatives 4d-e, in CDCl3, 

one signal at about 7.57-7.59 ppm was detected as a singlet indicating the presence of only 

one proton in a trisubstituted thiophene ring. This signal was attributed to the 3’-H proton. For 

the same bithiophene azo dyes, 4d-e, three signals at about 6.99-7.04 ppm (multiplet), 7.03-

7.05 ppm (double doublet) and 7.20-7.22 ppm (double doublet) were detected. These signals 

were attributed respectively, to the 4’’, 3’’ and 5’’-H protons at the second thiophene ring. 

In the 
1
H NMR spectra of benzothiazolyldiazene 7a functionalized with a benzothiazol-2-yl-

diazene moiety on the 5´-position of the thiophene ring four additional signals at about 7.42-

7.47 (multiplet), 7.52 (double triplet), 7.87 (double doublet), and 8.13 (double doublet) were 

also detected and were attributed respectively, to the 5, 6, 4 and 7-H protons in the 

benzothiazole ring. 

For thienylpyrrolyl-azo dye 12c functionalized with a thiazolyldiazene moiety on the 2´-

position of the pyrrole ring two doublets at 7.00 and 7.44 ppm were detected with coupling 

constants of 4.6 Hz indicating the presence of two adjacent protons (4´-H and 3´-H) at the 

corresponding pyrrole moiety.  

The arylation products were also characterized by 
1
H NMR spectra. For example, for 

compound 14 two doublets at 2.58 and 2.60 ppm were observed with coupling constants of 

0.6  Hz which were attributed to the 5-Me groups and two doublets were also observed at 7.64 

and 7.70 ppm with a coupling constant of 0.6  Hz due to the two 4-H in the thiazole rings. 

Three double doublets were also detected at 7.10, 7.41 and 7.44 and were attributed 

respectively, to the 4´´, 5´´ and 3´´-H in the thiophene ring. A singlet at 7.96 ppm was also 

observed due to the 3´-H in the first thiophene ring. The ESI HRMS indicates that [M+1]
+
 of 

389 m/z can be attributed to the molecular formula C16H12N4S4 (389.0019).  

 

The study of the NMR chemical shifts in push-pull derivatives bearing thiazole 4-6 and 

benzothiazole 7a electron-deficient heterocycles can also confirm their push-pull character 

with a significant intramolecular charge transfer (ICT) from the donor bithiophene moiety to 

the acceptor (benzo)thiazole groups (Table 2). In particular, the effect of the substitution of a 

thiazolyl group for dye 4a by a benzothiazole heterocycle (e.g. 7a) is noteworthy. All the 

protons of the bithiophene system in  7a (3´-H and 4´-H, and 3´´, 4´´and 5´´-H) were shifted to 

higher chemical shifts (e.g. 4´-H and 3´-H  = 7.37 and 7.91 ppm respectively) as compared to 



the corresponding thiazoyldiazene azo dye 4a (e.g. 4´-H and 3´-H  = 7.31 and 7.81 ppm 

respectively) thus indicating a decrease of the electron density due to the stronger electron-

withdrawing power. That is a higher charge-demand cx,
 
of the benzothiazole ring [11] 

provokes a more efficient charge transfer from the donor to the acceptor group.  

A similar effect was observed in the chemical shifts for all protons of the bithiophene system 

6a (e.g. 4´-H and 3´-H  = 7.40 and 7.94 ppm respectively) bearing a thiazole ring 

functionalized with a formyl group when compared to thiazolyldiazene 4a. On the other hand 

azo dyes 4b-c bearing electron donating alkoxy groups substituted on position 5´ of the 

bithiophene system exhibit high field signals for all protons of the bithienyl and thiazolyl 

moieties demonstrating the easy electron communication within the whole heterocyclic 

system. 

A similar behavior was observed for 4-thiazolylazo-5-N,N-dialkylamino-2,2´-bithiophenes 

4d-e functionalized with the stronger electron donating N,N-dialkylamino groups substituted 

on the ortho position to the thiazolyldiazene acceptor moieties which exhibit lower chemical 

shifts for all protons of the bithienyl and thiazolyl moieties. Noteworthy are the lower 

chemical shifts values for the thiazole protons (4-H and 5-H,  = 7.75-7.77 and 7.03-7.05 ppm 

respectively) for compounds 4d-e compared to compound 4a (4-H and 5-H   = 7.98 and 7.32 

ppm respectively). 

The 
1
H NMR analysis for thienylpyrrole azo dye 12c also confirms its push-pull character. 

Moreover, the thienylpyrrole derivative exhibit lower chemical shifts for all protons of the 

thienylpyrrole group and also for the thiazole ring (e.g. 3´-H, 4´-H and 4-H  = 7.00, 7.44 and 

8.35 ppm respectively) compared to all bithiophene azo dye 6a protons (e.g. 3´-H, 4´-H and 4-

H,  = 7.40, 7.94 and 8.52 ppm respectively) demonstrating its stronger electron donor 

character and the easy electron communication through the entire conjugated system. 

 

All bithienyl-thiazolyldiazenes 4-7 showed a donor-acceptor character with reversible 

reduction and irreversible oxidation processes. The irreversible oxidation process is 

associated with the oxidation of the thiophene moiety [3a, 12] and the two reduction process 

are associated with the reduction of heterocyclic azo moiety. These values are comparable 

with those reported previously for other similar compounds [13-14]. 

 

<Table 3> 

 



Results show that the electronic nature of substituent group (R1 = H, alkoxy, N,N-

dialkylamino) in bithiophene moiety has a significant influence on the value of oxidation 

potential of this system. The substitution of the bithiophene system by stronger electron 

donating groups such as N,N-dialkylamino leads to a significant shift of the cathodic potential 

values (e.g. azo dyes 4d and 4e). In contrast, the electronic donor or acceptor nature of the 

substituent (R2 = H, CH3, CHO) on the thiazole ring does not influence significantly the value 

of oxidation potential of compounds, 4a, 5a and 6a. 

 

All synthesized bithienyl azo dyes bearing a thiazole acceptor group exhibited two 

monoelectronic reductions. The one-electron stoichiometry for these reduction processes is 

ascertained by comparing the current heights with known one-electron redox processes under 

identical conditions [15]. The first process is reversible and the second process partially 

reversible, except for molecule 5a, which underwent a second reversible process and 

molecules 4d-e which exhibit irreversible processes. Compounds 4a-c showed reversible 

reduction peaks, with similar onset potentials between -1.23 and -1.26 V, which were 

assigned to the reduction of the thiazolyldiazene moiety. This shows that for these compounds 

the substitution of the bithiophene system by groups with different electronic character has no 

influence on the reductions potentials. However, the reduction potentials values are 

significantly influenced by the substituent on 5´-position of the bithiophene moiety. The N,N-

dialkykamino substituents shifts the value of the reduction potential of compounds 4d and 4e 

to more negative values compared to the unsubstituted 4a and the alkoxy derivatives 4b-c 

(e.g. 4a, 
1
Epc = -1.23 V; 4c, 

1
Epc = -1.26 V and 4e; 

1
Epc = -1.67 V). The substitution of the 

thiazole ring by the methyl group has little influence on the values of reduction potentials of 

compounds 5a-c. In contrast, the potentials are strongly influenced by the electronic acceptor 

nature of the formyl group. As a consequence, the difference between the reduction potential 

values obtained for the first process of 4a and 6a is 370 mV showing a high anodic shift due 

to the substitution of the thiazole ring by a stronger acceptor group (Figure 3). Moreover, the 

reduction potential of the second process of the reduction reflects also the effect of the 

electronic nature of the R2 group substituted on the thiazole heterocycle. 

