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a  b  s  t  r  a  c  t

To overcome  the  limitations  of  traditionally  used  autografts,  allografts  and,  to a  lesser
extent,  synthetic  materials,  there  is the  need  to develop  a  new  generation  of  scaffolds  with
adequate mechanical  and  structural  support,  control  of  cell  attachment,  migration,  prolif-
eration  and  differentiation  and  with  bio-resorbable  features.  This  suite  of properties  would
allow the  body  to heal  itself  at the  same  rate  as  implant  degradation.  Genetic  engineering
offers  a route  to this  level  of control  of  biomaterial  systems.  The  possibility  of  expressing
biological  components  in  nature  and  to modify  or  bioengineer  them  further,  offers  a path
towards  multifunctional  biomaterial  systems.  This  includes  opportunities  to generate  new
protein sequences,  new  self-assembling  peptides  or fusions  of  different  bioactive  domains
or protein  motifs.  New  protein  sequences  with  tunable  properties  can  be  generated  that
can be  used  as  new  biomaterials.

In  this  review  we address  some  of  the  most  frequently  used  proteins  for  tissue  engineering
and  biomedical  applications  and  describe  the  techniques  most  commonly  used  to function-
alize protein-based  biomaterials  by  combining  them  with  bioactive  molecules  to enhance

biological  performance.  We  also  highlight  the  use  of genetic  engineering,  for protein  het-
erologous  expression  and the  synthesis  of  new  protein-based  biopolymers,  focusing  the
advantages  of  these  functionalized  biopolymers  when  compared  with  their  counterparts
extracted  directly  from  nature  and  modified  by techniques  such  as physical  adsorption  or
chemical  modification.
© 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Treatment of injured tissues or organs focuses on the use
of autologous and allogenic grafts [1].  However, this prac-
tice has significant limitations for the patient and health
systems worldwide. Autologous grafts cause donor site
morbidity and consequent loss of organ functionality. Allo-
grafts are associated with risk of disease transmission and
require the use of immunosuppressants with associated
side effects [2–4]. In the field of orthopaedic implants,
autologous and allogenic grafts account for 90% of the grafts
currently used, with synthetic materials (metals, polymers,
ceramics and composite systems) used in 10% of surgery
cases [3,5,6].  In the three types of grafts there are numerous
cases of implant failure as a consequence of undesir-
able local tissue responses resulting in implant loosening,
insufficient osseointegration, osteolysis, inflammation and
infection [2–4]. These complications account for a failure
rate of 13–30% in the case of autografts and 20–40% for
allografts [2].  Besides autologous and allogenic grafts, syn-
thetic materials have also been used for controlled drug
delivery systems, scaffolds design and orthopaedic fixation
as screws, pins or rods [7,8]. Nevertheless, most synthetic
polymers are too hydrophobic and need additional bulk or
surface modifications to render the material more biocom-
patible and suitable for implantation [9].  Therefore, there
is a need for alternatives to these practices. Tissue engi-
neering and regenerative medicine offer an approach to
circumvent the present therapies with new methods of
health care treatment with the purpose of improving the
quality of life [2,10].  This improvement can come in the
form of new cytocompatible and non-toxic biomaterials for
the manufacture of a new generation of scaffolds compris-
ing adequate mechanical and structural support and able
to control cell attachment, migration, proliferation and dif-
ferentiation [11,12]. Furthermore, this future generation
of scaffolds should not behave as a permanent prosthesis
but instead should perform as bio-resorbable temporary
implants, allowing for the body to heal itself at the same
rate as the implant degradation [11,13].

In recent years a small number of synthetic biodegrad-
able polymers, mainly polyesters containing glycolic
(PLG) or lactic (PLL) acids and caprolactone (PCL) were
approved by the Food and Drug Administration (FDA)
for use in sutures [13]. EpicelTM (autologous keratinocyte
skin graft to treat severe burn victims from Genzyme
Biosurgery, Cambridge, MA), Carticel® (autologous chon-
drocyte transplantation to treat cartilage injury from
Genzyme Biosurgery, Cambridge, MA)  [14], MACITM

for matrix-induced autologous chondrocyte implantation
(Genzyme Biosurgery, Cambridge, MA)  where chondro-
cytes are supplied seeded onto a type I/III collagen scaffold

examples of products already commercially available are
Atrigel® (Atrix Laboratories, Fort Collins, CO, USA) a sys-
tem of biodegradable polymers for drug delivery [17] and
the calcium phosphate based products Collagraft (Zimmer,
Warsaw, IN; and Collagen Corporation, Palo Alto, CA) and
ProOsteon (Interpore international, Irvine, CA) for bone
applications [2].  However, since giving a detailed descrip-
tion of these and other products available in the market
is not the purpose of this review we  advise the reader to
address other reports for more information [2,13–17].

Despite the enormous research effort during the last
few decades materials scientist have not fully developed
a new generation of biocompatible biomaterials [13]. This
limitation of tissue engineering to move forward from
the laboratory into the clinic is the result of many issues,
including legal, the need to develop functional blood ves-
sel networks to nourish the new tissues mainly inside
scaffolds, inability of the biomaterials to promote the for-
mation of functional tissues, and many related issues [13].
For these reasons it is critical to develop the next genera-
tion of biomaterials that will address the limitations above.
New approaches in the fields of bionanotechnology, pro-
tein engineering and bionano-fabrication will play a role
in the development of these next generation biomaterials
[18–20].

In this review we address some biopolymers already
being used or with potential applications in regenera-
tive medicine and tissue engineering, giving special focus
to proteins and protein-based biomaterials. Additionally,
we will also focus on the different approaches used
for functionalization of these biomaterials in order to
improve performance, mechanical efficiency, biocompat-
ibility and degradability, usually with a goal towards
control of these processes. This overview will be fol-
lowed by a description of the novel design approaches,
namely genetic engineering, enabling the synthesis of new
protein-based biopolymers inspired in nature but without
many of the drawbacks of their native counterparts when
extracted directly from natural sources. Additional infor-
mation can be found in recent reviews addressing the use of
biomimetic materials in tissue engineering [21], the appli-
cation of protein templates for tissue engineering [12], the
synthetic modification of proteins and peptides [22] and
the use of bioengineering for biomaterials design [19,20].

