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“We know more about the movement of celestial bodies than 

about the soil underfoot”. 

Leonardo Da Vinci
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ABSTRACT 

The interest in environmental soil science has been growing in the last years due 

to the continuous degradation of this major natural resource. With this in mind, and 

because chromium and lead are two of the most toxic heavy metals frequently detected 

as soil contaminants in the Portuguese territory, the study and development of few 

remediation techniques and the indissociable description of the sorption and migration 

of these two heavy metals in soils, were the main objectives of the research work 

described in this thesis. 

Primarily, a representative sample of a typical loamy sand soil was collected in 

Porto, Portugal, in a zone of intense agriculture activity. This soil was used for a series 

of tests concerning the adsorption, transport and fate of the two targeted metals, as well 

as the main factors affecting it like pH, contaminant concentration and competition. The 

adsorption equilibrium of both metals was evaluated through the fitting of eight 

isotherm models to each experimental data set. The best fitting was observed for the 

Redlich-Peterson and Khan models for the adsorption of chromium and of lead, 

respectively. On its turn, the sorption kinetics was evaluated using three models - 

Elovich, pseudo first order and an empirical power function. The retention of lead was 

almost instantaneous and the empirical power function described better the sorption 

kinetics of chromium. Then, flow experiments were performed with effluents with both 

metals. Results revealed a high retention of chromium and a weak retention of lead, for 

low pH values. In consequence of the distinctive results obtained for chromium, a closer 

analysis was performed to the sorption and fate of this metal. It was observed that the 

sorption of hexavalent chromium decreased with increasing pH and that chromium 

retention increased with the increasing of its concentration in the influent solution. Also, 

the fitting of a continuous model - convection dispersion two site non-equilibrium - 

showed that isotherm models - Freundlich and Langmuir - tended to underestimate the 

adsorption parameters, even following the same trend when the pH of the contaminant 

solution was altered. Then, and because heavy metals are frequently identified as co-

contaminants, the scenario of co-contamination was also evaluated for the focused soil. 

In order to do that the sorption and transport of five metals - Cr, Pb, Cd, Cu and Zn - 

was evaluated. The tests were undertaken in batch and continuous systems, using 

single- and multiple-metal acid solutions. In accordance to the type of assay - batch or 
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continuous - proper theoretical models were once more fitted and, as expected, the 

influence of competition was observed either in batch and continuous systems, but with 

different tendencies. The FTIR spectra revealed always the notorious influence of clay 

minerals and organic matter in the metals sorption. 

The application of a biological remediation technique was evaluated in the 

attenuation of the effects of hexavalent chromium on this soil. A bioleaching technique, 

using an Acidithiobacillus thiooxidans DSM504 pure culture was actually tested. Batch 

tests were performed to evaluate the effect of the operational temperature, the 

hexavalent chromium concentration and the pH of the contaminant solution. Removal 

values between 33.3% and 83.3% were obtained and the pH was identified as the major 

factor influencing the technique efficiency. Generally, high removal values were 

associated with acidic contaminations. 

The cleaning of soils contaminated with lead was later approached, by the 

application of chemical washing to a highly contaminated soil. Batch desorption tests 

were performed applying single and composed desorption solutions to soil samples 

contaminated only with lead or co-contaminated with a polycyclic aromatic 

hydrocarbon, as these compounds are frequently found in sites contaminated with lead. 

Extraction levels around 100% were obtained by applying single or composed 

extraction solutions to the soil contaminated only with lead. Moreover, extractions of 

48% and 55% were obtained for lead and phenanthrene, respectively, applying a 

composed solution to a co-contaminated soil. 

The application of a novel technique comprising an electrochemical and a 

biological component was tested in the cleaning of soil contaminated with hexavalent 

chromium. In order to do that, biobarriers composed by Arthrobacter viscosus bacteria, 

supported either in activated carbon or zeolite, were placed before the anode chamber of 

the electrokinetic cells, aiming the reduction of the hexavalent chromium migrating in 

its direction. Removal values of 60% and 79% were obtained with zeolite and activated 

carbon biobarriers, respectively, for a test period of eighteen days. 

Ultimately, this thesis pretends to be a tool for policies and decision makers, 

through the transport and fate studies, but also for the industrial sector aiming the 

development and application of the cleaning techniques herein explored on such a 

valuable resource frequently forgotten and ignored: THE SOIL. 
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RESUMO 

Ultimamente, o ramo de tecnologia ambiental da ciência do solo tem sido alvo de 

crescente interesse, dada a contínua degradação deste importante recurso natural. Posto 

isto, e porque tanto o crómio como o chumbo são metais pesados bastante tóxicos, 

frequentemente detectados em concentrações poluentes no território Português, o estudo 

do desenvolvimento de técnicas de remediação, e indissociavelmente, da sorção e 

migração destes dois metais no solo, foram os principais objetivos do trabalho de 

investigação descrito nesta tese. 

Primeiramente, uma amostra representativa de um típico solo argilo - arenoso foi 

recolhida numa zona de grande atividade agrícola localizada no Porto, Portugal. Este 

solo foi utilizado para uma série de testes relacionados com a sorção e transporte dos 

dois metais pesados visados e com os principais fatores que influenciam estes 

fenómenos como o pH, a concentração dos metais e a presença de outros contaminantes. 

O equilíbrio de adsorção dos dois metais foi avaliado através do ajuste de oito modelos 

isotérmicos aos respectivos dados experimentais. Os melhores ajustes foram observados 

com os modelos de Redlich-Peterson e Khan, para o crómio e chumbo, respectivamente. 

Por sua vez, a cinética de sorção foi avaliada através do ajuste dos modelos de Elovich, 

de pseudo-primeira-ordem e de uma função exponencial empírica. Verificou-se que o 

chumbo foi instantaneamente retido e que a cinética de sorção de crómio é ajustada 

satisfatoriamente pela função exponencial empírica. Foram então realizados ensaios em 

contínuo, com efluentes com ambos os metais. Verificou-se uma alta retenção de 

crómio e uma fraca retenção de chumbo, para baixos valores de pH. Posteriormente, 

uma análise mais detalhada à sorção e transporte do crómio hexavalente confirmou a 

diminuição da adsorção de crómio hexavalente com o aumento do pH, e também um 

aumento da sua retenção fruto do aumento da concentração no afluente. O ajuste de um 

modelo contínuo, considerando o transporte em condições de não-equilíbrio, mostrou 

que os modelos isotérmicos - Freundlich e Langmuir – resultam na subestimação dos 

parâmetros de adsorção para o crómio hexavalente. Depois, e porque os metais pesados 

são frequentemente identificados como co-contaminantes, o cenário de co-

contaminação foi avaliado através do estudo da sorção e transporte de cinco metais - Cr, 

Pb, Cd, Cu e Zn. Os testes foram realizados em sistema fechado e aberto, utilizando 

soluções ácidas mono- e multi-metálicas. De acordo com o tipo de ensaio - fechado ou 
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aberto - foram mais uma vez ajustados os modelos teóricos adequados, que traduziram a 

influência da competição, tanto em sistemas fechados como abertos, mas com diferentes 

tendências. Os espectros de FTIR revelaram sempre a grande influência dos 

argilominerais e da matéria orgânica na retenção de ambos os metais pelo solo. 