 

<Figure 3> 

 

The substitution of a thiazole heterocycle (4a) by a benzothiazole acceptor group (7a) on the 

diazene system  results in a decrease of the reduction potential while increasing the oxidation 



potential suggesting a stronger electron-accepting ability of compound 7a compared to 4a. 

These results are in agreement with the 
1
H NMR analysis that showed increased densities for 

azo dye 4a and decreased density for compound 7a. 

 

On the other hand, comparison of compounds 6a and 12c bearing the same acceptor moiety 

(5-formyl-thiazol-2-yl-diazene) but different heterocyclic -spacers, showed that the 

thienylpyrrole system (12c) has a greater donor ability compared to the bithienyl group which 

results in a decrease of the oxidation potential from 0.98 to 0.76 V. At the same time it was 

also observed a cathodic shift of the reduction potential (e.g. 6a 
1
Epc = - 1.23 V and 12c 

1
Epc = 

- 0.98 V) for compound 6a. These results are also in agreement with the reactivity and the 
1
H 

NMR analysis which showed increasing electronic densities for the thienylpyrrole protons 

compared to the bithienyl protons. 

 

At this moment another comparison can also be made between bithienyl azo dye 6a and 

thienylpirrolyl azo dye 12c. Here, the substitution of the bithiophene system (6a) by the 

thienylpyrrole spacer (12c) maintaining the same acceptor 5-formyl-thiazol-2-yl-diazene 

group results in a cathodic shift of the reduction potential (e.g. 6a 
1
Epc = - 1.23 V and 12c 

1
Epc 

= - 0.98 V) for compound 6a. Comparison of the reduction potentials between compound 12c 

and thienylpyrrole thiazolyldiazene 12a [3d] reported earlier by us, showed that the increase 

of the acceptor electronic ability of the formyl group substituted on the thiazole heterocycle 

leads also to a reduction of the potential of compound 12c, Epc derivatives dyes 4a and 6a. 

For azo dyes 4d and 4e it was also observed that the functionalization of the 5-N,N-

dialkylaminobithiophenes at 4 position by the diazenethiazolyl group destabilizes the -

conjugated system, probably due to a decrease in the planarity of the structures, leading to the 

irreversibility of the second reduction.  

On the basis of these potentials values, we estimated the HOMO and LUMO energy levels 

from the potentials of the anodic and cathodic processes [16-17]. The resulting HOMO energy 

levels of compounds 4-7 were located within a reasonable range of 4.70 - 5.37 eV, with 

variations that reflect different amounts of intramolecular charge transfer (ICT) resulting from 

the presence of the electron donors with different electro-donating abilities [18-19]. The 

LUMO energy levels of compounds 4-7 were located within a reasonable range of 2.65 – 3.53 

eV and were significantly greater than those of aryldiazene thienylpyrroles [3a, 20]. In 

addition, the electrochemical band gaps of 4-7 were estimated from the difference between the 



potentials values for oxidation and reduction [12, 21-22]. The corresponding values were in 

the range of 1.85-2.06 eV slightly larger than their respective optical band gaps. 

 

2.3. Optical properties 

 

Bithiophene 4-7 and thienylpyrrole 12c azo dyes showed good solubility in common polar and 

non-polar organic solvents such as dioxane, diethyl ether, ethanol and DMSO. The extinction 

coefficients (ε) in dioxane and wavelength maxima max of compounds 4-7 and 12c in four 

solvents, are summarized in Table 4 and were compared with the π* values for each solvent, 

as determined by Kamlet and Taft [23].
  

  

<Table 4> 

 

All chromophores exhibit broad and intense CT absorptions in the region of 477 - 539 nm in 

dioxane. The 5-alkoxy-2,2´-bithiophene azo dyes 4b and 5b exhibited a red-shifted λmax (36-

41 nm) relative to unsubstituted  derivatives 4a and 5a due to the stronger donor strength of 

alkoxy groups (Figure 4).  

 

<Figure 4> 

 

The thienylpyrrole azo dye 12c also exhibits a red-shift of λmax by 24 nm compared to the 

bithiophene derivative 6a due to the stronger auxiliary donor effect of the thienylpyrrole 

spacer (Figure 5).  

 

<Figure 5> 

 

It was also observed that the donor ability of the methyl group on the thiazole ring has a 

smaller impact on the UV-vis spectra of compounds 5a-c. On the other hand, the acceptor 

electronic strength of the formyl group substituted on the thiazole heterocycle has a significant 

effect on the electronic absorption property of thiazolyl azo dye 6a. Thiazole being an 

electron-deficient five-membered heteroaromatic ring, will exhibit an auxiliary acceptor effect 

when linked to withdrawing groups [8,11a]. Therefore, azo dye 6a exhibited a distinctively 

red-shifted λmax (38 nm) with respect to the unsubstituted derivative 4a.  Due to the electron 

density deficiency on the ring C atoms, the benzothiazole heterocycle acts also as an electron-



withdrawing group [11a]. Moreover, due to a larger electronic delocalization, benzothiazole 

azo dye 7a exhibits a bathochromic shift of 16 nm compared to thiazole azo dye 4a (Figure 6). 

 

<Figure 6> 

 

On the other hand thiazole, due to its electronic nature, counteracts the electron-donating 

effect of the methyl group, resulting in a smaller bathochromic shift of λmax (6-9 nm) for 

compounds 5a-c compared to thiazolyl azo dyes 4a-c.These results agree with the general 

trend of band gap estimations based on the redox properties (Table 3), displaying increased 

band gaps for azo dyes 4a and 5a and decreased band gaps for compounds 4b-c, 5b and 6a 

functionalized with stronger donor and acceptor groups on the bithiophene and thiazole 

moieties respectively.  

Heterocyclic azo dyes tend to display a larger solvatochromic effect than azobenzene dyes due 

to stronger polarization of their electronic system, especially in the excited state. Similar 

solvatochromic behavior was reported for other azo dyes containing thiophene, pyrrole and 

(benzo)thiazole fragments [2a, 2f, 2j, 3a-b, 3d, 4a-c]. 

All thiazole 4-6, 12c and benzothiazole 7a azo dyes exhibited a large positive 

solvatochromism (Δυmax = 814-1619 cm
-1

) from diethyl ether to DMSO, an effect typically 

associated with good optical nonlinearities (Table 4, Figure 7) [24].
 
In comparison, 5-N,N-

dialkylamino-2,2´-bithienyl azo dyes 4d-e substituted by the thiazolyldiazene moiety on the 4-

position of the bithiophene spacer have a smaller Δυmax (757-814 cm
-1

) than their bithiophene 

and 5-alkoxy-2,2´-bithiophene 4b analogues Δλmax (1079-1619 cm
-1

) suggesting larger β 

values for the latter more planar chromophores.  

 

<Figure 7> 

 

The molecular first hyperpolarizabilities  of novel heterocyclic diazenes 5-7, 12c and the 

arylation products 14 and 15a were measured by hyper-Rayleigh scattering (HRS) method
 

[25]
 
using the 1064 nm fundamental wavelength of a q-switched Nd:YAG laser. Dioxane was 

used as the solvent, and the   values were measured against a reference solution of p-

nitroaniline (pNA) [26] in order to obtain quantitative values, while care was taken to 

properly account for possible fluorescence of the dyes (see experimental section for more 

details). The static hyperpolarisability 0 values [27] were calculated using a very simple two-



level model neglecting damping. They are therefore only indicative and should be treated with 

caution (Table 5).  

