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Abstract: The integration of Software components within complex industrial ap-
plications with severe security standards, requires strict quality assessment of each
integrated component. That is, requires a guarantee that each component is compli-
ant with the software development good practices and all the standards in use. If
full certification is easy to obtain for proprietary modules, it is particularly hard to
achieve when dealing with Open-Source Software pieces, demanding for rigorous
methods and techniques to implement their certification process.

In this context, code analysis plays an important role as the basis for the automatiza-
tion of quality assessment of open source software projects – code analysis provides
the techniques and tools to implement the necessary validation process. Although
source code is still the most explored (the main support for analysis), nowadays this
assessment process should be able to deal with code at different compilation levels.

Due to its relevance for the open source software certification task, this paper re-
views code analysis area (stages of the analyzing process, traditional approaches,
and future trends), aiming at identifying what is available, and what deserves fur-
ther research.

Keywords: Code Analysis, Data Extraction, Information Representation

1 Introduction

The increasing amount of software developed in the last few years have produced a growing
demand for programmers and programmer productivity to maintain it working along the years.
During maintenance, the most reliable and accurate description of the behavior of a software
system is its source code. Even nowadays, when modern software projects start with the con-
struction of models (e.g. using the UML) that can be “compiled” to traditional source code, source
code is still considered “the truth” and “the system” (because the generated code is incomplete
and requires that the programmers complete it by hand).

So, Source Code Analysis—according to David Binkley, in [Bin07], the process of extracting
information about a program from its source code or artifacts generated from the source code
using automatic tools—is crucial to support maintenance. However, given the complexity of
modern software, the manual analysis of code (source code, intermediate, or machine code), is
costly and ineffective. A more viable solution is to resort to tool support. Such tools provide
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information to programmers that can be used to coordinate their efforts and improve their overall
productivity. The information provided is composed by data items such as: Identifiers Table, Ab-
stract Syntax Tree (AST) or Decorated Abstract Syntax Tree (AST), Control Flow Graph (CFG),
Value Dependence Graph (VDG), Call Graph, Module Dependence Graph (MDG), Trace Flow
Graph (TFG), Static Single Assignment (SSA), etc. Those tools must be able to cope with the two
complementary approaches to code analysis: static and dynamic. In both of them, the extracted
information must be coherent with the language semantics, in order to help a programmer gain
insight of the source code’s meaning.

In this context, we are not concerned with software maintenance; instead, our motivation is
the open-source software certification. However we strongly believe that code analysis methods
and the knowledge extractable with them (distributed by components like those listed above) can
also support the OSS verification process.

The remainder of this chapter is organized as follow. In section 2 are presented the stages of
a typical code analysis. In section 4 some current code analysis techniques are discussed. We
close the paper with some remarks and research trends in section 5.

2 Code Analysis Anatomy

Under the umbrella of code analysis, there are many techniques used to handle static and dy-
namic information relevant to characterize the syntax (structures) and semantics (behavior) of a
program. However this mess of algorithms and data structures can be organized in three main
components needed for code analysis: a) data extraction; b) information representation; and c)
knowledge exploration. These components, their purpose and possible approaches and imple-
mentations will be discussed in the rest of this section.

2.1 Data extraction

The process of retrieving data out of data sources for further data processing or data storage is
named data extraction. The export of that data into an intermediate representation is a common
strategy to make easier the data analysis/transformation and possibly the addition of metadata,
facilitate prior to export to another stage in the data workflow.

In the context of code analysis this process is usually executed by a syntactic analyzer, or
parser. It parses the code into one or more internal representations. A parser is the part of a com-
piler that goes through a program and cuts it into identifiable parts (commonly called chunks) be-
fore translation, each chunk more understandable than the whole. Basically, the parser searches
for patterns of operators and operands to group the source string into smaller but meaningful
chunks.