Finalizados os testes de sorção e transporte, a aplicação da remediação biológica 

foi avaliada para atenuação dos efeitos de crómio hexavalente no solo, através da 

aplicação de uma técnica de biolixiviação, utilizando uma cultura pura de 

Acidithiobacillus thiooxidans DSM504. Realizaram-se ensaios em sistema fechado para 

avaliar o efeito da temperatura de operação, da concentração de crómio hexavalente e 

do pH da solução contaminante. Os valores de remoção registados, cuja variação 

dependeu essencialmente do pH, variaram entre 33,3% e 83,3%,. Geralmente, os 

valores de remoção mais altos estiveram associados com cenários de contaminação mais 

ácida. 

A descontaminação de solos contendo chumbo foi abordada através da aplicação 

da lavagem química a um solo altamente contaminado. Foram realizados testes de 

dessorção em sistema fechado, aplicando soluções de extração simples e compostas a 

amostras contaminadas apenas com chumbo ou também com fenantreno, uma vez que 

este composto é encontrado frequentemente em áreas contaminadas com chumbo. 

Obtiveram-se remoções em torno de 100%, através da aplicação de soluções de extração 

simples ou compostas para o solo contaminado apenas com chumbo. Para o solo co-

contaminado, registaram-se extrações de 48% e 55% para o chumbo e para o 

fenantreno, respectivamente, aquando da aplicação de uma solução composta. 

A aplicação de uma nova técnica, conjugando uma componente eletroquímica e 

outra biológica, foi testada na descontaminação de solos com crómio hexavalente. 

Acoplaram-se biobarreiras compostas por Arthrobacter viscosus suportada em carvão 

ativado ou zeólito antes da câmara anódica das células eletrocinéticas, visando assim a 

redução do crómio hexavalente que migra nesta direção. Foram obtidos valores de 

remoção de 60% e 79%, utilizando biobarreiras de zeólito e carvão ativado, 

respectivamente, para um período dezoito dias. 

Em última análise, esta tese pretende ser uma ferramenta para políticos e 

legisladores, através dos estudos de transporte, mas também para o setor industrial no 

que respeita ao desenvolvimento e aplicação das técnicas de descontaminação aqui 

exploradas a um recurso tão valioso: O SOLO. 
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Concentration of contaminant in the liquid phase at varying 
contact times 

 kg m-3 
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1.  SOILS AND SOIL SCIENCE

The beginning of the exploitation and exploration of soil dates back to the 

Neolithic period, at 10 000 years ago, by the time of th

Since then, humans developed a very close relation with soils and in the beginning of 

the Renaissance several soil studies were attributed to European scientists. By that time, 

soil science was not yet an independent research

worldwide scientific discipline, occurred later on in the second half of the 

century [2,3]. Nowadays, soil science is widespread and it is beyond agricultural 

research: soil chemistry, physics, pedology, biolog

disciplines of soil science. The milestone

discipline, can be consulted in 

research fields that actually present a faster develo

issues, like soil and groundwater contamination and its perniciousness to human health 

[2,4,5].  

 

Figure 1.1.  Remarkable milestones on the soil science development

was based
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The beginning of the exploitation and exploration of soil dates back to the 

Neolithic period, at 10 000 years ago, by the time of the Agricultural Revolution 

Since then, humans developed a very close relation with soils and in the beginning of 

the Renaissance several soil studies were attributed to European scientists. By that time, 

soil science was not yet an independent research field and its consolidation, as a 

worldwide scientific discipline, occurred later on in the second half of the 

. Nowadays, soil science is widespread and it is beyond agricultural 

research: soil chemistry, physics, pedology, biology and mineralogy are already sub
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issues, like soil and groundwater contamination and its perniciousness to human health 
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d in the information collected by Churchman [5]. 

CHAPTER 1| Soils, Heavy Metals and Remediation Technologies 

The beginning of the exploitation and exploration of soil dates back to the 

e Agricultural Revolution [1]. 

Since then, humans developed a very close relation with soils and in the beginning of 

the Renaissance several soil studies were attributed to European scientists. By that time, 

field and its consolidation, as a 

worldwide scientific discipline, occurred later on in the second half of the nineteenth 

. Nowadays, soil science is widespread and it is beyond agricultural 

y and mineralogy are already sub-

, characterizing the start up of each sub-

1. Nonetheless, it should be noted that the 

pment are related to environmental 

issues, like soil and groundwater contamination and its perniciousness to human health 

 

chronogram construction 



CHAPTER 1| Soils, Heavy Metals and Remediation Technologies 

 

 
Fonseca, B | 2011 4 

In the same way of its science, the understanding and definition of soil is in 

constant evolution, clearly depending on the type and level of knowledge. There are 

several soil concepts according with the activity and knowledge of who is studying it. 

However, its utmost importance as a habitat of living matter and as interface for water 

and nutrient distribution is unquestionable [6]. In this document, few environmental 

issues like the sorption and fate of pollutants in soils and its remediation will be tackled. 

Therefore, the most appropriated definition is the one adopted in the environmental soil 

chemistry, which describes soils as a heterogeneous open system composed by air, 

water, inorganic and organic solids, resultant from biological, geological and hydrologic 

weathering processes [7,8]. 

 

1.1.  Soil 

Actually, soil is succinctly described in the Thematic Strategy for Soil Protection 

of the European Commission “as the top layer of earth’ crust, formed by mineral 

particles, organic matter, water, air and living organisms. It is the interface between 

earth, air and water and hosts most of the biosphere” [9]. However, this layer is different 

from site to site and depends essentially on the type of the parent material and its 

exposition to specific weathering processes. There are more than 320 major soil types in 

Europe, diverging on their depth, color, structure, texture, consistency, nutrients, 

acidity, mineralogy and organic matter, for example [6,9,10]. Attempting a detailed 

explanation of these phenomena and their results, the soil horizonation, composition and 

classification are issues briefly developed bellow.  