<Table 5> 

 

From Table 5 it can be seen that the  values for azo dyes 4a-c bearing the thiazolyldiazene 

group linked at the 5´-position of the bithiophene system exhibit higher first 

hyperpolarizabilities ( = 172 – 307x10
-30

 esu) as compared to their 5-N,N-dialkykamino-

birhiophene counterparts 4d-e ( = 133 - 148x10
-30

 esu). The results obtained showed that, 

the substitution of the diazophenyl group on the 4-position on the bithiophene moiety 

functionalized with N,N-dialkylamino groups on the 5-position (stronger donor groups 

compared to alkoxy) produced smaller values of the first molecular hyperpolarizability   than 

the 5-alkoxy-2,2´-bithiophene azo dyes having the same diazophenyl groups substituted in the 

5´-position of the bithiophene moiety (e.g. 4c, R1 = EtO,  = 307x10
-30

 esu and 4d, R1 = NEt2, 

 = 148x10
-30

). This might be indicative of a reduction in the effective conjugation due to 

steric effects, due perhaps to the N,N-dialkylamino- groups on the series 4d-e molecules not 

being coplanar with the rest of the molecule, thereby limiting the conjugation that can be 

achieved [28].  

At this stage, a comparison can also be made between the nonlinear optical data of the new 5´-

N,N-dialkylamino-2,2´-bithiophene chromophores 4d-e bearing a thiazolyldiazene moiety  

with similar azo dyes functionalized with an aryldiazene group at 4-position of the  5-N,N-

dialkylamino-2,2´bithiophene system (9d, 10e) (Figure 1). Earlier, we reported the synthesis, 

solvatochromic and electrochemical properties of these 5-N,N-dialkylamino-bithienyl-

aryldiazenes [4c]. The first hyperpolarizabilities , of these compounds were now also 

measured. The results obtained suggest that the electron-deficient thiazole heterocycle has a 

larger acceptor strength than the phenyl ring, even when it is substituted by a strong acceptor 

group such as cyano, as the  value of the thiazolyldiazenes 4d-e ( = 133-148x10
-30

 esu) are 

larger than the corresponding values for phenyldiazenes 9d and  10e ( = 101-125x10
-30

 esu). 

Most of this effect appears to be due to the red shift of the absorption maxima and a 

subsequent enhancement of the nonlinear response as the generated second harmonic light 

approaches the charge transfer transition energy.  

From Table 5 it is apparent as well that the increase of the donor strength of the of the 

substituent on 5´-position of the bithiophene system (dyes 4a-c) also resulted in a significant 

resonant enhancement, with enhanced  values accompanied by a red-shifted absorption 



maxima (e.g. 4a, R = H,  λmax 477 nm,  = 172x10
-30

 esu;  4c, R = EtO,  λmax 513 nm,  = 

307x10
-30 

esu.  

Also noteworthy is the effect of the electronic nature of the group that substitutes the thiazole 

ring at 5-position. It was observed that, the increase of the acceptor strength of the CHO group 

(6a) compared to H (4a), results both in red-shifted absorption maxima and a resonance 

enhanced  value for bithiophene azo dye 6a ( = 286x10
-30 

esu). A similar effect was 

observed for thienylpyrrole azo dyes 12a and 12c. Therefore compound 12c having a stronger 

acceptor moiety exhibits a higher beta value (610x10
-30 

esu) for incident light at 1064 nm as 

compared to the unsubstituted derivative 12a (164x10
-30 

esu) [3d].   Due to the deficiency of 

electron density on the ring C atoms, the thiazole heterocycle acts as electron-withdrawing 

group and also as an auxiliary acceptor leading to an increase in molecular hyperpolarizability 

[8, 9a, 11a]. Conversely, the methyl group linked to 5-position of the thiazole ring 5a counters 

the withdrawing effect  of the thiazole ring leading to  lower beta value for 5a ( = 166x10
-30 

esu). 

Comparison of the  values for thienylpyrrole azo dye 12c with bithiophene azo dye 6a 

showed also that the substitution of a bithiophene spacer by a thienylpyrrole heterocyclic 

bridge enhances the first order hyperpolarizability from 286x10
-30

 to 610x10
-30

 esu at 1064 

nm probably due to the stronger auxiliary donor effect of the pyrrole heterocycle compared to 

the thiophene ring [15, 29]. These results are in agreement with the redox and the NMR 

studies described above. 

Benzothiazole azo dye 7a exhibits a larger  value (207x10
-30

) compared to the corresponding 

thiazole chromophore 4a probably due a greater electronic delocalization. In the probable 

resonance structures, the distance between the charges in 7a being longer compared to 4a, the 

electric moment of the first diazene must be greater, increasing the value of the molecular 

hyperpolarizability.  

 

The study of the first order hyperpolarizability β for the arylation product 15a without the 

N=N bridge exhibits a much lower λmax (396 nm) and beta values (67x10
-30

 esu) when 

compared to the corresponding azo dye 6a (λmax= 515 nm,  = 286x10
-30

 esu). 

 

For optoelectronic applications, the thermal stability of organic materials is critical for device 

stability. Therefore, the thermal properties of the chromophores 4-7 and 12c were investigated 

by thermogravimetric analysis under a nitrogen atmosphere, measured at a heating rate of 20 



ºC min
–1 

(Table 1). All the chromophores are thermally stable with decomposition 

temperatures varying from 200 to 283 ºC. For the thiazolyl-diazenes 4-6 the electronic nature 

of the group substituted on the 5-position of the thiazole ring does seem to have some impact 

on the thermal stability of the compounds. The 5-methyl-thiazolyldiazenes 5a-c, are the most 

stable showing higher decomposition temperatures (Figure 8). 

Benzothiazole azo dye 7a exhibits also an improved stability by ca 83 ºC compared to the 

corresponding thiazole derivative 4a. 

 

<Figure 8> 

 

 

3. Conclusions 

 

In conclusion we have synthesized and characterized several novel bithiophene and 

thienylpyrrole azo dyes bearing thiazole or benzothiazole acceptor groups linked to the 

diazene group through position 2 of the thiazole moiety. 

By varying the heterocyclic spacer (bithiophene or thienylpyrrole), the electronic nature of the 

donor and acceptor groups linked to the bithiophene and thiazole moieties respectively, or the 

position of substitution of the thiazolyldiazene acceptor moiety on the bithiophene system, the 

thermal and the electrochemical properties as well as the optical (linear and nonlinear) 

properties of push-pull -conjugated systems can be tuned. More interesting redox properties 

and the largest first hyperpolarizabilities were observed for thienylpyrrole azo dye 12c and 

bithiophene azo dyes 4b-c, 5b and 6a functionalized with donor alkoxy groups in 5´-position 

of the bithiophene spacer and formyl acceptor group substituted in the 5 position of the 

thiazole heterocycle. Due to their good first order hyperpolarizability and redox properties 

together with their good thermal stability these compounds are attractive novel heterocyclic 

NLO-chromophores. 

 

4. Experimental 

 

4.1. Materials 

2-Aminothiazole, 2-amino-5-methylthiazole, 2-amino-5-formylthiazole and 2-

aminobenzothiazole were used as precursors for the synthesis of aryldiazonium salts 2-3 and 

2,2-bithiophene 1a were purchased from Aldrich and Fluka and used as received. 