2. Natural proteins for biomedical applications

The similarity between natural polymers and the
macromolecules forming extracellular matrices suggests
an innate ability for some of these polymers to interact
with the cells and the biomolecules present in host tissues,
inducing mild immunological reactions when compared
secured to the skin injury with fibrin glue [15], and Apligraf
(bovine collagen I matrix seeded with keratinocytes for
wound care from Organogenesis, Canton, MA)  [16], are
products for cell therapy also available in the market. Other
with synthetic materials [11,23,24].  Natural polymers such
as fibrin, fibronectin, collagen, elastin, silk, keratin, chi-
tosan, alginate, amylose/amylopectin and hyaluronic acid
are widely used in tissue engineering [23,25]. Within the
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Table 1
Basic features of some proteins with potential applications in the biomedical field.

Protein Main functions Basic structure Relevant properties

Collagen [31,34] Structural protein in tissues such
as connective tissue, tendon, skin,
bone and cartilage

Three parallel polypeptide chains
formed by GXY (G – glycine, X –
usually proline, Y – usually
4-hydroxyproline) repeats and
arranged in triple helix

Biodegradability, low antigenecity
and biocompatibility

Fibronectin [47,49] Structural support and cell
signalling

Dimer of two non-identical
polypetide chains bonded at the
carboxyl end by disulfide bonds

Multi-domain protein with cell (RGD
motif), collagen and fibrin binding
motifs

Elastin [56,182,183] Structural protein found
predominantly in connective
tissue of arteries, ligaments, skin
and lung

Cross-linked units of tropoelastin
formed by hydrophobic (often 3–6
repeats of GVGVP, GGVP and
GVGVAP) and hydrophilic lysine
domains

Temperature dependent
self-assembly and phase separation
behaviour

Fibrin [72,184] Blood clotting, fibrinolysis,
cellular and matrix interactions,
inflammation and wound healing

Resultant from the polymerization
and crosslinking of fibrinogen units
after thrombin cleavage

Growth factor binding and
interaction with cells such as
platelets, leucocytes, fibroblasts and
endothelial cells

Laminins [80] Major components of basement
membranes underlying epithelial
and endothelial cells and
embedding Schwann, muscle and
fat cells

Heterotrimers of one �, one � and
one � chain, which represent
different gene products

Self-assembly and binding to several
matrix proteins and integrins

Vitronectin [84] Regulates clot formation and
immune response, provides
biological cues for cell adhesion,
migration and proliferation and
extracellular anchoring

In human blood is found as a single
chain or as a dimer while in the
extracellular matrix exists as a
disulfide-linked vitronectin
multimer

Multi-domain protein with an RGD
motif to mediate the attachment and
spreading of cells and binding motifs
for collagen, heparin, plasminogen,
glycosaminoglycan and fibrin
binding motifs

Keratin [88,185] Structural protein in the
cytoskeletons of vertebrate
epithelial cells and epidermis
appendages such as hair, nails
and wool

Formed by �-helical coiled-coil
dimers assembled into 10 nm wide
filaments

Biocompatibility, good cell
attachment and growth

Silk  [93,98] Building element of many
arthropod nests, cocoons and
prey traps

Highly repetitive core domain of
alternating poly-A hydrophobic and
G  rich hydrophilic motifs

Self-assembly and remarkable
mechanical properties

Mussel adhesive proteins
(MAPs) [119]

Substrate adhesion Repetitive sequence, with molecular
weights ranging between 5 and
120 kDa and high presence of

,4-dihyd
OPA)

Function over a wide range of
temperatures, humidity and salinity
and form permanent bonds to a wide
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yriad of biopolymers present in nature, proteins are con-
idered to be one of the most sophisticated groups in terms
f chemistry [26]. Therefore some proteins with potential
se in the biomedical field will be addressed in the next
aragraphs. Table 1 addresses some of the basic features of
he animal proteins described in this section.

Collagen is synthesized by fibroblasts and other cell
ypes such as chondrocytes [27] and osteoblasts [28] and
s the most abundant protein in the mammalian body,
ccounting for 20–30% of the total protein [29]. Its primary
unctions in tissues are to provide mechanical support
30] and to control cell adhesion, cell migration and tis-
ue repair [31]. Collagens form a large family of triple
elical molecules with about 28 different types described
32]. All collagens share the same triple-helical structure
here three parallel polypeptides, �-chains, coil around

ach other forming a right handed triple helix chain. In
nimals these collagen triple helices are known as tropocol-

agen and its hierarchical organization into more complex
tructures generates the fibers and networks in tissues
uch as bone, skin tendons, basement membranes and
artilage [33,34]. Collagen is easy to modify and process
roxyphenyl-l-alanine variety of surfaces

and its abundance, nonantigenicity, biodegradability, bio-
compatibility and plasticity make collagen a promising
biopolymer for applications in the medical and phar-
maceutical fields and tissue engineering purposes [30].
Reconstituted gels of type I collagen are widely used for
biomedical applications and its main sources are animal
tissues such as skin and tendons [25,35]. Collagen scaf-
folds have been extensively used for soft tissue repair [36],
vascular [37] and dermal tissue engineering [38,39],  bone
repair [40] and as a carrier for the delivery of drugs [41]
and biologically active molecules [42]. Additionally, col-
lagens can also be used to fabricate microspheres for cell
encapsulation [43] and drug loading for controlled release
[44].

However, despite the wide range of applications col-
lagens matrices lack the mechanical properties required
for hard tissue during initial implantation. For this rea-
son collagen is often blended with other materials, either

synthetic [45] or natural [46], to overcome mechanical lim-
itations [12].

Fibronectin is also a component of the extracellular
matrix with important functions such as structural support



 Polyme
4 S. Gomes et al. / Progress in

and signalling for cell survival, migration, contractility, dif-
ferentiation and growth factor signalling [47]. Fibronectin
is synthesized by different cell types, such as fibroblasts and
is secreted as a dimer with disulfide bonds formed between
230 and 270 kDa subunits. These subunits are formed by
three types of repeating modules named type I, II and III
[48]. Fibronectin is a multi-domain glycoprotein with a
remarkable number of biological functions, many of which
are mediated through interactions with integrins, such as
via the RGD sequences present in fibronectin. Besides bind-
ing to cell integrins, fibronectin binds to other biologically
important molecules such as heparin, collagen/gelatin and
fibrin [49]. Since fibronectin is biocompatible and eas-
ily recognized by cell integrins, the use of fibronectin or
domains of the protein to functionalize scaffolds for tissue
engineering is often considered [50]. Polymeric scaffolds
of chitosan [51,52], collagen [53] and hyaluronic acid [54]
have been modified with fibronectin to improve cell adhe-
sion and proliferation.