 

1.2.  Soil horizonation 

As mentioned above, soils result primarily from the weathering of a parental rock. 

Then, the mineral weathered layer is gradually colonized by living organisms that bring 

an organic character to the soil. Finally, the accumulation and organization of the 

mineral and the organic materials results in a unique soil layer, known as the soil profile 

[6]. The soil profile corresponds to the vertical section comprehended between the soil 

surface and the parental material. Its observation allows the identification of seven 

horizontal layers differing between each other in their chemical, physical and biological 

characterization. These layers correspond to the soil horizons and result, essentially, 
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from translocation processes of the mineral and organic materials by water and /or 

gravity [11,12]. According to the FAO/UNESCO designation, the seven master 

horizons of soils are denominated by the capital letters H, O, A, E, B. C and R [13]. 

Table 1.1 compiles a brief description of each horizon, considering the FAO directives. 

 

Table 1.1.  Soil horizon designations according to the FAO/UNESCO directives 

  Horizon  Description 

Surface     

  H  
Composed essentially by organic material; saturated with water; located 

on top of mineral soils or buried at any depth beneath the surface. 

     

  O  

Composed essentially by organic matter and litter (leaves, needles, 

twigs, etc.); located on top of mineral or organic soils; not saturated with 

water; the mineral fraction generally presents less than half of its weigh. 

     

  A  

Mineral horizon located at the surface or below an O horizon; composed 

by humified organic matter mixed with mineral material; it usually 

presents a darker color. 

     

  E  

Mineral horizon with brighter colors due to the loss of silicate clays, 

aluminum and the consequently higher quantity of sand and silt 

particles; usually located near the surface, below an O or A horizon and 

above a B horizon. 

     

  B  

Mineral horizon formed below an A, E, O or H horizon; composed 

essentially by silicate clays, iron, aluminum and little organic matter; 

usually known as illuvial layer. 

     

  C  

Mineral horizon little affected by pedogenetic processes and lack 

properties of H, O, A, E or B horizons; the chemical, physical and 

mineralogical composition is usually very similar to the parental 

material. 

     

  R  

Hard bedrock underlying the soil; may correspond or not to the parental 

rock; granite, basalt, quartzite and indurate limestone or sandstone are 

examples of bedrock. 

Bedrock     

 

It should be noted that soils may have several parental materials and that the 

origin of layering is actually explained by a panoply of simple and complex models. 
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Therefore, the horizons may diverge on their depth, color, text

nutrients among other characteristics. T

easily identified or be diffused, occurring gradually 

 

1.3.  Soil composition 

In the broad sense of the concept, soils are composed by the solid and porous 

phases. These phases vary in their proportion from soil to soil, and even in the same 

soil, from horizon to horizon. The solid phase is constituted by organic and inorganic 

particles whose aggregation permits the existence of void spaces, 

are filled with water (liquid phase) and air (gaseous phase) 

 

1.3.1.  Solid phase 

On its turn, the solid phase is composed by the organic and inorganic fractions.

The inorganic fraction represents about 90% of the solid phase and is composed by 

primary and secondary minerals. The first ones, subjected to little chemical 

modification, include six silicates: quartz, feldspar, micas, amphiboles, pyroxenes and 

olivine. The secondary minerals respec

aluminosilicates, oxides, amorphous materials and sulfur and carbonate minerals. 

Within this mineral fraction, there are other fractions that can be grouped by their 

particle size [6-8]. Figure

FAO/UNESCO in the Guidelines for soil description

 

Figure 1.2.  Particle size classes according to the FAO/UNESCO classification system

 

It is undoubtedly accepted, by the soil science community, that only particles with 

diameter bellow 2 mm can be designated as soil material 
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Therefore, the horizons may diverge on their depth, color, texture, porosity, pH and 

mong other characteristics. The transition between horizons can be fast and 

easily identified or be diffused, occurring gradually [12,14]. 

In the broad sense of the concept, soils are composed by the solid and porous 

phases. These phases vary in their proportion from soil to soil, and even in the same 

soil, from horizon to horizon. The solid phase is constituted by organic and inorganic 

cles whose aggregation permits the existence of void spaces, videlicet

are filled with water (liquid phase) and air (gaseous phase) [6,8,15]. 

On its turn, the solid phase is composed by the organic and inorganic fractions.

The inorganic fraction represents about 90% of the solid phase and is composed by 

primary and secondary minerals. The first ones, subjected to little chemical 

modification, include six silicates: quartz, feldspar, micas, amphiboles, pyroxenes and 

The secondary minerals respect to weathered primary minerals

aluminosilicates, oxides, amorphous materials and sulfur and carbonate minerals. 

Within this mineral fraction, there are other fractions that can be grouped by their 

Figure 1.2 resumes the classification system adopted by

Guidelines for soil description [16]. 

Particle size classes according to the FAO/UNESCO classification system

is undoubtedly accepted, by the soil science community, that only particles with 

mm can be designated as soil material [6,16]. The larger particles of 
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soil material - sand - consist mainly of quartz, albeit feldspars, micas and heavy 

minerals can also be found, and are characterized by their almost spherical shape and 

abrasiveness. Following these particles in size is the silt fraction, which presents a 

mixture of sand and clay features. Finally, clay designates the colloidal fraction that

comprises especially secondary minerals

which greatly affect chemical reactions and processes. The clay minerals are 

aluminosilicates consisting in the layering of tetrahedral sheets of silica tetrahedron 

−4
4SiO , or aluminum AlO

such as aluminum or magnesium, coordinated by six oxygen atoms

may have permanent negative charges

vermiculite, smectite and chlorite are the most common clay minerals in nature. On the 

other hand, even existing in lower concentration than the clay minerals, the oxides also 

affect the chemical properties of so

manganese oxides [7,8,16,17]

and clay) are used to classify the soil texture, through

used by FAO/UNESCO is pre

 

Figure 1.3.  Relation of constituents of fine earth by size, defining textural classes, according to the 
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consist mainly of quartz, albeit feldspars, micas and heavy 

rals can also be found, and are characterized by their almost spherical shape and 

abrasiveness. Following these particles in size is the silt fraction, which presents a 

mixture of sand and clay features. Finally, clay designates the colloidal fraction that

s especially secondary minerals like clay minerals, oxides and carbonates, 

which greatly affect chemical reactions and processes. The clay minerals are 

aluminosilicates consisting in the layering of tetrahedral sheets of silica tetrahedron 