The synthesis of bithiophenes 1b-e [5] and thienylpyrrole 11 [6] has been described 

elsewhere. TLC analyses were carried out on 0.25 mm thick precoated silica plates (Merck 

Fertigplatten Kieselgel 60F254) and spots were visualised under UV light. Chromatography on 

silica gel was carried out on Merck Kieselgel (230-240 mesh). 

 

4.2. Synthesis 

 

4.2.1. General procedure for the azo coupling of bithiophenes 1a-e and thienylpyrrole 11 

with thiazolyl- 2a-c and benzothiazolyl- 3 diazonium salts to afford azo dyes 4a-e, 5a-c, 

6a, 7a and 12c 

 

4.2.1.1. Diazotation of 2-aminothiazole, 2-amino-5-methylthiazole, 2-amino-5-

formylthiazole and 2-aminobenzothiazole 

Heteroaromatic amines (1.0 mmol) were dissolved in HCl 6N (1 mL) at 0-5 ºC. A mixture of 

NaNO2 (1.0 mmol) in water (2 mL) was slowly added to the well-stirred mixture of the 

thiazole solution at 0-5 ºC. The reaction mixture was stirred for 10 min. 

 

4.2.1.2. Coupling reaction with bithiophenes 1 and thienylpyrrole 11  

The diazonium salt solution previously prepared (1.0 mmol) was added dropwise to the 

solution of bithiophenes 1 or thienylpyrrole 11 (0.52 mmol) in acetonitrile (10 mL) and 2-3 

drops of acetic acid. The combined solution was maintained at 0 ºC for 1 to 2 h while stirred 

and then diluted with chloroform (20 mL), washed with water and dried with anhydrous 

MgSO4. The dried solution was evaporated and the remaining azo dyes purified by column 

chromatography on silica with dichoromethane/n-hexane as eluent. 

 

2-(Thiazol-2-yl)-1-(5-(thiophen-2-yl)thiophen-2-yl)diazene (4a).  

Dark pink solid (23%). Mp 130-131 ºC. 
1
H NMR (CDCl3) δ 7.10 (dd,1H, J=5.0 and J=3.8 Hz, 

4’’-H), 7.31 (d,1H, J=4.0 Hz, 3’-H), 7.32 (d, 1H,  J=3.6 Hz, 5-H), 7.39 (dd, 1H, J=4.8 and 1.0 

Hz, 5’’-H), 7.42 (dd, 1H, J=3.8 and 1.0 Hz, 3’’-H), 7.81 (d, 1H,  J =4.0 Hz, 4’-H), 7.98 (d, 

1H, J=3.6 Hz, 4-H), 
13

C NMR (CDCl3) δ 120.7, 124.5, 126.5, 127.6, 128.5, 136.4, 136.8, 

143.7, 144.6, 156.5, 176.4. λmax(Dioxane)/nm 477 (ε/dm
3
 mol

-1
 cm

-1 
30,240). IR (Liquid 

film): ν 3105, 1640, 1503, 1483, 1450, 1406, 1305, 1244, 1222, 1212, 1136, 1044, 878, 846, 

801, 753 cm
-1

. MS (ESI) m/z (%) = 278 ([M+H]
+
, 20). HMRS: m/z (ESI) for C11H7N3S3; 

calcd 277.9875; found: 277.9876. 



 

1-(5-(5-Methoxythiophen-2-yl)thiophen-2-yl)-2-(thiazol-2-yl)diazene (4b). 

Dark pink solid (36%). Mp 147-149 ºC. 
1
H NMR (CDCl3) δ 3.97 (s, 3H, OCH3), 6.23 (d,1H, 

J= 4.2 Hz, 4’’-H), 7.12 (d,1H, J=4.2 Hz, 3’’-H), 7.14 (d, 1H,  J=4 Hz, 3’-H), 7.34 (d, 1H, 

J=3.6 Hz, 5-H), 7.75 (d, 1H, J=4 Hz, 4’-H), 7.95 (d, 1H,  J=3.6 Hz, 4-H). 
13

C NMR (CDCl3) 

δ 60.5, 105.6, 120.2, 122.8, 123.2, 125.5, 136.7, 143.7, 145.9, 155.2, 168.7, 176.7. 

λmax(Dioxane)/nm  518 (ε/dm
3
 mol

-1
 cm

-1 
28,980). IR (Liquid film): ν 3163, 2033, 1552, 1514, 

1377, 1350, 1305, 1268, 1226, 1169, 1152, 1066, 1049, 971, 892, 874, 772 cm
-1

. MS (ESI) 

m/z (%) = 308 ([M+H]
+
, 100). HMRS: m/z (ESI) for C12H10N3OS3; calcd; 307.9983 found: 

307.9980. 

 

1-(5-(5-Ethoxythiophen-2-yl)thiophen-2-yl)-2-(thiazol-2-yl)diazene (4c). 

Dark pink solid (11%). Mp 128-130 ºC. 
1
H NMR (CDCl3) δ 1.47 (t, 3H, J=7.2 Hz, CH3), 4.47 

(q, 2H, J=7.2 Hz, CH2),  6.21 (d,1H, J=4.2 Hz, 4’’-H), 7.11 (d,1H, J=4.2 Hz, 3’’-H), 7.13 (d, 

1H,  J=3.8 Hz, 3’-H), 7.33 (d, 1H, J=3.8  Hz, 4’-H), 7.75 (d, 1H, J=3.6 Hz, 5-H), 7.95 (d, 1H,  

J = 3.6 Hz, 4-H). 
13

C NMR (CDCl3) δ 14.6, 69.8, 106.4, 120.2, 122.7, 123.1, 125.5, 136.7, 

143.7, 146.1, 155.1, 167.8, 176.7. λmax(Dioxane)/nm  513 (ε/dm
3
 mol

-1
 cm

-1 
33,690). IR 

(Liquid film): ν 3243, 2980, 1721, 1547, 1506, 1485, 1465, 1445, 1414, 1389, 1344, 1311, 

1275, 1228, 1209, 1139, 1108, 1060, 1027, 992, 876 cm
-1

. MS (ESI) m/z (%) = 322 ([M+H]
+
, 

100), 295 (34), 224 (5). HMRS: m/z (ESI) for C13H12N3S3; calcd 322.0137; found: 322.0137. 

 

5-N,N-Diethylamino-4-(thiazol-2-yl-azo)-2,2’-bithiophene (4d). 

Pink oil (80%). 
1
H NMR (CDCl3) δ 1.39 (t, 6H, J=7.2 Hz, 2xCH3), 3.82 (q, 4H, J=7.2 Hz, 

2xCH2), 7.00-7.04 (m,1H, 4’’-H), 7.03 (d,1H, J=3.6 Hz, 5-H), 7.03-7.04 (m, 1H, 3’’-H), 7.20 

(dd, 1H, J=5.2 and 1.2  Hz, 5’’-H), 7.59 (s, 1H, 3’-H), 7.75 (d, 1H,  J=3.6 Hz, 4-H). 
13

C NMR 

(CDCl3) δ 12.1, 50.6, 109.6, 113.7, 116.1, 121.9, 123.4, 124.7, 127.7, 136.4, 136.8, 141.9, 

143.7, 161.2, 180.1. λmax(Dioxane)/nm  514 (ε/dm
3
 mol

-1
 cm

-1 
19,970). IR (Liquid film): ν 

3449, 3075, 2975, 2931, 1538, 1492, 1464, 1435, 1359, 1332, 1291, 1263, 1216, 1173, 1150, 

1138, 1075, 1015, 878, 833, 818, 784, 749, 700, 622 cm
-1

. MS (ESI) m/z (%) = 349 ([M+H]
+
, 

100), 295 (9), 249 (4), 223 (10). HMRS: m/z (ESI) for C15H17N4S3; calcd 349.0609; found: 

349.0610. 