Parsing is the necessary evil of most code analyses. While not theoretically difficult, the
complexities of modern programming languages, in particular those that are not LR(1) [AU72]
and those incorporating some kind of preprocessing make harder code analysis significantly,
as will be seen in section 4.1. Parsers are supported by lexical analyzers that convert character
sequences into words (the language terminal symbols) and extract their real semantic value. They
are complemented by semantic analyzers that evaluate the concrete meaning of the chunks.
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2.2 Information representation

After extracting from the code the relevant information, there is a need to represent it in a more
abstract form. This is the second component of code analysis: storage of the collected data
into an internal representation (IR), such that data is kept grouped in meaningful parts and the
relations among them are also stored to give sense to the whole. The main goal of this phase is
to abstract a particular aspect of the program into a form more suitable for automated analysis.
Essentially, an abstraction is a sound, property-preserving transformation to a smaller domain.
Some internal representations are produced directly by the parser (e.g. Abstract Syntax Trees
(AST), Control Flow Graphs (CFG), etc), while others require the result of prior specific analyses
(e.g., dependence graphs requires prior pointer analysis).

Many internal representations raise from the compilers area. Generally, the most common in-
ternal representations use graphs (specially if they degenerate in forms such as trees) — the most
widely used are the Control Flow Graph (CFG), the Call Graph. A Value Dependence Graph
(VDG) is another graph variant that improves (at least for some analysis) the results obtained
using the Single Static Assignment (SSA) form. VDGs represent control flow as data flow and
thus simplify analyses [WCES94].

Another commonly used graph is the Dependence Graph, introduced in the context of work
with parallelizing and highly optimizing compilers [FOW87], where vertices represent the state-
ments and predicates of a program. These graphs have been used in other analyses [HRB88,
HR92]. A related kind of graph, the Module Dependency Graph (MDG), used by Bunch tool,
represents programs at a coarser level of granularity. Its vertices represent modules of the system
and edges represent the dependencies between them [MMCG99].

Other sorts of graphs, also referred in the literature, include Dynamic Call Graphs [QH04,
PV06] (is intended to record an execution of a program) and XTA graphs built in support of
dynamic reachibility-based interprocedural analysis [QH04]. These techniques are required to
analyze code written in languages such as Java that include dynamic class loading.

Finally, the Trace Flow Graph is used to represent concurrent programs [CCO01].
All of the variants of graphs or other internal representations presented are actually used ac-

cording to the type of analysis and the desired results of that analysis. In real applications, it is
common to combine different kinds of graphs or AST with Identifier Tables (or similar mapping)
in such a way that enriches and structures the information extracted.

2.3 Knowledge Exploration

After organizing the data extracted into an intermediate representation that makes or transforms
it into information, the third component of code analysis is aimed at knowledge inference. This
process requires that the pieces of the information be stored, interconnected and also be inter-
related with previous knowledge. This can be achieved using quantitative or qualitative methods.
Concerning quantitative methods, resorting to program metrics is the most commonly used ap-
proach. Concerning qualitative methods, name analysis, text and data mining, and information
retrieval are the most widely used. Visualization techniques are crucial for the effectiveness of
this process.

3 / 10 Volume X (2009)



Survey on Code Analysis Area

3 Code Analysis Strategies

According to Binkley [Bin07], the main strategies for code analysis could be classified as fol-
lows: static versus dynamic, sound versus unsound, flow sensitive versus flow insensitive, and
context sensitive versus context insensitive.

3.1 Static vs dynamic

Static analyses analyze the program to obtain information that is valid for all possible executions.
Dynamic analyses instrument the program to collect information as it runs. The results of a
dynamic analysis are typically valid for the run in question, but result no guarantees regarding
other runs. For example, a dynamic analysis for the problem of determining the values of global
variables could simply record the values as they are assigned. A static analysis might analyze
the program to find all statements that potentially affect the global variables, then analyze the
statements to extract information about the assigned values.

Dynamic analysis has the advantage that detailed information about a single execution is typi-
cally much easier to obtain than comparably detailed information that is valid over all executions.

Another significant advantage of dynamic tools is the precision of the information that they
provide, at least for the execution under consideration. Virtually all static analyses extract prop-
erties that are only approximations of the properties that actually hold when the program runs.
The trade-off, of course, is that the properties extracted from one execution may not hold in all
executions; the size of dynamic data extracted could also be a handicap.

Some techniques sit in between and most analyses require their combination.