Additionally, fibronectin-mimetic peptide-amphiphiles
were used in the fabrication of nanofibers and gels with
excellent cell adhesion properties [50]. Another strategy
was to prepare fibronectin-terminated multilayer films of
poly-lysine and dextran sulfate for the study of the spread-
ing behaviour of human umbilical vein endothelial cells.
The cells spread to a greater extent and in a more symmet-
ric manner on the films coated with fibronectin, suggesting
that such fibronectin coated films may  represent a promis-
ing strategy to control cell interactions with the materials
in tissue engineering [55].

Together with collagen and fibronectin, elastin is also
part of the core architecture supporting cell adhesion and
growth [56]. Elastin fibers are mainly present in connective
and vascular tissues, the lungs and skin. Elastin is a poly-
mer  of tropoelastin monomeric precursor and elastin fibers
are an important component of the extracellular matrix
to impart elasticity to organs and tissues. Hydrophobic
domains present in the elastin sequence are responsible
for these elastic properties [57,58].  Elastin also has chemo-
tactic activity, inducing cell proliferation and regulating
cell differentiation, with the specific binding of integrin
�v�3 to the C-terminus in tropoelastin [59]. Due to its
characteristics elastin is of interest for drug delivery and
tissue engineering and has been used in the fabrication
of hybrid materials in combinations with collagen [60],
polycaprolactone (PCL) [61] and silk [62] for the produc-
tion of vascular grafts [63], hydrogels [64], bone repair [65]
and for drug delivery [66]. However, the crosslinking that
occurs between the water-soluble tropoelastin monomers
to form the insoluble and stable elastin fibers limits the
use of elastin from animal origin [56]. Therefore artificial
proteins incorporating elastin-like peptides have been of
interest for the development of new protein-based bio-
materials [67,68] with properties similar to native elastin
[69].

Fibrin is another example of a specialized extracellular
matrix protein with potential application for tissue engi-

neering. However, unlike collagen, elastin and fibronectin,
fibrin networks form mostly during blood clotting. Fibrin is
the result of fibrinogen polymerization in the presence of
thrombin [70]. Fibrinogen is a 340 kDa protein present in
r Science 37 (2012) 1– 17

plasma formed by pairs of three different polypeptides, A�,
B� and �, held together by disulfide bridges [71]. Fibrin and
fibrinogen are two  important components in blood clotting,
fibrinolysis, cellular and matrix interactions, inflammation,
wound healing and neoplasia [72]. In the particular case of
clot formation, thrombin cleavage both A� and B� chains at
their N-termini, leading to the exposure of polymerization
sites in both chains [73]. Subsequently the combination of
these polymerization sites leads to the formation of double-
strand twisted fibrils. These fibrin protofibrils undergo
lateral aggregation and form branches, producing a three
dimensional network [74]. Blood clots are further stabilized
by covalent bonds formed by the plasma transglutami-
nase, factor XIII, making the clot more mechanically stable
and less susceptible to enzymatic digestion [75]. Fibrin is
a viscoelastic polymer and is used clinically as a medical
adhesive; fibrin sealants are FDA approved. Furthermore,
fibrin is also used for skin repair, replacing sutures and sta-
ples in fixation of skin grafts promoting a better wound
healing [76], and in the transplantation of keratinocytes in
burned patients [35]. Fibrin is also a promising biopoly-
mer  for applications in tissue engineering, in the repair of
damaged tissues [77,78],  and drug delivery, as a carrier for
growth factors [79].

Additionally, two  proteinaceous components of the
extracellular matrix, laminins and vitronectin, are mainly
used to coat synthetic and natural polymer-based materi-
als to improve cellular response. Laminins are cell adhesion
glycoproteins localized in the extracellular matrix of the
basement membrane and are able to bind to other matrix
proteins [80]. Recently, lamimin-derived peptides have
been used as coatings to induce the adhesion of differ-
ent cell types such as hepatocytes [81] and human dermal
fibroblasts [82]. Also, these peptides are being studied
for drug delivery in the development of targeting drug-
loaded systems for cancer treatments [83]. Vitronectin is
a multifunctional glycoprotein present in the extracellu-
lar matrix where it binds to glycosaminoglycans, collagen,
plasminogen and urokinase-receptor and its RGD allows
it to mediate the adhesion and spreading of cells [84].
This multipartner binding makes vitronectin an attractive
biopolymer for tissue engineering and to induce cell attach-
ment when used as a surface coating [85,86].

The proteins described above are extracellular matrix
proteins and have been more commonly used for tis-
sue engineering and regenerative medicine applications.
However, in the past few years other proteins have also
emerged as potential biopolymers for the fabrication of
new biomaterials, such as keratin [87]. Moreover, since
it is a protein shared by all mammals with a highly con-
served amino acid sequence it is expected to offer good cell
and tissue responses [88]. Keratin fibers are hierarchically
structured proteins present in hard and filamentous struc-
tures, such as hairs, horns and nails [87]. The presence of
a LDV cell binding domain in keratin amino acid sequence
[87] suggests utility for the fabrication of scaffolds for tissue
engineering. Keratin based biomaterials have been used

to support adhesion, spread and growth of L929 fibroblast
cells [89], and the growth and differentiation of osteoblasts
(MC3T3-E1) [90]. Keratin films have an inhibitory effect on
the IgE receptor-stimulated histamine release from mast
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ells, making it suitable for use in antiallergenic materials
91].