 

5-Piperidino-4-(thiazol-2-yl-azo)-2,2’-bithiophene (4e). 



Dark pink solid (10%). Mp 151-152 ºC 
1
H NMR (CDCl3) δ 1.80-1.85 (m, 6H, 3xCH2), 3.95-

3.98 (m, 4H, 2xNCH2),  6.99 (dd,1H, J=5.2 and 3.6 Hz, 4’’-H), 7.04-7.05 (m, 2H,  5 and 3’’-

H), 7.22 (dd, 1H, J=5.2 and 1.2 Hz, 5’’-H), 7.57 (s, 1H, 3’-H), 7.77 (d, 1H,  J=3.6 Hz, 4-H). 

13
C NMR (CDCl3) δ 23.9, 25.7, 54.4, 113.8, 116.3, 122.3, 123.5, 124.8, 127.7, 136.9, 137.3, 

142.0, 162.6, 179.9 λmax(Dioxane)/nm  520 (ε/dm
3
 mol

-1
 cm

-1
 23,120). IR (Liquid film): ν 

3082, 2917, 2849, 2362, 1535, 1507, 1491, 1462, 1438, 1388, 1336, 1292, 1245, 1221, 1174, 

1145, 1017, 998, 910, 877, 857, 832, 819, 754, 718, 701, 663, 622 cm
-1

. MS (ESI) m/z (%) = 

361 ([M+H]
+
, 100). HMRS: m/z (ESI) for C16H16N4S3; calcd 360.0537; found: 361.0610. 

 

2-(5-Methylthiazol-2-yl)-1-(5-(thiophen-2-yl)thiophen-2-yl)diazene (5a). 

The first compound eluted from the column chromatography was diazene 5a as a pink solid 

(10%). Mp 166-167 ºC. 
1
H NMR (CDCl3) δ 2.53 (d, 3H, J=1.2 Hz, CH3), 7.09 (dd, 1H, J=5.2  

and 3.6 Hz, 4’’-H), 7.29 (d, 1H,  J=4Hz, 3’-H), 7.37 (dd,1H, J=5.2 and 1.2 Hz, 5’’-H), 7.39 

(dd, 1H, J=3.6 and 1.2 Hz, 3’’-H), 7.66 (d, 1H, J=1.2  Hz, 4-H), 7.75 (d, 1H, J=4  Hz, 4’-H). 

13
C NMR (CDCl3) δ 30.9, 124.3, 126.2, 127.2, 128.5, 135.4, 136.7, 136.9, 142.1, 143.7, 

156.7, 174.4. λmax(Dioxane)/nm  483 (ε/dm
3
 mol

-1
 cm

-1
 33,060). IR (Liquid film): 3062, 2358, 

1500, 1447, 1427, 1335, 1213, 1129, 1041, 842, 791 cm
-1

. Anal. Calcd. for C12H9N3S3 

(291,42): C, 48.60; H, 3.29; N, 14.16; S, 32.96 %; found C, 48.88; H, 3.53; N, 14.41; S, 32.94 

%.  

The second compound eluted was the diazene 14 as a dark pink solid (17%). Mp 211-213 ºC. 

1
H NMR (CDCl3) δ 2.58 (d, 3H, J=0.6 Hz, CH3), 2.60 (d, 3H, J=0.6 Hz, CH3), 7.10 (dd, 1H, 

J=5.2  and 3.6 Hz, 4’’-H), 7.41 (dd,1H, J=5.2 and 1.2 Hz, 5’’-H),  7.44 (dd, 1H, J=3.6 and 1.2 

Hz, 3’’-H), 7.64 (d, 1H,  J=1.2 Hz, 4-H or 4’-H), 7.70 (d, 1H,  J=1.2 Hz, 4’-H or 4-H), 7.96 

(br s, 1H, 3’’-H). 
13

C NMR (CDCl3) δ 12.20, 13.14, 123.45, 126.78, 127.87, 128.48, 136.63, 

137.81, 139.43, 140.55, 157.87, 174.95. λmax(Dioxane)/nm 533 (ε/dm
3
 mol

-1
 cm

-1 
46,230). IR 

(Liquid film): 2921, 2851, 1501, 1456, 1416, 1320, 1284, 1221, 1158, 1132, 1063, 900 cm
-1

. 

MS (ESI) m/z (%) = 389 ([M+1]
+
, 100), 381 (5), 295 (10). HMRS: m/z (ESI) for C16H12N4S4; 

calcd 389.0018; found: 389.0019. 

 

1-(5-(5-Methoxythiophen-2-yl)thiophen-2-yl)-2-(5-methylthiazol-2-yl)diazene (5b).  

Dark pink solid (42%). Mp 265-266 ºC. 
1
H NMR (CDCl3) δ 2.53 (d, 3H, J=1.2 Hz, CH3), 

3.96 (s, 3H, OCH3), 6.21 (d, 1H, J= 4.4 Hz, 4’’-H), 7.10 (d, 1H, J=4.4 Hz, 3’-H), 7.11 (d, 1H, 

J=4.4 Hz, 3’’-H), 7.64 (d, 1H, J=1.2 Hz, 4-H), 7.70 (d, 1H, J=4.4 Hz, 4’-H). 
13

C NMR 

(CDCl3) δ 12.9, 60.4, 105.6, 122.7, 123.3, 125.2, 135.9, 136.1, 141.7, 145.3, 155.5, 168.5, 



174.6. λmax(Dioxane)/nm  519 (ε/dm
3
 mol

-1
 cm

-1 
36,130). IR (Liquid film): 3579, 3085, 2933, 

2897, 1513, 1480, 1451, 1432, 1317, 1226, 1135, 1065, 1049, 972, 859, 788, 764 cm
-1

. MS 

(EI) m/z (%) = 321 ([M]
+
, 10), 278 (25), 246 (27), 221 (41), 209 (17), 195 (100), 168 (29), 

152 (16), 141 (15), 122 (13), 71 (14). HMRS: m/z (EI) for C13H11N3OS3; calcd 321.0064; 

found: 321.0068. 

 

1-(5-(5-Ethoxythiophen-2-yl)thiophen-2-yl)-2-(5-methylthiazol-2-yl)diazene (5c). 