3.2 Sound vs unsound

A deductive system is sound with respect to a given semantics if it proves valid arguments only.
So, a sound analysis makes correctness guarantees. Sound static analyses produce information
that is guaranteed to hold on all program executions; sound dynamic analyses produce informa-
tion that is guaranteed to hold for the analyzed execution alone.

Unsound analyses make no such guarantees. A sound analysis for determining the potential
values of global variables might, for example, use pointer analysis to ensure that it correctly
models the effect of indirect assignments that take place via pointers to global variables. An
unsound analysis might simply scan the program to locate and analyze only assignments that
use global variables directly, by name. Because such an analysis ignores the effects of indirect
assignments, it may fail to compute all of the potential values of global variables.

It can be strange why an engineer will be interested in unsound analysis. However, in many
cases, the information from an unsound analysis is correct, and even when incorrect, it may
provide a useful starting point for further investigation. Unsound analyses are therefore often
quite useful for those faced with the task of understanding and maintaining legacy code.

The most important advantages of unsound analyses, however, are their ease of implementa-
tion and efficiency. An unsound analysis may thus be able to analyze programs that are simply
beyond the reach of the corresponding sound analysis, and may be implemented with a small
fraction of the implementation time and effort required for the sound analysis. These points
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justify the continuing importance of unsound analyses.
A slightly different concept from sound analysis is the notion of safe analysis. Qualifying a

static analysis as safe means that the answer is precise on “one side”.

3.3 Flow sensitive vs Flow insensitive

A flow-sensitive analysis takes the execution order of the program statements into account. It
normally uses some form of iterative dataflow analysis to produce a potentially different analysis
result for each program point. Flow-insensitive analyses do not take the execution order of
the program statements into account, and is therefore incapable of extracting any property that
depends on this order. They often use some form of type-based or constraint based analysis to
produce a single analysis result that is valid for the entire program.

In contrast, a flow-insensitive analysis treats the statements of a program as an unordered col-
lection and must produce conservative results that are safe for any order. In the above example,
a flow-insensitive analysis must include in its results the fact that q might point to a or b. This
reduction in precision comes with a reduction in computational complexity.

3.4 Context sensitive vs Context insensitive

Many programming languages provide constructs such as procedures that can occur in different
contexts. Roughly speaking, a context-insensitive analysis produces a single result that is used
directly in all contexts.

A context-sensitive analysis produces a different result for each different analysis context.
The two primary approaches are to reanalyze the construct for each new analysis context, or to
analyze the construct once (typically in the absence of any information about the contexts in
which it will be used) to obtain a single parameterized analysis result that can be specialized for
each analysis context.

Context sensitivity is essential for analyzing modern programs in which abstractions (such as
abstract datatypes and procedures) are pervasive.

4 Code Analysis Challenges

In previous section, we review the traditional strategies that are actually in use. However, the in-
trinsic complexity of such tasks combined with the natural evolution of programming languages
and systems integration, implies the existence of various open topics. In this section we present
such challenges that are being posed to code analysis.

For the sake of space, for each referred challenge we just characterize it briefly, cite the work
done and sum up with future trends.

4.1 Language Issues

In the last few years, many enhancements have been made to programming languages. For
instance, the introduction of concepts such as dynamic class loading and reflection in languages
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such as Java and C#, respectively, has contributed to advance the state of the art of programming
languages.

These concepts and also the presence of casting, pointer arithmetic, anonymous types and the
like make the task of parsing a difficult task.

Modern languages increasingly require tools for high precision source code analysis to handle
only partially known behavior (such as generics in Java, plug-in components, reflection, user-
defined types, and dynamic class loading). These features increase flexibility at run-time and
impose a more powerful dynamic analysis, but compromise static analysis.

4.2 Multi-Language Analysis

Many modern software systems are heterogeneous, i.e., they are composed of modules written
in different programming and specification languages. Current software development tools, e.g.,
Integrated Development Environments (IDEs), cannot analyze these mixed-language systems as
a whole, since they are too closely related to a particular programming language and do not
process mixed-language systems across language boundaries.