As collagen and keratin, silk is another example of a hier-
rchically structured fibrous protein. Silk is characterized
y its outstanding mechanical properties out-competing
igh performance man  made fibers such as Kevlar, nylon
nd high-tensile steel, and by its self-assembly leading
o fibers with a complex hierarchical arrangement [26].
ilk-protein-based fibers are produced by insects [92] and
piders [93] which use it for different ends such as cocoon
nd nest construction. However, despite the multitude of
unctions and different protein structures, many silk-based
bers have similar amino acid compositions and high lev-
ls of crystallinity. Silkworm silk produced by the silkworm
pecies Bombyx mori is the most well studied silk pro-
ein [92]. The silk fiber is formed by two microfilaments
mbedded in glue-like glycoproteins named sericin which
orks as a coating. Each microfilament results from the

ssembly of a hydrophobic ∼370 kDa heavy-chain fibroin
rotein, a relatively hydrophilic ∼25 kDa light-chain fibroin
nd a 30 kDa P25 protein [94]. Spider dragline silk has a
lightly different structure with a core filament formed
y two spidroin molecules, major ampullate spidroin pro-
ein 1 (MaSp1) and 2 (MaSp2), coated by glycoproteins
nd lipids [95]. The remarkable mechanical features of
he different types of silk are in part due to the presence
f �-helix and �-turns, responsible for its elastic proper-
ies. These elastic domains alternate with �-sheet motifs
hich confer toughness to silk fibers. The strong molecu-

ar cohesion occurring with amide-amide interactions in
he �-sheet crystalline regions is thought to be respon-
ible for the remarkable stiffness of silk fibers [96]. In B.
ori silk, the hexapeptide repeat GAGAGS is involved in

he formation of the �-sheets. In spider silk besides GA
equences there are also poly-Ala blocks and both motifs
ontribute for the formation of anti-parallel �-sheets [96].
hese poly-A and GA motifs are embedded in amorphous
egions formed by either GGX (X can be Tyr, Leu or Gln)
r GPGXX motifs believed to be responsible for the elastic
eatures [97]. The outstanding mechanic features and bio-
ompatibility are reasons why silk has been used through
he millennia in such diverse applications as hunting, fabri-
ation of paper, wound dressing, textiles and sutures [98].

ith new technologies in the fields of polymer synthesis
nd processing, silk continues to be an important topic of
esearch for biomaterial and biomedical research. In the
ase of B. mori silk, sericulture provides the product used
y the textile industry and in medical sutures [93]. Addi-
ionally, this silk is being studied for tissue engineering in
he form of scaffolds for a range of tissue needs, such as
orneal regeneration [99,100], cartilage repair [101,102],
ascular grafts [103,104],  bone regeneration [105,106] and
rug delivery [107,108].  As mentioned above B. mori silk is
vailable in large supplies from sericulture, and is therefore
ost commonly used for the above studies. In the case of

piders, it is difficult to breed spider species due to their
annibalistic behaviour. With the advance of biotechnol-

gy tools it is now possible to bioengineer spider silk genes
o produce spider silk-like proteins [109], such as for tissue
ngineering [110], cell culture [111], nerve regeneration
112,113] and wound dressings [114].
r Science 37 (2012) 1– 17 5

Mussel adhesive proteins (MAPs) are produced by
marine mussels and used in the formation of the byssal
threads which allow the animal to anchor to substrates. A
common feature to all the adhesives produced by mussels
is the presence of the amino acid 3,4-dihydroxyphenyl-l-
alanine (DOPA). DOPA residues are key elements for the
chemisorption to substrates underwater and the crosslink-
ing process within the adhesive molecules [115]. These
natural adhesives display outstanding properties in terms
of function under harsh marine environments with wide
temperature, salinity and humidity fluctuations and the
mechanical effects of tides, waves and currents [116]. These
remarkable properties make MAPs attractive biomateri-
als as bioadhesives. MAPs have been used as bioadhesives
for cells [117] and as self-adhesive micro-encapsulated
drug carriers for biotechnological, tissue engineering and
biomedical applications [118]. MAP  derivatives were also
used in the fabrication of adhesive-coated meshes as
wound sealants, replacing tradition sutures, staples and
tacks [119].

The proteins addressed above are widely used for tis-
sue engineering and biomedical applications and can be
obtained from animal sources. Moreover, the majority of
proteins used in the development of new scaffolds for tis-
sue engineering are extracted from natural sources. In this
way, in most cases these polymers need further modifica-
tions to make them more suitable for different biomedical
applications. The next section refers to physical and chem-
ical approaches used for the functionalization of these
biomaterials.

3. Techniques for the functionalization of
protein-based biomaterials

The properties of protein-based biomaterials can be
improved by combining them with bioactive molecules
to enhance in vitro and/or in vivo functions. The surface
of protein-derived scaffolds can be modified by physi-
cal adsorption, physical entrapment (encapsulation) or by
chemical modification. These techniques are commonly
used to functionalize protein-based biomaterials with dif-
ferent biologically active molecules, such as growth factors
and antibiotics, improving cell and tissue responses.

Physical adsorption is a simple immobilization proce-
dure and is frequently used to attach bioactive molecules
such as extracellular matrix proteins or growth factors
to the surface of scaffolds by dip coating [120]. Adsorp-
tion efficiency is dependent on the physical and chemical
properties of the material, including wettability, sur-
face topography, functional groups, pH and electrical
charge, among other factors [121]. Many biomaterials are
hydrophobic, therefore, methods are needed to enhance
wettability to make them more hydrophilic. Physical meth-
ods such as bombardment with ions, UV light and plasma
modification are used to disrupt chemical bonds between
carbon and non-carbon atoms generating unsaturated
bonds and radicals which react with oxygen, increasing

hydrophilicity and enhancing reactivity towards biologi-
cal molecules [121]. Natural polymers have the advantage
of being rich in reactive chemical groups (hydroxyl, car-
boxyl, amide) which make them more hydrophilic and
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Table 2
Summary of protein based scaffolds functionalized with different bioactive molecules.

Protein matrices Modification process Modifying molecule Application References

Collagen EDC/NHS covalent immobilization VEGF Vascularisation/angiogenesis [186,187]
FGF/VEGF Vascularisation/angiogenesis [188]
Heparin BMP/FGF/PDGF delivery system [189–191]

Traut’s reagent and sulfo-SMCC
covalent immobilization

Poly-Histidine
antibody

BMP delivery system [192]

VEGF Vascularisation/angiogenesis [193]
Adsorption BMP-2 BMP  delivery system [194]

FGF  Cartilage regeneration/Growth factor
delivery

[195,196]

Microsphere encapsulation BMP-7 BMP  delivery system [197]
VEGF Vascularisation/angiogenesis [198]

Gelatin EDC covalent immobilization TGF-beta Cartilage regeneration [199]
Adsorption TGF-beta/IGF Cartilage regeneration [200]

FGF  Growth factor delivery [195]
Fibronectin Cartilage regeneration [201]

Microsphere encapsulation TGF-beta Chondrogenesis/cartilage regeneration [202,203]
BMP-2/VEGF Angiogenesis and osteogenesis [204]
BMP-2 Growth factor delivery [205]