Dark pink solid (9%). Mp 146-147 ºC. 
1
H NMR (CDCl3) δ 1.46 (d, 3H, J=0.8 Hz, CH3), 2.52 

(t, 3H, J=7.2 Hz, OCH2CH3), 4.16 (q, 2H, J=7.2 Hz, OCH2CH3), 6.20  (d, 1H, J=4 Hz,  4’’-

H), 7.09 (d, 1H, J=4 Hz, 3’’-H), 7.10 (d, 1H, J=4.2 Hz, 3’-H), 7.63 (d, 1H, J=0.8 Hz, 4-H), 

7.70 (d, 1H, J= 4.2 Hz, 4’-H). 
13

C NMR (CDCl3) δ 12.9, 14.6, 69.8, 106.4, 122.6, 123.2, 

125.3, 135.9, 136.1, 141.7, 145.4, 155.4, 167.6, 174.6. λmax(Dioxane)/nm  522 (ε/dm
3
 mol

-1
 

cm
-1 

29,600). IR (Liquid film): 3148, 2925, 1552, 1519, 1509, 1476, 1463, 1429, 1394, 1361, 

1336, 1315, 1284, 1266, 1253, 1224, 1210, 1170, 1164, 1047, 1024, 887, 834, 799, 780, 768, 

748 cm
-1

. MS (EI) m/z (%) = 335 ([M]
+
, 10), 278 (26), 250 (14), 246 (29), 225 (21), 223 (10), 

196 (100), 168 (25), 140 (21), 71 (15) . HMRS: m/z (EI) for C14H13N3OS3; calcd 335.0022; 

found: 335.0022. 

 

2-(5-Formylthiazol-2-yl)-1-(5-(thiophen-2-yl)thiophen-2-yl)diazene (6a). 

The first compound eluted from the column chromatography was the 5-(thiazol-2-yl)-2,2´-

bithiophene 15a as an yellow solid (3%). MP 183-184 ºC. 
1
H NMR (CDCl3) δ 7.08 (dd, 1H, 

J=5.2 and 3,8 Hz, 4’’-H), 7.20 (d, 1H, J=3.9 Hz, 3’-H), 7.32-7.35 (m, 2H, 3’’-H and 5’’-H), 

7.60 (d, 1H, J=3.9 Hz, 4’-H), 8.34 (s, 1H, 4-H), 10.02 (s, 1H, CHO). λmax(Dioxane)/nm  396 

(ε/dm
3
 mol

-1
 cm

-1 
11,190). IR (Liquid film): 2925, 2811, 1667, 1517, 1499, 1424, 1412, 1359, 

1275, 1219, 1153, 1067, 1050, 914, 882, 867, 845, 792, 716 cm
-1

. MS (ESI) m/z (%) = 300 

([M+Na]
+
, 10). 

The second compound eluted from the column chromatography was the diazene 6a as a dark 

pink solid (15%). MP 210-211 ºC. 
1
H NMR (CDCl3) δ 7.13  (dd, 1H, J=5.2 and 3,8 Hz,  4’’-

H), 7.41 (d, 1H, J=4.4 Hz, 3’-H), 7.47 (dd, 1H, J=5.2 and 0.8 Hz, 5’’-H), 7.50 (dd, 1H, J= 3.8 

and 0.8 Hz, 3’’-H), 7.94 (d, 1H, J=4.4 Hz, 4’-H), 8.52 (s, 1H, 4-H), 10.05 (s, 1H, CHO). 
13

C 

NMR (CDCl3) δ 125.4, 127.6, 128.9, 136.6, 138.3, 139.4, 147.9, 151.7, 156.3, 181.3, 182.8. 

λmax(Dioxane)/nm  515 (ε/dm
3
 mol

-1
 cm

-1 
30,610). IR (Liquid film): 3058, 2842, 1658, 1504, 

1449, 1417, 1316, 1279, 1262, 1141, 1058, 893, 873, 850, 814, 723, 643 cm
-1

. MS 

(microTOF) m/z (%) = 305 ([M]
+
, 14), 277 (33), 194 (18), 181 (82), 179 (28), 165 (16), 146 



(21), 128 (58), 127 (100), 121 (68). HMRS: m/z (MicroTOF) for C12H7N3OS3; calcd 

304.9751; found: 304.9760.  

 

2-(Benzo[d]thiazol-2-yl)-1-(5-(thiophen-2-yl)thiophen-2-yl)diazene (7a). 

Pink solid (9%). Mp 274-275 ºC. 
1
H NMR (CDCl3) δ 7.12 (dd, 1H, J=4.8 and 3.6 Hz,  4’’-H), 

7.37 (d, 1H, J=4.4 Hz, 3’-H), 7.42-7.47 (m, 3H, 5-H, 3’’-H and 5’’-H), 7.52 (dt, 1H, J=7.2 

and 1.4 Hz, 6-H), 7.87 (dd, 1H, J=7.8 and 1.4 Hz, 4-H), 7.91 (d, 1H, J=4.4  Hz, 4’-H), 8.13 

(dd, 1H, J=7.8 and J= 1.4  Hz, 7-H). 
13

C NMR (CDCl3) δ 122.1, 124.6, 124.9, 126.6, 126.9, 

127.1, 128.0, 128.7, 134.5, 136.7, 137.7, 146.1, 152.9, 156.5, 174.9. λmax(Dioxane)/nm  493 

(ε/dm
3
 mol

-1
 cm

-1 
27,990). IR (Liquid film): 3430, 3077, 1503, 1482, 1448, 1430, 1359, 1334, 

1251, 1224, 1183, 1153, 1046, 848, 802, 722, 692 cm
-1

. MS (ESI) m/z (%) = 328 ([M+H]
+
, 

100), 313 (5), 299 (9), 296 (7), 295 (42). HMRS: m/z (ESI) for C15H10N3S3; calcd 328.0032; 

found: 328.0031. 

 

1-(1-(4-Methoxyphenyl)-5-(thiophen-2-yl)-1H-pyrrol-2-yl)-2-(5-formylthiazol-2-

yl)diazene (12c). 

Dark pink solid (98 mg, 61%). Mp 151-153 ºC. 
1
H NMR (CDCl3) δ 3.96  (s, 3H, OCH3), 7.00 

(d, 1H,  J=4.6 Hz,  4’-H), 7.01-7.02 (m, 1H, 4’’-H), 7.06 (d, 2H, J=8.8 Hz, 3’’’ and 5’’’-H), 

7.14 (dd, H, J=4.0 and 0.8 Hz, 3’’-H), 7.28 (d, 2H, J=8.8 Hz, 2’’’and 6’’’-H), 7.38 (dd, 1H, 

J=5.2 and 0.8 Hz, 5’’-H), 7.44 (d, 1H, J=4.4 Hz, 3’-H), 8.35 (s, 1H, 4-H), 9.89 (s, 1H, CHO). 

13
C NMR (CDCl3) δ 55.6, 109.2, 114.6, 115.9, 116.2, 116.4, 116.6, 128.0, 128.6, 129.0, 

129.7, 131.1, 132.1, 135.6, 142.4, 151.3, 160.7, 182.6, 184.4 λmax(Dioxane)/nm 539 (ε/dm
3
 

mol
-1

 cm
-1 

30,610). IR (Liquid film): 3102, 3076, 3009, 2933, 2837, 2742, 1888, 1662, 1608, 

1587, 1511, 1471, 1442, 1420, 1393, 1378, 1337, 1308, 1276, 1250, 1233, 1204, 1186, 1149, 

1089, 1047, 1019, 998 cm
-1

. MS (ESI) m/z (%) = 395 ([M+H]
+
, 21),268 (5), 256 (11), 255 

(19), 254 (100), 239 (4), 211 (4),.HMRS: m/z (ESI) for C19H15N4O2S2; calcd 395.0631; 

found: 395.0629. 