−5
4AlO , linked to octahedral sheets formed from small cations, 

such as aluminum or magnesium, coordinated by six oxygen atoms. These structures 

negative charges or be pH dependent. The kaolinite, illite, 

vermiculite, smectite and chlorite are the most common clay minerals in nature. On the 

other hand, even existing in lower concentration than the clay minerals, the oxides also 

affect the chemical properties of soil, and the most common are the iron, aluminum and 

[7,8,16,17]. The relative proportions of the soil fractions (sand, silt 

to classify the soil texture, through a triangular diagram. The diagram 

used by FAO/UNESCO is presented in the Figure 1.3. 

of constituents of fine earth by size, defining textural classes, according to the 

FAO/UNESCO guidelines [16]. 
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As mentioned above, besides the inorganic fraction, the solid phase is composed 

by organic matter as well, which also plays a significant role in affecting soil chemistry 

[8]. The SOM is generated through the decomposition of few organic materials and is 

constituted by litter, light fraction, microbial biomass, water-soluble organics - 

carbohydrates, aminoacids, lipids, resins and organic acids - and stabilized organic 

matter (humus). The humic substances constitute the higher fraction of SOM, and 

because of their reactivity participate in most of the soil chemical reactions. Moreover, 

these substances, with high molecular weight and refractory, which usually confer a 

darker color to soils, play a significant role in processes like aggregation, acidity 

control, cycling of nutrients and detoxification of hazardous compounds. The chemical 

fractionation of the humic substances, based on their solubility in acid or base, allows 

the subdivision of this class into humin (not separable of the mineral fraction), humic 

acids (soluble in alkaline medium) and fulvic acids (soluble in acidic media). Unlike the 

clay minerals, SOM only has pH dependent charges and its major reactions in soils 

involve cationic exchange, metal complexation, soil buffering, complexation with clay 

minerals and retention of organic molecules of natural or anthropogenic sources 

[7,8,18].  

 

1.3.2.  Soil solution 

Soil solution can be defined as the liquid phase of the soil occupying the void 

spaces of the soil solid phase. This phase is mainly constituted by water, but also by 

gases and dissolved organic and inorganic substances. In fact, the proportion between 

the liquid and gaseous phases may differ due to climate conditions or soil activity. The 

organic/inorganic substances may be directly bounded to metal ions - inner-sphere 

complexes - or a molecule of water may be positioned in between - outer-sphere 

complexes.  The soil solution is a very dynamic part of the soil and it is on the interface 

flanked by this part and the solid phase that processes of utmost importance for the 

various ecosystems occur. The scheme presented in the Figure 1.4 resumes the dynamic 

equilibria in soils [6,7,15,19]. 
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Figure 1.4.  Diagram of the dynamic equilibria of soil reactions. Adapted from  “Chemical 

Equilibria in Soils” [20]. 

 

The diagram presented above shows that, the soil solution is the media where the 

plants exude and uptake their residues and nutrients, respectively (1 and 2). The ions 

may complex with organic/inorganic compound or released (desorbed) and dissolved in 

soil solution (3 and 4). When saturation occurs, some minerals may precipitate till 

equilibrium is reached (5); but if the soil solution is under saturated, the minerals may 

be dissolved in order to re-establish the equilibrium (6). Several solutes may be leached 

or added to soil, either by natural or anthropogenic processes (7 and 8). The 

microorganisms and the organic matter may retain numerous ions, which can also be 

released when death or decomposition takes place, correspondingly (9 and 10). Finally, 

there is also a dynamic equilibrium between the atmosphere and the respective gaseous 

phase of soil solution (11 and 12). The composition of the soil solution varies through 

time and space and depends on the parental material, the pH, the oxidative conditions, 

the organic matter content and the addition of several compounds due to human 

activities. Some of the most important ions correspond to the trace metals, which are 

essential to plant growth like Fe, Zn, Mn, Cu, B, Mo and Ni. On the other hand, also 

elements like Co, Cr, Se and Sn, which are essential to animals and As, Cd, Hg and Pb, 

which are toxic to plants, animals and microorganisms, are regularly identified in soil 

solution. Beside the micronutrients, also the Al, C, N, P and S are elements extremely 

important in the cycles of soil, and therefore often identified in soil solution [8,21]. 
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1.4.  Worldwide soil groups: the FAO/UNESCO classification 

According to the above sections it is obvious that soils may have different 

composition and organization levels, depending on several factors, namely its location. 

Therefore, the FAO/UNESCO adopted a classification system [13] that allows its 

distribution in 32 groups. A brief description of these groups and their regional 

distribution is presented in Table 1.2. 

 

Table 1.2.  Summary description of the soil groups recognized in the World reference base for soil 

resources published by FAO/UNESCO [13] 

Group  Description  Regional distribution 
     

Acrisols   

Soils with low base 
saturation and low activity 
clays, with higher clay 
content in the subsoil. 

 

These soils are found especially in humid 
tropical and subtropical and warm temperate 
regions, like Southeast Asia,, Southern fringes 
of the Amazon Basin, Southeast of the United 
States of America, East and West Africa. 

     

Albeluvisols  
Acid soils with a bleached 
horizon penetrating into a 
clay-rich subsurface horizon. 

 
Northeast Europe; Northwest Asia; Southwest 
Canada; France; Central Belgium; Southeast of 
the Netherlands; West of Germany. 

     

Alisols  

Soil with higher clay content 
in the subsoil, low base 
saturation and high activity 
clays. 

 

Latin  America  (Ecuador, Nicaragua, 
Venezuela, Colombia, Peru and Brazil); West 
Indies (Jamaica, Martinique and Saint Lucia); 
West Africa; Highlands of East Africa; 
Madagascar, Southeast Asia; Northern 
Australia; China; Japan; Southeast of the 
United States of America; Mediterranean Sea 
(Italy, France and Greece). 

     

Andosols  
Young soils with volcanic 
origin. 

 

Typical from volcanic regions, like South 
America, Central America, Mexico, United 
States of America, Japan, Philippine 
Archipelago, Indonesia, Papua New Guinea, 
New Zealand, Fiji, Vanuatu, New Caledonia, 
Samoa, Hawaii, Africa ( Rift Valley, Kenya, 
Rwanda, Ethiopia and Madagascar), Europe 
(Italy, France, Germany and Iceland). 