Fibrin  Microsphere encapsulation FGF Angiogenesis [206]
BMP-2 Bone regeneration [207,208]

Patterning immobilization FGF-2 Tissue engineering [209]
Heparin Michael type addition BMP-2 Bone/ligament regeneration [210]

HGF  Hepatocyte differentiation [211]
Silk  Cyanuric chloride immobilization Lactose Hepatocyte attachment [212]

Crosslinking Gelatin Tendon tissue engineering [213]
Adsorption FGF Growth factor delivery [124]

Gelatin Drug/growth factor delivery [214]
Collagen/chodroitin-6-
sulfate/hyaluronan

Tendon tissue engineering [215]

Collagen Tendon tissue engineering [216,217]
BMP-2 Bone regeneration [218]
Microsphere encapsulation IGF
Blend Gelatin 

Silk/collagen Adsorption SDF-1 

capable of interacting with bioactive molecules. Colla-
gen and silk are examples of protein-based materials that
have been functionalized through adsorption of bioac-
tive molecules, including bone morphogenetic proteins
(BMPs) [122,123],  basic fibroblast growth factor (bFGF)
[124], vascular endothelial growth factor (VEGF) [125] and
therapeutic compounds such as antibiotics [126] and hep-
arin [127] as it is summarized in Table 2. In most of these
studies the protein-based scaffolds were soaked in a solu-
tion containing the bioactive component. In other cases
the proteins were blended with the bioactive molecule in
solution and then cast to form scaffolds [128].

Since adsorption is based on relatively weak or moder-
ate electrostatic, van der Waals, hydrogen and hydrophobic
interactions the binding stability of the adsorbed molecules
can vary depending on environmental conditions. In this
way, changes in pH, ionic strength and adsorbed species
concentration of the surrounding medium can result in
an uncontrolled release of the immobilized species [120].
For example, bone morphogenetic proteins (BMPs) tend
to diffuse away from the fracture area and high doses are
required to induce the desired osteogenic response. The
release profile of BMP-2 from collagen sponges shows an
initial burst during the first 10 min, where the carrier loses

around 30% of the BMP-2, followed by slow release dur-
ing the next 3–5 days. This initial burst release can cause
clinical complications, such as ectopic bone formation, soft
tissue hematomas and bone resorption [129,130].
Drug/growth factor delivery [219]
Tissue engineering [220]
Tendon tissue engineering [221]

To  overcome these issues, covalent immobilization has
been widely used since it has the advantage of provid-
ing stable attachment of bioactive agents to polymeric
scaffolds. With proper design, covalent conjugation has
proven to be a very effective strategy to control the release
profile of the immobilized agent since these molecules are
retained for longer time periods at the delivery site, when
compared with adsorption [11]. Carbodiimide coupling is
broadly used in protein chemistry to react activated sur-
face carboxylic acid groups from protein-based scaffolds
with the amines present on the peptide or protein to be
immobilized [131,132].  Carboxylic groups are activated by
using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide
(EDC) mixed with either N-hydroxysuccinimide (NHS),
dicyclohexyl-carboiimide (DCC) or carbonyl diimidazole
(CDI) [131,132].  This basic protein chemistry has been
extensively used to immobilize molecules as it is shown
in Table 2, including BMPs and RGD peptides onto silk and
collagen scaffolds. A drawback of this coupling method is
the difficulty in characterizing the new peptide–protein
scaffolds, due to the background noise from the protein
scaffold itself, making it difficult to measure the signal
coming from the small amount of peptide immobilized
on the scaffold surface in order to quantify how much

peptide was immobilized [132]. Another drawback can
be the presence of reactive amine groups aside from the
N-terminal amine. These reactive side groups need to be
protected, followed by deprotection after the coupling
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hemistry is carried out, although the use of harsh condi-
ions can affect the biological activity of the immobilized

olecules [131].
Glutaraldehyde, polyethylene glycol diacrylate and hex-

methylene diisocyanate can be used to bridge the amine
roups present in the peptide or protein to be immobilized
nd in the protein based scaffolds [132,133].  Glutaralde-
yde has been used to couple insulin [134] and lipase [135]
nto silk scaffolds and to crosslink blends of collagen and
ilk [136]. However, the potential release of toxic resid-
al molecules formed during the crosslinking process is a
oncern if these biomaterials are to be used for biomedical
pplications [133].

Encapsulation of bioactive molecules within protein
atrices has also been explored as a method to control the

elease of bioactive agents. In many cases chemical modifi-
ations are required in order to have better control over the
elease profile of the encapsulated molecules. Crosslinked
elatin microspheres later impregnated with basic fibro-
last growth fact (bFGF) and loaded into collagen sponges
ere used in order to have controlled release of bFGF at a
efect site [137] (Table 2). Furthermore, crosslinked colla-
en microspheres loaded with bovine serum albumin (BSA)
nd nerve growth factor were prepared and release pro-
les assessed [44]. In both studies collagen microspheres
ad to be crosslinked in order to reduce the initial burst
nd attain better control of protein release. EDC and NHS
ere also used as coupling reagents to covalently bind

,3-dihydroxybenzoic to gelatin microspheres, which were
ncorporated into a reconstituted collagen scaffold for a

ound dressing [138]. Silk microspheres were used for the
ncapsulation of bioactive proteins and other molecules,
xploiting the self-assembly properties of silk to control
he release profile [139].

Many formulations and delivery strategies have been
xplored in order to achieve functionalization and sus-
ained release of different molecules. However, in the
articular case of bioactive proteins loaded into protein-
ased scaffolds, protein structure and topology must be
onsidered in order to prevent protein denaturation, as

 consequence of the adsorption or immobilization pro-
esses, and protein aggregation during the release period
hich can result in the loss of bioactivity [11,140]. Pro-

eins in denatured forms are often antigenic and can
nduce immunogenic reactions with negative clinical con-
equences [140].