 

4.3. Instruments 

NMR spectra were obtained using a Varian Unity Plus Spectrometer at an operating frequency 

of 300 MHz for 
1
H NMR and 75.4 MHz for 

13
C NMR or a Bruker Avance III 400 at an 

operating frequency of 400 MHz for 
1
H NMR and 100.6 MHz for 

13
C NMR using the solvent 

peak as internal reference at 25 ºC. All chemical shifts are given in ppm using δH Me4Si = 0 

ppm as reference and J values are given in Hz. Assignments were made by comparison of 



chemical shifts, peak multiplicities and J values and were supported by spin decoupling-

double resonance and bidimensional heteronuclear HMBC and HMQC correlation techniques. 

IR spectra were determined on a BOMEM MB 104 spectrophotometer using KBr discs. UV-

visible absorption spectra (200 – 800 nm) were obtained using a Shimadzu UV/2501PC 

spectrophotometer. Mass spectrometry analyses were performed at the “C.A.C.T.I. -Unidad de 

Espectrometria de Masas” at the University of Vigo, Spain. Electrospray ionization mass 

spectra were recorded using a ThermoFinnigan LCQ Deca XP Plus quadrupole ion trap 

instrument on samples diluted in ethanol/water (1:1 v/v). Thermogravimetric analysis of 

samples was carried out using a TGA instrument model Q500 from TA Instruments, under 

high purity nitrogen supplied at a constant 50 mL min
-1 

flow rate. All samples were subjected 

to a 20 ºC min
–1 

heating rate and were characterized between 25 and 500 ºC. All melting 

points were measured on a Gallenkamp melting point apparatus and are uncorrected. Cyclic 

voltammetry (CV) was performed using a potentiostat/galvanostat (AUTOLAB /PSTAT 12) 

with the low current module ECD from ECO-CHEMIE and the data analysis processed by the 

General Purpose Electrochemical System software package also from ECO-CHEMIE. Three 

electrode-two compartment cells equipped with vitreous carbon-disc working electrodes, a 

platinum-wire secondary electrode and a silver-wire pseudo-reference electrode were 

employed for cyclic voltammetric measurements. The concentration of the compounds were 1 

mmol dm
-3

 and 0.1 mol dm
-3 
NBu4BF4 was used as the supporting electrolyte in dry N,N-

dimethylformamide solvent. The cyclic voltammetry was conducted usually at 0.1 Vs
-1

, or at 

different scan rates (0.02-0.50 Vs
-1

), for investigation of scan rate influence. The potential is 

measured with respect to ferrocinium/ferrocene as an internal standard. 

 

4.4. Optical studies 

4.4.1. Solvatochromic study 

The solvatochromic study was performed using 10
-4

 M solutions of dyes 4-7 and 12c in 

several solvents at room temperature. 

 

4.4.2. Nonlinear optical measurements using the hyper-Rayleigh scattering (HRS) 

method
 
[25]

 

Hyper-Rayleigh scattering (HRS) was used to measure the first hyperpolarizability  of 

response of the molecules studied. The experimental set-up for hyper-Rayleigh measurements 

has been previously described in reference [13] and is similar to the one presented by Clays et 

al. [25] The incident laser beam came from a Q-switched Nd:YAG laser operating at a 10 Hz 



repetition rate with approximately 10 mJ of energy per pulse and a pulse duration (FWHM) 

close to 12 ns at the fundamental wavelength of 1064 nm. The incident beam had a vertical 

polarization was weakly focused (beam diameter ~0.5 mm) into the solution contained in a 5 

cm long cuvette.  The hyper- Rayleigh signal at right angles to the incident beam was 

collimated using a high numerical aperture lens passed through an interference filter centred 

at the second harmonic wavelength (532 nm) before being detected by a photomultiplier 

(Hamamatsu model H9305-04). The current pulse from the photomultiplier was
 
integrated 

using a Stanford Research Systems gated box-car integrator (model SR250) with a 20 ns gate 

centred on the temporal position of the incident laser pulse.  

The hyper-Rayleigh signal was normalized at each pulse using the second harmonic signal 

from a 1 mm quartz plate to compensate for fluctuations in the temporal profile of the laser 

pulses due to longitudinal mode beating.
 
Dioxane was used as a solvent, and the  values 

were calibrated using a reference solution of p-nitroaniline (pNA) [26] also dissolved in 

dioxane at a concentration of 1 x 10
-2

 mol dm
-3

 (external reference method). The 

hyperpolarizability of pNA dissolved in dioxane is known from EFISH measurements [26] 

carried out at the same fundamental wavelength.
 
The concentrations of the solutions under 

study were chosen so that the corresponding hyper-Rayleigh signals fell well within the 

dynamic range of both the photomultiplier and the box-car integrator. All solutions were 

filtered (0.2 m porosity) to avoid spurious signals from suspended impurities. The small 

hyper-Rayleigh signal that arises from dioxane was taken into account and particular care to 

avoid reporting artificially high hyperpolarizibilities due to a possible contamination of the 

hyper-Rayleigh signal by molecular fluorescence near 532 nm using two different interference 

filters with different transmission pass bands centred near the second harmonic at 532 nm (for 

more details consult reference [13]). The polarization of the detected signal was not 

discriminated and the values reported in table 5 assume that the first hyperpolarizability tensor 

is dominated by a single longitudinal element as is common for strong linear charge push-pull 

charge transfer molecules.  
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Captions 

 

Scheme 1. Synthesis of bithienyl diazenes 4-7 trough azo coupling reaction of 2,2´-

bithiophene derivatives 1a-e with thiazolyl 2a-c and benzothiazolyldiazonium 3 salts. 

 

Table 1. Yields and Td data for bithiophene azo dyes 4-7, thienylpyrrole azo dye 12c and 

arylation products 13-15.
a
 

a 
Yield for azo dyes 4-7 and for arylation products 13-15 when 0.5 equiv. of bithiophene and 

1.0 equiv. of thiazolyldiazonium  salt 2a were used. 

b 
Yield for azo dyes 4a-6a and for arylation products 13-15 when 1.0 equiv. of bithiophene 

and 1.0 equiv. of thiazolyldiazonium  salt 2a were used. 

c  
Decomposition temperature (Td) measured at a heating rate of 20 ºC min

–1 
under a nitrogen 

atmosphere, obtained by TGA. 

d  
Compound 4d was obtained as an oil. 

 

Table 2. Chemical shifts of protons of the heterocyclic azo dyes 4-7 and 12c.
a 

a 
Proton NMR measurements carried out in deuterated chloroform at 400 MHz. The 

numbering scheme of protons is shown in Scheme 1 and Figure 2. 

 

Table 3. Electrochemical data for coumpounds 4-7 and 12c. 

a 
Measurements made in dry DMF containing 1.0 mM in each compounds and 0.10 M 

[NBu4][BF4] as base electrolyte at a carbon working electrode with a scan rate of 0.1 V s
-1

. 

All E values are quoted in volts vs the ferrocinium/ferrocene -couple. Epc and Epa correspond 

to the cathodic and anodic peak potentials, respectively; 

b
 ΔE

 
= |Ered - Eox|; 

c 
EHOMO = -(4.39 + Eox) (eV) and ELUMO = -(Ered + 4.39) (eV). 

d 
Calculated form the difference between the onset potentials for oxidation and reduction. 

 

Table 4. Solvatochromic data [max (nm) and Δmax (cm
-1

) of the charge-transfer band] for 

bithiophene and thienylpyrrole azo dyes 4-7 and 12c in 4 solvents with π* values by Kamlet 

and Taft [23]. 

a 
Δυmax = υmax (diethyl ether -υmax (DMSO) / cm

-1
 

 



Table 5. UV-vis absorptions,  and 0 values
 
for the novel azo dyes 4-7, 12c, the arylation 

products 14 and 15a and 5-N,N-dialkylamino-bithienyl-aryldiazenes 9d and 10e [4c] and 

thienylpyrrole-thiazolyldiazene 12a [3d].
a
 

a 
Experimental hyperpolarizabilities and spectroscopic data measured in dioxane solutions.