     

Anthrosols  
Soils modified due to 
anthropogenic activities. 

 
These soils are found wherever agriculture has 
been practiced for a long time. 

     

Arenosols  
Sandy soils with low 
evolution. 

 

Occur mainly in arid or semi arid regions, and 
correspond to the most extensive soil group in 
the world. The largest area is located in the 
Central Africa, near the equator. 

     

Calcisols  
Soils with substantial 
accumulation of secondary 
lime. 

 
The major fraction of these soils can be found 
in arid and semi-arid tropics. However, its 
worldwide extension is difficult to quantify. 
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Table 1.2.  Summary description of the soil groups recognized in the World reference base for soil 

resource, published by FAO/UNESCO (cont.) 

Group  Description  Regional distribution 
     

Cambisols  

The horizons from subsoil 
are clearly divided through 
markedly alterations in color, 
clay content, structure or 
carbon content  

 

Major areas can be found in temperate and 
boreal regions that were under the influence of 
glaciations. However, this soil can also 
characterize zones with active geologic 
erosion.  

     

Chernozems  
Black soils rich in organic 
matter. Among the best soils 
in the world. 

 
Mainly identified in the middle latitude steppes 
of Eurasia and North America. 

     

Cryosols  
Mineral soils affected by 
frosting.  

 
Located near the North and South Poles. Major 
areas comprising these soils are located in 
Russia, Canada, China, Alaska and Mongolia. 

     

Durisols  Soils with accumulation of 
secondary silica. 

 

Major occurrences were reported from 
Australia, South Africa, Namibia, and United 
States of America Also Central and South 
America and Kuwait are placed of minor 
occurrences.  

     

Ferralsols  

Red or yellow soils, strongly 
weathered, with low activity 
clays and high content of 
sesquioxides.  

 
These soils are majorly concentrated in humid 
tropics on the continental shields of South 
America, like Brazil and Africa. 

     

Fluvisols  
Young soils in alluvial 
deposits. 

 
Located essentially along rivers and lakes, in 
deltaic and marine deposit areas, these soils 
can be found in all continents and climates. 

     

Gleysols  
Soils greatly affected by 
elongated groundwater 
saturation. 

 

Occurring from perhumid to arid climates, its 
major extents are located at subarctic areas like 
Russia, Canada and Alaska, and in humid 
temperate and subtropical lowlands, like China 
and Bangladesh. 

     

Gypsisols  
Soils with substantial 
accumulation of secondary 
calcium sulfate. 

 

Only found in arid regions, like Mesopotamia, 
desert areas in the Near East and adjacent 
Central Asian republics, Libyan and Namib 
deserts, southeast and central Australia and of 
the United States of America. 

     

Histosols  
Soils comprising only 
organic materials. 

 

These soils are essentially located in the 
boreal, subarctic and low arctic regions of the 
Northern Hemisphere. The rest is mostly 
located in temperate lowlands and cool 
mountain. Small areas can also be found in 
tropics  

     

Kastanozems  
Dark soils very rich in 
organic matter.   

Occupies large areas of Eurasian short-grass 
steppe belt, Great Plains of the United States 
of America, Canada and Mexico, and, pampas 
and Chaco regions of northern Argentina, 
Paraguay and southern Bolivia. 

     

Leptosols  Shallow soils  

This is the most extensive soil group 
worldwide. Found almost everywhere, 
mountain areas of Asia, South America, 
Sahara, Arabian deserts, Ungava Peninsula, 
Canada and Alaska, are more prominent.  
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Table 1.2.  Summary description of the soil groups recognized in the World reference base for soil 

resource, published by FAO/UNESCO (cont.) 

Group  Description  Regional distribution 
     

Lixisols  

Soils with high clay content 
in the subsoil, low activity 
clays and high base 
saturation. 

 

These soils can be found in seasonally dry 
tropical, subtropical and warm temperate 
regions like, sub-Sahelian, East Africa, South 
and Central America, Southeast Asia and 
Australia. 

     

Luvisols  

Soils with high clay content 
in the subsoil, high activity 
clays and high base 
saturation. 

 

Located mainly in temperate regions like the 
west and centre of the Russia, the United 
States of America, Central Europe, 
Mediterranean region and southern Australia. 

     

Nitisols  

Deep, dark red, brown or 
yellow clayey soils having a 
pronounced shiny, nut-
shaped structure. 

 

More than a half is found in tropical Africa, 
(Ethiopia, Kenya, Congo and Cameroon). The 
rest is located at lower altitudes (Asia, South 
America, Central America, Southeast Africa 
and Australia) 

     

Phaeozems  
Soils with dark coloration 
due to the high content in 
organic matter. 

 

The higher fraction is located in the humid and 
subhumid Central Lowlands and easternmost  
parts  of  the  Great  Plains  of  the  United  
States  of  America, followed by the 
subtropical pampas of Argentina and Uruguay, 
China and Russia.  

     

Planosols  
Lighter soils with bleached 
topsoil, temporarily saturated 
with water.  

 

These soils occur in subtropical and temperate 
regions with clear alternation of wet and dry 
seasons like Latin America, Africa, East 
United States of America, Southeast Asia and 
Australia. 

     

Plinthosols  Wet soils, with subsoil very 
rich in a compound of 
humus, iron, clay and quartz. 

 Commonly found in wet tropics, markedly in 
the eastern Amazon basin, the central Congo 
basin and parts of Southeast Asia. Also found 
extensively in the Sudano-Sahelian zone. 

     

Podzols  Acid soils with a subsurface 
accumulation of mixed 
compounds of iron, 
aluminum and organic 
matter.  

 Principally located at temperate and boreal 
regions of the Northern Hemisphere, these 
soils also occur along the Rio Negro, in French 
Guiana, Guyana and Suriname in South 
America, in the Malaysian region and in 
northern and southern Australia. 

     

Regosols  Accommodates the weakly 
developed soils that do not fit 
in the other groups.  

 These soils are especially found in arid areas, 
like the mid-west of the United States of 
America, the northern Africa, the Near East 
and Australia. 

     

Solonchaks  Saline soils  

Principally located in arid zones of Northern 
Hemisphere, like northern Africa, the Near 
East, the former Soviet Union and Central 
Asia, but also in Australia and Americas. 

     

Solonetz  
Soils with subsurface clay 
accumulation and rich in Na 
and Mg. 