Most of the methods being used for functionalization
f polymeric structures and drug release have some disad-
antages and new strategies are clearly needed. Advances
n the fields of self-assembly and biotechnology, mainly via
ecombinant DNA approaches, can offer some important
ptions to address the deficiencies noted above, to help
n the development of the next generation of biomateri-
ls. The importance of recombinant DNA technology for the
evelopment of new protein based biomaterials will be the
ocus of the next section.
. Recombinant proteins for tissue engineering

Since mammalian tissues are the main source of mate-
ials such as collagen, gelatin, fibrin and elastin there
r Science 37 (2012) 1– 17 7

are concerns with disease transmission and immunogenic
responses in in vivo studies, as well as batch-to-batch vari-
ability [19,141]. To overcome these limitations, peptide
synthesis and recombinant DNA protein methodologies
have been explored. Chemical synthesis can be a quick and
efficient method to fabricate short peptides in relatively
small quantities [142]. However, the synthesis of peptide
sequences with more than 35–40 amino acids is not fea-
sible due to a drop in yield and efficiency paralleled by
an exponential increase in cost [143]. Recombinant DNA
technology provides well established protocols for cloning,
mutation and gene fusion in different host cells for the
expression of peptides and proteins with a broad range of
sizes [144]. Furthermore, the increased efficiency in mak-
ing synthetic oligonucleotides and the use of standardized
kits and protocols for cloning and protein expression make
the transgenic production approach more cost-effective for
large scale protein production [144]. Besides engineering
biological components already present in nature as shown
in Table 3, the field of synthetic biology is also focused on
the design of new peptides and protein sequences. This can
be achieved by establishing new artificial self-assembling
peptides or by fusing together different bioactive domains
or protein motifs that are not otherwise found together in
nature. Table 4 gives an overview of the studies published
during the past few years using this approach [144]. Since
genetic engineering offers the possibility of altering the
amino acid sequence of the expressed protein by adding
or substituting codons, it is possible to generate alterna-
tive sequences with tunable properties that can be used as
promising biomaterials for medical applications.

Below we  will address some of the proteins that have
been effectively cloned and expressed in different recom-
binant systems. The potential of genetic engineering to be
used as a tool for the functionalization of biopolymers with
different bioactive peptides through the synthesis of new
fusion proteins will also be discussed.

Collagen has been cloned and expressed in recombinant
systems (Table 3). The use of recombinant collagen has ben-
efits since it can be a safe product with useful self-assembly
features [144] and the possibility of being functionalized
with bio-instructive domains [19] such as cell adhesion lig-
ands [141]. Over the past 20 years recombinant systems
for the large scale-production of recombinant collagen
have been developed and optimized. Recombinant colla-
gen has been expressed in mammalian cells, insect cells,
Escherichia coli, transgenic tobacco, mice and silkworm
[145]. From these recombinant hosts only the mammalian
cells expressed collagen with 4-hydroxyproline content
identical to native collagen. However, since the level of
protein production was  low (0.6–20 mg/L) this system was
not commercially viable [146]. Since the production cost
in yeast and E. coli is much lower than in mammalian cell
culture, a multigene expression technology was  adopted
in order to overcome the absence of the enzyme pro-
lyl 4-hydroxylase, an essential element in the synthesis
of fully hydroxylated collagens [146]. The absence of this

enzyme leads to non-triple-helical and non-functional col-
lagen molecules, which are unstable below physiological
temperatures and thus unsuitable for medical applications.
Hence, the multigene expression approach based on the
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Table 3
Biopolymers expressed in recombinant systems and their potential uses.

Protein Expression system Advantages/applications References

Collagen I Transgenic corn Food and pharmaceutical industries [222]
Yeast Pichia pastoris Identical 4-hydroxyproline content to human

collagen; medical applications such as corneal
replacement

[147,150,223]

Yeast Saccharomyces cerevisiae Study of collagen expression and maturation [224,225]
Mammalian HT1080 cells Optimization of recombinant collagen

expression and isolation methodology
[226,227]

Insect cells Optimization of recombinant collagen
expression and isolation methodology;
Structural studies

[228,229]

Mammalian, mouse milk Optimization of recombinant collagen
expression

[230,231]

E.  coli JM109 strain Large quantities production/therapeutic,
biomaterial, or bioengineering applications,

[232]

E.  coli Bone tissue engineering [151]
Collagen II Yeast Pichia pastoris Identical 4-hydroxyproline content to human

collagen
[147]

Insect cells Optimizing recombinant collagen expression
systems

[233]

Collagen III Yeast Pichia pastoris Higher production level; identical
4-hydroxyproline content to human collagen;
scientific and medical applications such as
corneal replacement

[147,150,234]

Yeast Saccharomyces cerevisiae Optimizing recombinant collagen expression
systems

[235]

Insect cells 4-Hydroxyproline content similar to human
collagen; study of collagen chain association
and folding

[236,237]

Silkworm Viable expression system for bulk protein
expression

[238]

Collagen V Mammalian cells Structural studies [239]
Collagen VI Mammalian cells Collagen and heparin binding studies [240]
Collagen VII Mammalian cells Study of dystrophic epidermolysis genetic

disorder
[241]

Collagen X Mammalian HEK293 cells Optimizing recombinant collagen expression
systems

[242]

Collagen XI E. coli BL21 Study the regulation of collagen fibrillogenesis [243]
Collagen-like protein Mammalian HT1080 cells Biomedical applications [152,244]
Gelatin-like proteins Yeast Pichia pastoris Biomedical applications [245]
Elastin-like peptides Yeast Pichia pastoris Optimizing cloning and expression process [246]

E.  coli strain BL21-Gold Vascular replacement; tissue engineering,
controlled drug release and cell encapsulation;
biomedical applications

[167,247–253]

E. coli BLR strain Biomedical applications [254]
Spider  silk major ampullate

from Nephila clavipes
E. coli RY-3041 Structural studies/biomedical applications [255,256]

E.  coli SG 13009pREP4 Structural studies/biomedical applications [155]
E.  coli BL21 Structural studies/biomedical applications [257–259]
E.  coli M109 strain Structural studies/biomedical applications [260]
Yeast Pichia pastoris Structural studies/biomedical applications [158]

Spider  silk major dragline
proteins ADF-3 and ADF-4
from Araneus diadematus

E. coli BLR strain Structural studies/biomedical applications [157]

Spider  silk flagelliform from
Nephila clavipes

E. coli BL21 strain Structural studies/biomedical applications [156]

Spider  silk like proteins – NcDS,
(SpI)7 and [(SpI)4/(SpII)1]4

E. coli BL21 strain Structural studies/biomedical applications [261]
Fibrinogen Mammalian cells 

Yeast Pichia pastoris 

Fibronectin E. coli 

co-expression of procollagen polypeptide chains and �-
and �-subunits of proyl 4-hydroxylase using the yeast,
Pichia pastoris, was developed [147]. Collagen types I, II and

III were expressed with a 4-hydroxyproline content iden-
tical to the native human proteins and expression levels
of 0.2–0.6 g/L in 2 L bioreactors were achieved [147]. The
use of recombinant collagen as a gel has been reported for
Fibrin sealant [262]
Fibrin sealant [263]
Cell adhesion [264,265]

chondrocytes [148], as a microcarrier [149], as corneal sub-
stitutes [150] and for bone regeneration applications [151].
Furthermore, customized collagen-like peptides formed

with tandem repeats of the D4 domain of human colla-
gen type II, a critical sequence for supporting the migration
of chondrocytes, were also reported [140]. Chondrocytes
seeded on polyglycolic acid scaffolds coated with this
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Table 4
New chimeric proteins with potential application in the biomedical field.