 

b
 All the compounds are transparent at the 1064 nm fundamental wavelength. 

c
 Data corrected for resonance enhancement at 532 nm using the two-level model with 0 =  

[1-(max/1064)
2
][1-(max/532)

2
]; damping factors not included 1064 nm [27]. 

d 
Value obtained by making measurements at various concentrations and extrapolating to 

infinite dilution in order to correct for the absorption of the generated second harmonic light 

as it propagates through the solution to the detection system.  

 

Figure 1. Structure of 5´-phenylazo-5-alkoxy-2,2´-bithiophenes 8 [4a-b] and 4-phenylazo-5-

N,N-dialkylamino-bithiophenes 9d and 10e [4c]. 

 

Figure 2. Structure of azo dyes 12a [3d] and 12c and arylation products 13-15. 

 

Figure 3. Cyclic voltammograms of compound 4a and 6a in DMF – 0.1 mol dm
-3

 

[NBu4][BF4] at a vitreous carbon electrode, scan rate 0.1Vs
-1

. 

 

Figure 4. UV-visible absorption normalized spectra of compounds 4a and 4b in dioxane at 

room temperature. 

 

Figure 5. UV-visible absorption normalized spectra of compounds 6a and 12c in dioxane at 

room temperature. 

 

Figure 6. UV-visible absorption normalized spectra of compounds 4a, 6a and 7a in dioxane 

at room temperature. 

 

Figure 7. UV-visible absorption normalized spectra of compound 4a in four solvents of 

different polarity (diethylether, dioxane, ethanol and DMSO) at room temperature. 

 

Figure 8. Thermal analysis data for compounds 4c (left) and 5b (right) through TGA recorded 

under a nitrogen atmosphere, measured at a heating rate of 20 
o
C min

-1
. 
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Tables 

 

Table 1 

 

 

 

 

 

Bithiophene/ 

Thienylpyrrole 

Heterocyclic 

azo dye 

R1 R2 Yield
 a

 

(%) 

Td 
c
 

(
o
C) 

1a 4a H H 23, 10
b
 200 

1b 4b MeO H 36 200 

1c 4c EtO H 11 231 

1d 4d NEt2 H 80 
d
 

1e 4e Piperidino H 10 223 

1a 5a H CH3 10, 21
b
 241 

1b 5b MeO CH3 42 274 

1c 5c EtO CH3 9 214 

1a 6a H CHO 15, 4
b
 231 

1a 7a H --- 9 283 

11 12c --- CHO 61 200 

1a 13 H H 5
b
 --- 

1a 14 H CH3 17, 6
 b

 --- 

1a 15a and 15b H CHO 3 (15a), 63
b
 (15a+15b)

 
 --- 



 

Table 2 

 

 

 

Comp. 

 

R1 

 

R2 

 

5-H 

 

4-H 

 

4’-H 

 

3’-H 

 

3’’-H 

 

4’’-H 

 

5’’-H 

 

4a H H 7.32 7.98 7.81 7.31 7.42 7.10 7.39 

4b MeO H 7.34 7.95 7.75 7.14 7.12 6.23 --- 

4c EtO H 7.75 7.95 7.33 7.13 7.11 6.21 -- 

4d NEt2 H 7.03 7.75 --- 7.59 7.03-7.04 7.00-7.04 7.20 

4e Piperidino H 7.04-7.05 7.77 --- 7.57 7.04-7.05 6.99 7.22 

5a H CH3 --- 7.66 7.75 7.29 7.39 7.09 7.37 

5b MeO CH3 --- 7.64 7.70 7.10 7.11 6.21 --- 

5c EtO CH3 --- 7.63 7.70 7.10 7.09 6.20 --- 

6a H CHO  8.52 7.94 7.40 7.50 7.13 7.47 

7a H --- 7.42-7.47 7.87 7.91 7.37 7.42-7.47 7.12 7.42-7.47 

12c --- CHO --- 8.35 7.00 7.44 7.14 7.01-7.02 7.38 

 

 



Table 3 

 

Compound 

Reduction
a
 Oxidation

a
  

-EHOMO
c
 

(eV) 

 

-ELUMO
c 

(eV) 

 

Band gap
d
 

(eV) 
-
1
Epc (V) ΔE

b
 (mV) -

2
Epc (V) ΔE

b
 (mV) 

1
Epa (V) 

4a 1.23 63 2.04 90 0.80 5.19 3.16 2.03 

4b 1.26 63 1.99 95 0.61 5.00 3.13 1.87 

4c 1.26 62 2.07 93 0.59 4.98 3.13 1.85 

4d 1.74 61 2.21 __ 0.32 4.71 2.65 2.06 

4e 1.67 60 2.36 __ 0.31 4.70 2.72 1.98 

5a 1.29 63 2.09 63 0.77 5.16 3.10 2.06 

5b 1.31 54 2.05 100 0.70 5.09 3.08 2.01 

5c 1.61 60 2.13 95 0.64 5.03 2.78 2.25 

6a 0.86 63 1.61 60 0.98 5.37 3.53 1.84 

7a 1.08 54 1.93 85 0.93 5.32 3.31 2.01 

12c 0.98 65 1.69 __ 0.76 5.15 3.41 1.74 



 

Table 4 

 

Azo dye 

 

Diethyl ether 

(0.54) 

λmax (nm) 

Ethanol 

(0.54) 

λmax (nm) 

1,4-Dioxane 

(0.55) 

λmax (nm) 

DMSO 

(1.00) 

λmax (nm) 

Δυmax
a 

 

(cm
-1

) 

  (Dioxane) 

 

(M
-1

cm
-1

) 

4a 
460 483 477 497 

1619 
(30,240) 

4b 
509 525 518 536 

1079 
(28,980) 

4c 
509 524 513 531 

814 
(33,690) 

4d 
504 520 514 524 

754 
(19,970) 

4e 
509 525 520 531 

814 (23,120) 

5a 
468 490 483 501 

1408 (33,060) 

5b 
509 526 519 540 

1127 (36,130) 

5c 
510 526 522 535 

916 (29,600) 

6a 
501 520 515 535 

1268 (30,610) 

7a 
482 500 493 517 

1315 (27,990) 

12c 
534 553 539 565 

1028 (39,720) 

 

 

 



 

Table 5 

Azo dye 
max 

(nm) 

b
 

(10
-30

esu) 

0
c
 

(10
-30

esu) 

4a 477 172 27 ± 3 

4b 518 291 12 ± 1 

4c 513 307 16 ± 1 

4d 514 148 7.5 ± 0.8 

4e 520 133 4.5 ± 0.5 

5a 483 166 23 ± 2 

5b 519 294 11 ± 1 

5c 522 150 4.2 ± 0.4 

6a 515 286 14 ± 1 

7a 493 207 23 ± 2 

9d
 
[4c] 509 101 6.9 ± 0.6 

10e
 
[4c] 510 125 8.2 ± 0.8 

12a [3d] 486 164 21 ± 15 

12c 539 610
d
 12 ± 1 

14 533 71 0.2 ± 0.02 

15a 396 67 26 ± 10 

pNA 352 16.9 [26] 8.5 
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