 

Major areas are found in steppe climate zones 
like Ukraine, Russia, Kazakhstan, Hungary, 
Bulgaria, Romania, China, United States of 
America, Canada, South Africa, Argentina and 
Australia. 
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Table 1.2.  Summary description of the soil groups recognized in the World reference base for soil 

resource, published by FAO/UNESCO (cont.) 

Group  Description  Regional distribution 
     

Stagnosols  
Soils with mottles caused by 
the stagnant surface water.  

Occur mainly in humid to perhumid temperate 
regions of West and Central Europe, North 
America, southeast Australia and Argentina. 

     

Technosols  
Soils with high content in 
anthropogenic material. 

 

These soils are found wherever human activity 
occurs. It is mainly associated with waste sites 
like landfills, sludge, cinders, mine spoils and 
ashes, pavements and other soils made in 
human materials. 

     

Umbrisols  
Soils with dark coloration 
and with high organic 
content on the topsoil.  

 

Located essentially in cool, humid, 
mountainous and with little or any soil moisture 
deficit, like the Andean ranges of Colombia, 
Ecuador, Venezuela, Bolivia and Peru, Brazil 
(Serra do Mar), South Africa (Drakensberg), 
North America, and also along the northwest 
Atlantic seaboard (British Isles, northwest 
Portugal and Spain), Asia (west of Lake Baikal, 
fringes of the Himalayas, India, Nepal, China 
and Myanmar) and Oceania (mountain ranges 
of Papua New Guinea, southeast Australia, 
eastern parts of South Island and New Zealand. 

     

Vertisols  Heavy clay soils  

The highest occurrence is reported to the semi-
arid tropics, but these soils can also be found in 
wet tropics zones, like Trinidad. Other places, 
especially lowlands that are periodically wet in 
their natural state, were identified  in Sudan, 
India, Ethiopia, South Africa, Australia, the 
southwest of the United States of America 
(Texas), Uruguay, Paraguay and Argentina. 

     

 

The soil composition and characterization will be approached in all the following 

chapters as soil components and characteristics greatly influence the sorption and 

transport of metals through soils, and also their effect attenuation or elimination from 

contaminated land. From Chapter 2 to Chapter 5, a loamy sand soil from the north of 

Portugal was profoundly study in what concerns heavy metals fate and also their 

elimination through biological techniques. In Chapter 6, a highly and historically 

contaminated soil from Algeria was used in order to study the efficiency of a chemical 

process on the extraction of lead. Finally, and due to the novelty of the process, an 

artificial soil - kaolinite - contaminated with hexavalent chromium, was used to test a 

hybrid remediation technique - Chapter 7. 
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2.  HEAVY METALS IN SOILS 

2.1.  Sorption and transport 

Heavy metals occurring in the soil solution can be retained in the solid phase as 

well as they can be liberated from this phase to the soil solution. Therefore, it is evident 

the importance of the solid-solution interface not only in providing nutrients to plants 

but also in the dissemination of metals. Sorption is the term usually applied to describe 

any retention process onto a solid phase, like adsorption, precipitation and fixation. The 

terms sorbate, sorbent and sorptive, are generically applied to designate the material that 

accumulates on the interface, the solid surface where it is retained and the molecule or 

ion with the potential to be sorbed, correspondingly [7,8]. 

Adsorption is the major process affecting transport of metals, among those cited 

above, and will be here developed in more detail. During adsorption, the adsorbate 

accumulates in the interface soil-solution, interacting through three major mechanisms 

with the solid phase. The inner-sphere complexation occurs slowly, and often in an 

irreversible way, at the positive or negative charged oxides and clay minerals surface 

functional groups. The molecules or ions are either covalent or ionic bounded to one 

oxygen atom of the functional group -monodentate- or to two oxygen atoms - bidentate. 

Conversely, the outer-sphere complexes result from electrostatic interactions, between 

adsorbate and surfaces with opposite charge, being therefore weaker than inner-sphere 

complexes. This complexation occurs rapidly and is reversible and is also characterized 

by the interposition of a water molecule between the ion/molecule and the surface 

functional group. The other mechanisms are related with the solvated ions that are not 

adsorbed to surface functional group, moving freely in the soil solution and it is 

designated as diffuse-ion swarm. It should be noted that the mentioned functional 

groups are molecules bounded to various soil surfaces in contact with the liquid phase, 

like silanol, inorganic hydroxyl, or organic functional groups. These groups can be 

protonated or deprotonated, and therefore behave as Lewis basis, influencing greatly the 

adsorption of metal cations [7,8,19]. According to Sposito [7], it is correct to associate 

the specific adsorption to the inner-sphere complexation, and in contraposition, the 

diffuse-ion association and outer-sphere complexation to the nonspecific adsorption.  

Surface precipitation is also a process of notorious importance. As the surface gets 

saturated in the metal cation or anion being sorbed, a new solid phase with a three 
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dimensional structure, rises. Soil scientists called surface precipitate to this new 

structure, which gradually dominates the sorption processes as the surface loading 

increases. This process is very pH dependent, but is also greatly influenced by the ions 

concentration. In particular, metals can precipitate as oxides, hydroxides, carbonates, 

sulfides or phosphates onto soils [8,19]. 

 

2.1.1.  Adsorption and kinetic models 

Adsorption modeling can be approached by two different ways: empirical models, 

fitted after the experimental tests, or the molecular adsorption models that try to explain 

and describe the adsorption mechanisms by primarily defining the mathematical form.  

The constant capacitance model, the diffuse layer model and the triple layer model are 

important examples of molecular models. These models aim to describe adsorption 

considering the specific reaction occurring between ions and charged surfaces. The 

differences among them reside on the nature of the surface charge, the number and 

position of the potential planes and the position of the adsorbate [7,19]. Although the 

mechanistic models are of great importance for soil scientists, the empirical models will 

be herein described with more detail, as from the environmental engineering perspective 

these models reveal to be important tools supporting decisions on remediation processes 

and emergency plans, concerning heavy metal contamination. 