Fusion protein Expression system Applications References

R136K (FGF-1 mutant) + collagen
biding domain

E. coli BL21 (pLysS) strain Selective binding to collagen and potent
angiogenic, mitogenic and chemotactic activity
for endothelial cells

[266,267]

VEGF  + collagen biding domain E. coli BL21 strain Improve diabetic wound healing [268]
FGF  + fibronectin cell binding domain E. coli JM109 strain Stimulates angiogenesis, biomedical

applications/tissue engineering
[269]

FGF  + collagen binding domain E. coli BL21strain Delivery systems/biomedical
applications/tissue engineering

[270]

FGF  + glutathione S-transferase
(GST-bFGF)

E. coli Stimulate the growth of human umbilical vein
endothelial cells

[271]

FGF2 + fibronectin (FGF2–FNIII9-10) E. coli TOP10 strain Delivery of bioactive molecules [179]
EGF  + collagen binding domain E. coli BL21(DE3) strain Delivery systems/biomedical

applications/tissue engineering
[270]

EGF–collagen Insect cells Tissue engineering applications [181]
EGF  + immunoglobulin G (IgG) Fc

region (EGF-Fc)
E. coli BL21 strain Cell adhesion [272]

Silk  + elastin (SELP-47 K) E. coli Promote cell attachment and growth/tissue
Engineering

[273]

Spider silk + dentin matrix protein E. coli RY-3041 strain Biomedical applications/tissue engineering [177]
Spider  silk + bone sialoprotein E. coli RY-3041 strain Biomedical applications/tissue engineering [176]
Spider  silk + antimicrobial domain

(HNP-2, HNP-4 and hepcidin)
E. coli RY-3041 strain Biomedical applications/tissue engineering [178]

Bombyx mori silk + RGD + elastin (FES8) E. coli BL21 strain Biomedical applications [274]
RGDS  + silk fibroin (RGDSx2 fibroin) Silkworm Facilitate chondrogenesis [275]
Collagen + GYIPEAPRDGQAYVRKDGEWVLLSTFL E. coli BL21 strain Stabilize the triple helix formed in the

proteins/biomedical applications
[276]

BMP-2 + collagen-biding domain E. coli BL21strain Bone repair [277–279]
TGF-B1-F1 and TGF-B1-F2 + collagen

binding domain
E. coli Biomedical applications/tissue engineering [280]

hbFGF-F1 and hbFGF-F2 + collagen
binding domain

E. coli Biomedical applications/tissue engineering [281]

PDGF  + collagen binding domain E. coli BL21 strain Tissue regeneration and wound repair [282]
Fibronectin III7–10 + cadherin 11 EC

1–2
E. coli Rosetta-gami strain Orthopaedic regeneration [283]

Fibronectin cell binding domain-EGF
(C-EGF)

E. coli HBIOI strain Drug delivery [180]

Fibronectin cell binding domain-EGF
(FNCBD-EGF)

E. coli Skin wounds, catheter-injured arteries, and
hind limb muscles

[284]

RGD/EGF/hydrophobic sequence E12
(ERE-EGF)

E. coli Controlling cell functions [285]
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NGF-�  + collagen binding domain E. coli BL21strain 

ollagen-like protein formed cartilaginous constructs with
uperior properties to the scaffolds coated with native type
I collagen [152]. These advances highlight the importance
f recombinant DNA technology in the synthesis of proteins
ith applications that until now have only been available

rom animal sources.
Recombinant DNA technology was particularly advan-

ageous in the expression of large and repetitive proteins
uch as silk. As in the case of collagen, different expression
osts have been explored for the biosynthesis of spider silk
Table 3). Major ampullate silk was successfully expressed
y bovine mammary epithelial cells, hamster kidney cells,

nsect cells and in the milk of transgenic goats, generally
ith low yields [153]. However, bacteria can be grown

t large scales and have the advantage of being easier
o handle and more cost-effective. Therefore, E. coli has
een actively pursued as an expression host for spider

ilks. Since bacterial hosts have distinct codon usages, silk
equences from different spider species were reverse tran-
cribed into cDNA, using the E. coli codon preferences,
nd double stranded oligonucleotides coding for different
Delivery system for neuronal development and
regeneration

[286]

domains of silk proteins were prepared [154]. These double
strand oligonucleotides were then assembled into syn-
thetic genes coding for silk proteins [153]. This cloning
strategy was  employed with successes for the expression
of Nephila clavipes consensus sequence for major ampullate
silk protein 1 (MaSp1) and MaSp2 [155] and the flagel-
liform silk protein [156] from the same species. Cloning
and expression in E. coli, of both major ampullate silks
ADF-3 and ADF-4 from the species Araneus diadematus
was also reported (Table 3) with yields between 140 and
360 mg/L [157]. Besides E. coli, other hosts for the cloning
and expression of spider silks have also been explored.
The yeast P. pastoris is considered an attractive host for
the expression of recombinant proteins since this expres-
sion system is well developed for industrial fermentation,
reaching high cell densities using low-cost media. For these
reasons it was  successfully used for the expression of spi-

der silk dragline using genes of up to 3000 codons with
no evidence of truncated synthesis, a common occurrence
in E. coli host [158]. Plants such as tobacco and Arabidop-
sis thaliana are also being explored as transgenic host
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ric prote
Fig. 1. Scheme highlighting some of the features and applications of chime

systems for silk proteins, with yields of 2% in tobacco leaves,
8.5% in A. thaliana leaf apoplasts and 18% in the endoplas-
mic  reticulum of seeds [153]. Similar approaches as above
for collagens and silks have been applied to the fabrica-
tion of recombinant elastin-like proteins that mimic  native
elastin (Table 3) [56]. These new protein polymers have a
modular structure formed with repeats of the pentapep-
tide (VP-Xaa-Yaa-G)n where Xaa is either G or A and Yaa
can be any residue but P. These recombinant elastin-like
proteins are capable of reversible temperature-dependant
self assembly in aqueous medium [67]. This feature allows
for the purification of protein based upon temperature-
induced aggregation. Elastomeric pentapeptides with up

to 251 GVGVP repeats were soluble in low ionic solution at
temperatures below 25 ◦C [159]. Above this temperature
the polymer hydrophobically folds into �-spiral structures
that further aggregate due to hydrophobic associations.
in-based biomaterials synthesized through recombinant DNA technology.