So, multi-language analysis grows more and more important as systems are progressively
more heterogeneous. Even a simple Java program can consist of Java-source and -bytecode
components. A larger system, e.g., a web application, may join SQL, HTML, and Java codes on
the server site and additional languages on the client site. For example, the Visual Studio .Net
environment merges languages such as ASP, HTML, C#, J#, and Visual Basic.

The key for a multi-language analysis is a common meta-model to capture the concepts of
each programming language, as proposed by [SKL06]. Within this solution, the minimal set of
features that need to be implemented for each new type include parsing, syntax mappings, and
semantic analysis functions. Also, might be necessary to extend the constructs in order to capture
properties of a new language.

4.3 Real-Time analysis

As previously referred, static analysis is usually faster than dynamic analysis but less precise.
Therefore it is often desirable to retain information from static analysis for run-time verifica-
tion, or to compare the results of both techniques. It would be desirable to share the same
generic algorithm by static and dynamic analysis. Although many work has been done in this
area [MLL05, GSH97], there other kind of analysis that should be considered: real-time analysis.

This research problem has two distinct facets: compile-time and run-time. Self-healing code1

and instrumented code are run-time examples. Here analysis is being done real time while the
program is executing. The archetypical example of this idea is just-in-time compilation.

Looking forward, more such processing can be done in real-time. For instance, code coverage
and memory-leak analysis might be performed, at least partially, at compile time instead of at
run-time. This has the advantage of providing information about a piece of code that is current
focus of the programmer.

1 While no consensus-based definition of the term “self-healing” exists, intuitively, these systems automatically
repair internal faults.
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4.4 Analyzing executables

In the past years a considerable amount of research activity has developed static-analysis tools to
find bugs and vulnerabilities. However, most of the effort has been on static-analysis of source
code, and the issue of analyzing executables was ignored. In the security context this is particu-
larly unfortunate because source code analysis can fail to detect certain vulnerabilities, due to the
phenomenon: “What You See Is Not What You eXecute” (WYSINWYX). That is, there can be a
mismatch between what a programmer intends and what is actually executed on the processor.

Many efforts have been made to improve the recovery of IRs through the analysis of executa-
bles [RBL06, Wal91, RBL06]. However, there is still a need to further develop this area to cover
other aspects like dynamic languages, object-oriented programming languages and so on.

4.5 Information Retrieval

In the last years, Information Retrieval has blossomed with the growth of the Internet and the
huge amount of information available in electronic form. Some applications of Information Re-
trieval to code analysis include automatic link extraction [ZB04], concept location [MSRM04],
software and website modularization [GMMS07], reverse engineering [Mar], software reuse im-
pact analysis [SR03, FN87], quality assessment [LFB06], and software measurement [HSS01].

These techniques can be used to estimate a language model for each “document” (e.g. a source
file, a class, an error log, etc) and then a classifier can be used to score each model. Much of
this work has a strong focus on program identifiers [LMFB06]. Unlike other approaches that
consider non-source documents, this approach focuses exclusively on the code. It divides each
source code module into two documents: one includes the comments and the other the executable
source code.

To date, the application of IR has concentrated on processing the text from source and non-
source (which can be just as important as source) software artifacts using only a few developed
IR techniques. Given the growing importance of non-source documents, source code analyses
should in time develop new IR-based algorithms specifically designed for dealing with source
code.

4.6 Data Mining

Recently the mining of software-related data repositories has started. Techniques such as the
analysis of large amounts of data require significant computing resources and the application of
techniques such as pattern recognition [PM04], neural networks [LSL96], and decision trees [GFR06],
which have advanced dramatically in recent years.

Most existing techniques have been proposed by software engineering researchers, who often
reuse simple data mining techniques such as association mining and clustering. A wider selection
of data mining techniques should be more widely applied that removes the requirement that
existing systems fit the features provided by existing mining tools.

Data mining is also being applied to software comprehension. In [KT04], the authors propose
a model and associated method to extract data from C++ source code which is subsequently to be
mined, and evaluate a proposed framework for clustering such data to obtain useful knowledge.
It is thus clear that there is a demand for the adaptation or development of more advanced data
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mining methods.