Most of the investigations on heavy metal adsorption onto soil do not consider the 

kinetic behavior of metals retention. However, the time dependence has remarkable 

significance when describing heavy metals interaction with soils. Few kinetic models 

have been used to describe the adsorption process of contaminants onto soils, especially 

the Lagergren’s first order-rate equation, also known as pseudo-first-order equation, the 

pseudo-second-order equation and the Elovich equation, which are all based on the 

adsorption capacity, and the power function equation, that has a notable empirical 

character [8,22,23]. These four models will be approached later on and a thorough 

description will be exposed in Chapters 2, 3, 4 and 6. Moreover, several adsorption 

isotherm models will be extensively explained and used through this document, as these 

empirical models demonstrate great efficiency in describing the relation between the 

equilibrium concentrations of the heavy metals in the solid and liquid phases of soils, at 

a constant temperature [8,24,25]. Adsorption isotherms frequently used in describing 

the adsorption equilibrium of contaminant onto soils, like Freundlich and Langmuir 
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equations, and also less consensual equations, like Dubinin-Radushkevich, Temkin, 

Redlich-Peterson, Khan, Sips and Toth, will be tackled in Chapters 2, 3, 4 and 6. 

Adsorption isotherms characterizing the heavy metal adsorption equilibrium may 

have several shapes, which are properly represented in Figure 1.5. The S curve has a 

small initial slope that gradually increases with the metal concentration on solution, 

suggesting the high affinity of soil solution for the metal; the L-curve, which is 

frequently related with a high affinity of the soil for the metal as long as the surface is 

unsaturated, has a decreasing slope with the increasing of metal in solution; the H-curve 

is an extreme version of the L-curve; the C-curve has a constant slope independent from 

the metal concentration in solution, and is usually related with a constant partitioning of 

the metal between the interface and the liquid phase, or with a proportional increase 

between the adsorbing surface and the metal concentration. The L-curve, whose 

mathematical description involves frequently the Langmuir equation, is the most 

encountered in soil chemistry [7]. 

 

 

Figure 1.5.  Representation of the four general categories of adsorption isotherms. 

 

2.1.2.  Transport and fate  

Besides the adsorption, also desorption processes have great influence on the 

contaminants mobilization through soils and it is, therefore, an issue more and more 

approached in the environmental soil chemistry studies. The ease of desorption not also 

may improve the mobilization of contaminants through soils and groundwater, but can 

also be advantageous in the application of some remediation techniques. These 

processes can be described by adsorption kinetics or equilibrium models, resorting to 

batch systems. However, more realistic results are usually obtained through flow tests 

and the respective mathematical description [8,25]. Moreover, the fate and migration of 

heavy metals in soils and groundwater, for long spatial and temporal scales, can actually 

be predicted by sophisticated mathematical models, resorting to advanced software. 
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The convection-dispersion equation (CDE) has been successfully applied in the 

description of the transport of solutes through homogeneous soils, considering both the 

equilibrium and the nonequilibrium scenarios. Along the development of the present 

work, the STANMOD software and the code CXTFIT were used to obtain analytical 

solutions and consequent adjustment to experimental breakthrough curves of the CDE. 

Since steady one-dimensional flow is considered, the CXTFIT code can be used to fit 

the CDE, either to laboratorial or field solute transport data [26-28]. The description of 

the CDE equation and its fitting process, will be developed in detail in Chapter 3, but 

will also be approached in Chapters 4 and 7. 

 

2.2.  Chromium 

Chromium occupies the seventh position concerning the most abundant elements 

in nature and most of it can be found in the core and in the mantle of earth. Chromium 

is a transition metal occupying the first position of the Group 6 of the periodic table, 

with a standard atomic weight of 51.9961 g mol-1, a density of 7.14 g cm-3 and an 

atomic number of 24. In its crystalline form it is a steely-gray, lustrous, hard metal that 

takes a high polish and has a high melting point - 1907 °C [29]. Chromium exists in 

soils in two possible oxidation states: the trivalent chromium - Cr(III) - and the 

hexavalent chromium - Cr(VI). Due to its high oxidizing and corrosive character,         

Cr(VI) is highly toxic to plants and animals as it can easily penetrate biological 

membranes. In fact, this heavy metal is listed by EPA as a human carcinogen and also 

pointed in several countries as a priority pollutant. On the other hand, Cr(III) is a 

micronutrient essential to plants and also to animals nutrition, as it maintains the 

efficiency of glucose, lipid and protein metabolisms [30-33].  

Most of the Cr found in nature results from anthropogenic activities, like the 

deposition of urban and industrial wastes, the elongated utilization of fertilizers and 

sewage sludge and also atmospheric deposition. However, the major sources concern 

industrial activities like electroplating, dying, photography and alloying. These 

activities essentially promote the accumulation of Cr(VI) as it is the major form used in 

industrial processes. The Cr (VI) exists in soils as a component of few complex anions, 

which are highly soluble in water, depending on the medium pH and reduction 

potential: the hydrochromate ions ( HCrO4
− ) predominate for pHs lower than 6.5, the 
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chromate ions ( CrO2
4

− ) predominate at pH 6.5 or higher, the dichromate ion ( OCr 2
72

− ) 

predominates at acidic pH’s and high concentration levels, and the chromic acid             

( CrOH 42 ) that prevails at very low pH (pH<0.7) [31-34]. Due to its anionic nature, 

Cr(VI) adsorption occurs in positively charged sites, increasing with the pH decrease 

and consequent protonation of the soil surfaces, especially those with hydroxyl groups, 

like Fe, Mn and Al oxides, where the Cr(VI) is supposed to adsorb through inner-sphere 

complexation. On the other hand, Cr(VI) anions are repelled by the negative charged 

clay minerals, which improve its mobility compared with the Cr(III) cations 

[19,29,31,32]. 

Various species present on soils like organic material, sulfide and ferrous iron, are 

responsible for the reduction of Cr(VI) to Cr(III), which is a less hazardous form of Cr. 

Cr(III) is, as already mentioned, less mobile than Cr(VI) and therefore less bioavailable. 

Actually, Cr(III) can be readily adsorbed by soils or remain in soil solution as hydroxyl 

complexes, that quickly precipitate at relatively low pH values. In contrast, the 

organically complexed Cr(III) may be soluble for a long period, during which oxidation 

to Cr(VI) may occur, albeit Mn oxides are the only natural oxidants actually known 

[29,31,33]. This dichotomy between Cr(VI) and Cr(III) has been widely studied, and 

will also be approached on Chapters 2, 3 and 5 of this document. 

 

2.3.  Lead 

In opposition with Cr, lead (Pb) is a rare metal on the earth´s crust. In its 

elemental form Pb is a bluish-gray, soft metal with an atomic weight of 207.19 g mol-1, 

a density of 11.34 g cm-3, a boiling point of 1749 °C, and with atomic  number 82. It is 

not known any benefit or essential character of Pb to any living organism. Its 

accumulation by humans can occur through inhalation, ingestion, dermal absorption and 

placental transfer, resulting then in the poisoning of metabolic pathways and consequent 

affection of several systems, like hematopoietic, nervous or even reproductive. The 

exposition to high Pb concentrations may also result in stupor, convulsion, coma and 

death. Lead is also pernicious to plants and animals, inhibiting their growth and 

reproduction and leading therefore to their extinction [29]. 