These aggregates can then be collected by selective cen-
trifugation. This methodology allows for facile purification
[160,161].  Moreover, elastin-like polypeptides (ELPs) can
be used as a purification tag. The fusion of ELPs with other
proteins exploits the inverse temperature transition of ELPs
and provides a simple method for the isolation of a recom-
binant ELP fusion proteins by cycling the protein solution
through the soluble and insoluble phases using inverse
transition cycling [162–164]. ELP tags can be cleaved by a
pH shift and removed by a final thermal precipitation [164].

Additionally there is the possibility of amino acid
substitutions in the pentapeptide repeats [165] and pre-
vious studies have shown that the replacement of G in

(VPGVG)n by A in (VPAVG)n leads to mechanical changes
in the protein from elastic to plastic [67,166]. The physical
crosslinking resulting from this amino acid replacement
leads to a more plastic matrix with a Young’s modulus
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wo orders of magnitude higher than in the case of
VPGVG)n [166]. Also, physical crosslinking has advantages
ver chemical crosslinking since it allows for easy pro-
essing, avoids the use of chemical reagents and excludes
he need of removing unreacted intermediates [167]. Syn-
hetic amphiphilic block copolymers with distinct block
olarity composed of hydrophilic and hydrophobic seg-
ents can also be generated [67]. These block copolymers

xhibit tunable mechanical and amphiphilic properties
ependent on the amino acid substitution. The flexibil-

ty of these block copolymer designs extends the range
f applications from micelles formed by self-assembly of
mphiphilic sequences for drug delivery, to temperature
esponsive hydrogels for cell encapsulation and coatings
f medical devices to improve host responses [168–170].
enetic engineering also offers the possibility of enriching

he sequences of proteins to improve their biological activ-
ty by fusing them with other protein motifs with specific
ioactivities (Table 4). Initial elastin matrices for cell adhe-
ion showed that cells did not adhere to these biomaterials
171]. RGD and REDV cell adhesion peptide sequences were
nserted into the elastins leading to a dramatic increase
n cell attachment [169,170].  Silk-based block copolymers

ere also engineered to carry an RGD cell binding domain
or intracellular gene delivery. The presence of labelled
NA inside cells was detected by confocal laser scan-
ing microscopy and demonstrates the potential of these
ilk bioengineered block copolymers as highly tailored
ene delivery systems [172]. The addition of a recogni-
ion site for an enzyme with proteolytic activity can also
e incorporated into the sequences, favouring biomaterials
egradation [173]. The fusion of the N. clavipes consensus
equence for MaSp1 with proteins such as dentin matrix
rotein and bone sialoprotein, involved in calcium phos-
hate deposition in teeth and bone [174,175],  respectively,
lso had positive results from a biomaterials perspective
176,177]. In both fusion proteins the silk domain retained
ts self assembly properties and the dentin matrix protein
nd bone sialoprotein domains maintained their ability to
nduce the deposition of calcium phosphates. These results
emonstrated the potential of chimeric proteins for appli-
ations in tissue engineering and regenerative medicine for
he design of new protein-based scaffolds for bone regen-
ration [176,177].

Furthermore, promising results were also obtained
hen the N. clavipes consensus sequence for MaSp1
as fused with antimicrobial peptides, namely neutrophil
efensins 2 and 4 and hepcidin, using a step-by-step
loning methodology [178]. The cloning and expression
f these new fusion proteins expanded these chimera or
usion approaches to include antimicrobial-functionalized
rotein-based biomaterials [178] offering a path forward

n reducing the use of antibiotics to prevent infection in
mplants and in the design of a new generation of protein-
ased materials bioengineered to prevent the onset of

nfections.
Other proteins have also been expressed as fusion
roteins with biological activity such as FGF2–FNIII9-10
ormed by a fibronectin fragment FNIII9-10 connected
o the carboxy terminus of fibroblast growth factor 2
FGF-2) [179]. Previous studies reported the synergistic
r Science 37 (2012) 1– 17 11

effect of fibronectin and FGF-2 on osteoblast adhesion.
The FGF2–FNIII9-10 fusion protein showed a significant
increase in cell adhesion and proliferation when compared
with FNIII9-10 alone [179]. The cell-binding domain of
human fibronectin was  also fused with epidermal growth
factor (EGF), important in tissue regeneration to acceler-
ate wound healing and enhance cell proliferation. The new
construct, designated as C-EGF, had both cell-adhesive and
EGF activity and the recombinant construct may  be an
effective drug delivery system for EGF in therapeutic situa-
tions [180]. EGF polypeptide was  fused with collagen type
III and the new construct retained the triple helix of col-
lagen and the mitogenic activity of EGF, suggesting that
this protein could be used as a biocompatible, biodegrad-
able and adhesive fibrous mitogen for tissue regeneration
[181].

The examples outlined above highlight the potential of
synthetic biology in the synthesis of biopolymers for tissue
engineering and regenerative medicine (Fig. 1).

5. Conclusions

Genetic engineering makes it possible to develop new
biopolymers with a complexity and functionality resem-
bling natural polymers formed in nature. By using synthetic
DNA it is possible to combine different functional domains
for a fusion protein, merging cell adhesion and migration,
mechanical properties and antimicrobial factors, towards
multifunctional biomaterial systems. This approach elimi-
nates the need to use chemical methodologies for covalent
binding of bioactive motifs or crosslinking, which can have
drawbacks of protein denaturation and residuals with tox-
icity. Although there has been a significant progress in
exploiting genetic engineering for tissue engineering and
regenerative medicine purposes during recent years, there
remains a lot to be explored in order to take full advantage
of the outstanding potential of genetic engineering to be
used as a tool in the development of the next generation of
custom-design biomaterials.
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