Other future challenges in code analysis will emerge, such as real-time verification; and im-
proved support for user interaction — rather than being asked to make a collection of similar
low-level choices, tools will ask about higher level-patterns that can be used to avoid future
questioning. Code analysis tools will also need to use information from edit, compile, link, and
run-time and continue to include a combination of multiple views of a software system such as
structure, behavior, and run-time snapshots, that is what is being proposed in this thesis.

5 Conclusion

To be feasible to study Open-Source Software properties, for instance to check its compliance
with programming and security standards, it is necessary to inspect the source code in order to
extract its syntactic structure, its partial content and its overall meaning. This is systematically
done using a set of techniques known as code analysis that can be grouped into three major
components: data extraction; information representation; and knowledge exploration. Static
Data Extraction is usually done in three steps: lexical, syntactic, and semantic analysis. Code
instrumentation based methods can also be used complementary to collect dynamic (runtime)
data. Data items so far obtained are gathered in appropriate data structures—Abstract Syntax
Tree, Identifiers Table, and Graphs—to form an Information Repository.

Nowadays it comes to the evidence that more powerful analysis techniques are necessary to
overcome the problems raised up by the existence of open-source software systems based on
components available at different compilation stages (source, intermediate, and machine levels).
From this fact rose up the need of a platform (with new extraction strategies and techniques)
where exploration (the third analysis stage) can be done in an uniform way.

Manual or automatic inference mechanisms are then applied to that information repository to
explore it, producing new Knowledge. The complexity of those inference algorithms requires a
sensitive balance between precise and unprecise approaches; while the former produces complete
outcomes at an high cost, the latter produces, at a reasonable cost, incomplete results that many
times are satisfactory.

Code analysis was reviewed along the paper as it provides the foundations to implement the
software certification process.
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[GMMS07] U. Güntzer, R. Müller, S. Müller, R.-D. Schimkat. Retrieval for decision support resources
by structured models. Decis. Support Syst. 43(4):1117–1132, 2007.
doi:http://dx.doi.org/10.1016/j.dss.2005.07.004

[GSH97] R. Gupta, M. L. Soffa, J. Howard. Hybrid slicing: integrating dynamic information with
static analysis. ACM Trans. Softw. Eng. Methodol. 6(4):370–397, 1997.
doi:http://doi.acm.org/10.1145/261640.261644

[HR92] S. Horwitz, T. Reps. The use of program dependence graphs in software engineering.
In ICSE ’92: Proceedings of the 14th international conference on Software engineering.
Pp. 392–411. ACM, New York, NY, USA, 1992.
doi:http://doi.acm.org/10.1145/143062.143156

[HRB88] S. Horwitz, T. Reps, D. Binkley. Interprocedural slicing using dependence graphs. In Pro-
ceedings of the ACM SIGPLAN ’88 Conference on Programming Language Design and
Implementation. Volume 23(7), pp. 35–46. Atlanta, GA, June 1988.
http://citeseer.ist.psu.edu/horwitz90interprocedural.html

[HSS01] U. Hanani, B. Shapira, P. Shoval. Information Filtering: Overview of Issues, Research and
Systems. User Modeling and User-Adapted Interaction 11(3):203–259, 2001.
doi:http://dx.doi.org/10.1023/A:1011196000674

[KT04] Y. Kanellopoulos, C. Tjortjis. Data Mining Source Code to Facilitate Program Comprehen-
sion: Experiments on Clustering Data Retrieved from C++ Programs. iwpc 00:214, 2004.
doi:http://doi.ieeecomputersociety.org/10.1109/WPC.2004.1311063

[LFB06] D. J. Lawrie, H. Feild, D. Binkley. Leveraged Quality Assessment using Information Re-
trieval Techniques. In ICPC ’06: Proceedings of the 14th IEEE International Conference
on Program Comprehension. Pp. 149–158. IEEE Computer Society, Washington, DC, USA,
2006.
doi:http://dx.doi.org/10.1109/ICPC.2006.34

[LMFB06] D. Lawrie, C. Morrell, H. Feild, D. Binkley. What’s in a Name? A Study of Identifiers. In
ICPC ’06: Proceedings of the 14th IEEE International Conference on Program Compre-
hension. Pp. 3–12. IEEE Computer Society, Washington, DC, USA, 2006.
doi:http://dx.doi.org/10.1109/ICPC.2006.51

[LSL96] H. Lu, R. Setiono, H. Liu. Effective Data Mining Using Neural Networks. IEEE Trans. on
Knowl. and Data Eng. 8(6):957–961, 1996.
doi:http://dx.doi.org/10.1109/69.553163

[Mar] A. Marcus. PhD thesis.

[MLL05] M. Martin, B. Livshits, M. S. Lam. Finding application errors and security flaws using PQL:
a program query language. SIGPLAN Not. 40(10):365–383, 2005.
doi:http://doi.acm.org/10.1145/1103845.1094840

9 / 10 Volume X (2009)



Survey on Code Analysis Area

[MMCG99] S. Mancoridis, B. S. Mitchell, Y. Chen, E. R. Gansner. Bunch: A Clustering Tool for the
Recovery and Maintenance of Software System Structures. In ICSM ’99: Proceedings of the
IEEE International Conference on Software Maintenance. P. 50. IEEE Computer Society,
Washington, DC, USA, 1999.

[MSRM04] A. Marcus, A. Sergeyev, V. Rajlich, J. I. Maletic. An Information Retrieval Approach to
Concept Location in Source Code. In WCRE ’04: Proceedings of the 11th Working Con-
ference on Reverse Engineering. Pp. 214–223. IEEE Computer Society, Washington, DC,
USA, 2004.

[PM04] S. K. Pal, P. Mitra. Pattern Recognition Algorithms for Data Mining: Scalability, Knowledge
Discovery, and Soft Granular Computing. Chapman & Hall, Ltd., London, UK, UK, 2004.

[PV06] S. Pheng, C. Verbrugge. Dynamic Data Structure Analysis for Java Programs. In ICPC
’06: Proceedings of the 14th IEEE International Conference on Program Comprehension.
Pp. 191–201. IEEE Computer Society, Washington, DC, USA, 2006.
doi:http://dx.doi.org/10.1109/ICPC.2006.20

[QH04] F. Qian, L. Hendren. Towards dynamic interprocedural analysis in JVMs. In VM’04: Pro-
ceedings of the 3rd conference on Virtual Machine Research And Technology Symposium.
Pp. 11–11. USENIX Association, Berkeley, CA, USA, 2004.

[RBL06] T. Reps, G. Balakrishnan, J. Lim. Intermediate-representation recovery from low-level code.
In PEPM ’06: Proceedings of the 2006 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation. Pp. 100–111. ACM, New York, NY, USA,
2006.
doi:http://doi.acm.org/10.1145/1111542.1111560

[SKL06] D. Strein, H. Kratz, W. Lowe. Cross-Language Program Analysis and Refactoring. In SCAM
’06: Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and
Manipulation. Pp. 207–216. IEEE Computer Society, Washington, DC, USA, 2006.
doi:http://dx.doi.org/10.1109/SCAM.2006.10

[SR03] E. J. Stierna, N. C. Rowe. Applying information-retrieval methods to software reuse: a case
study. Inf. Process. Manage. 39(1):67–74, 2003.
doi:http://dx.doi.org/10.1016/S0306-4573(02)00025-0

[Wal91] D. W. Wall. Systems for Late Code Modification. In Code Generation. Pp. 275–293. 1991.

[WCES94] D. Weise, R. F. Crew, M. Ernst, B. Steensgaard. Value dependence graphs: representation
without taxation. In POPL ’94: Proceedings of the 21st ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. Pp. 297–310. ACM, New York, NY, USA, 1994.
doi:http://doi.acm.org/10.1145/174675.177907

[ZB04] J. Zeng, P. A. Bloniarz. From Keywords to Links: an Automatic Approach. In ITCC ’04:
Proceedings of the International Conference on Information Technology: Coding and Com-
puting (ITCC’04) Volume 2. P. 283. IEEE Computer Society, Washington, DC, USA, 2004.

Proc. OpenCert 2009 10 / 10