In contraposition to its harmful effects, Pb is widely used by humans, bringing 

them great comfort through the production of several useful products. The deposition of 
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old paints, batteries, pesticides, solder, glass, brass, bronze, pigments and ammunition, 

but also activities like industrial smelting, coal burning, mining and traffic exhaustion 

are examples of anthropogenic sources of Pb, greatly responsible for its excessive 

accumulation [21,29,34]. Once in soil, Pb, which occurs mainly in its divalent form, is 

one of the less mobile heavy metals. Its retention in soils is affected essentially by 

specific adsorption to solid phases, precipitation of lightly soluble or stable compounds 

and complexation or chelation with SOM [19,33,34]. Organic matter is the most 

important soil compound reacting with Pb. Its great affinity may increase sharply the 

mobility of the metal in soils, due to its complexation with dissolved organic matter or 

fulvic acids. Following the organic matter content also pH has proven to influence 

greatly the Pb adsorption, namely the pH rising results in higher partitioning 

coefficients. On the contrary, low pH values promote the hydrolysis of Pb by several 

ways, producing Pb(OH)2 for pHs above 9 and Pb(OH)+ for pH values amid 6 and 10 

[19,35]. Finally, Mn, Fe and Al oxides were also reported as Pb binders, either through 

specific adsorption, through the formation of some specific minerals and through 

biphasic adsorption [19,36]. The sorption/desorption of lead will be approached in 

Chapters 4 and 6. 

 

3.  REMEDIATION TECHNOLOGIES 

As previously mentioned, heavy metals and organic compounds are constantly 

being released in natural environments due to erosion processes. However, there are 

several anthropogenic sources of heavy metals and organic compounds, like commercial 

fertilizers, liming materials, sewage sludges, metal-smelting wastes, mining and fossil 

fuel combustion residues, among others, responsible for their excessive accumulation 

on soils and groundwater. Once exceeding acceptable limits, these contaminants may 

enter the food chain and cause serious damages in ecosystems and human health, as 

some of them are the most toxic pollutants occurring in natural environments [8,21,25]. 

Figure 1.6 shows the distribution of the main contaminants affecting soil in Europe and 

also the progress on decontamination, according to the latest available data of the 

European Environment Agency (EEA). Heavy metals represent 37.3% of the 

contaminants found in European soil and groundwater, while the organic substances 

complete almost the remaining 62.7%. 
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Considering the above-mentioned information and the data presented on Figure 

1.7, contamination of soils and groundwater stills an issue of major concern to the 

European Commission, as great work is still missing in order to prevent it and remediate 

contaminated sites. Nowadays, most of the techniques applied across Europe are from 

chemical and physical nature, which sometimes result in negative impact on the 

ecosystems and also high costs for companies and countries. Therefore, the 

development of “green” and cost effective technologies is urgent. The sections bellow, 

present a brief resume of three important remediation techniques, investigated and 

applied in the last decades and also targeted during the research work here in described. 

 

  

Figure 1.6.  Overview of contaminants affecting soil and groundwater and the status of 

identification and clean-up of contaminated sites in Europe, as reported to the European 

Environment Agency through the EIONET priority data flows on contaminated sites [37,38]. 

 

3.1.  Bioremediation  

The bioremediation is fundamentally well known and also very attractive to 

scientists and the community in general, due to its “eco-friendly” and affordable nature 

and also due to the possibility to be applied in situ. The application of this cleaning 

technique has several branches that derive from the same principle: use of 

microorganisms or microbial processes to degrade, reduce or eliminate environmental 

contaminants. Techniques like bioattenuation, biostimulation, bioaugmentation, 

bioleaching, composting, bioreactors, bioventing and biosorption are actually under 

investigation and development. This thesis focuses two of those methods, and therefore 

only these are explored in more detail in the following subsections [39-41]. 
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3.1.1.  Bioleaching 

Within the scope of this document, bioleaching can be defined as the mobilization 

of metals from soils due to the activity of chemolithotrophic bacteria, such as 

Acidithiobacillus thiooxidans that are able to oxidize elemental sulfur producing 

sulfuric acid, which can leach metal cations [42-44]. However, this is a natural process 

occurring since ever, that is responsible for the enrichment of metals in water. Besides 

the mentioned bacteria, also the Acidithiobacillus ferrooxidans and the Leptospirillum 

ferrooxidans are frequently related to the bioleaching. The bioleaching processes, either 

direct or indirect, are mainly described based on the action of these three species. The 

direct process assumes the attachment of the bacteria to specific sites of the 

contaminated surface, where the sulfur oxidation takes place through several steps 

catalyzed by enzymes, resulting in the solubilization of the metal due to electrochemical 

interactions [45-47]. On the other hand, during the indirect bioleaching the bacteria 

produce a lixiviate that will oxidize the sulfide minerals or will promote acidic 

conditions that favors metal solubilization [45]. Chapter 5 of this document will focus 

the indirect mechanism of sulfur oxidation by Acidithiobacillus thiooxidans, to remove 

Cr(VI) from soils. Therefore, other abilities of these bacteria were explored, as the 

reduction of Cr(VI) has to occur in order to leach Cr(III), since metal cations are very 

mobile in acidic media, in opposition to Cr(VI) anions.  

 

3.1.2.  Biosorption  

Biosorption is widely known for being a cheap technique of decontamination: it 

can reduce total treatment costs by 28%, compared with conventional systems. 

Therefore, the application of this technique has attracted growing attention from the 

scientific community [48]. This type of bioremediation relies on sorption mechanisms 

like ion exchange, chelating, adsorption and diffusion through cell walls and 

membranes of microorganisms or other type of biomass, being therefore of great use in 

decontaminating heavy metal contaminated sites. During this bioremediation process 

metals are not destroyed by microorganisms, suffering instead changes on their 

chemical properties. It is accepted that van der Waals forces, covalent bonding, redox 

interactions, and extracellular precipitation, or their combination, are the mechanisms 

associated to the entrapment of the metals by the biomass [49,50]. Several studies have 

been made on the interactions between biomass and heavy metals, on the mathematical 
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description of the kinetics and equilibrium of the processes and also on the optimization 

and scale up of the biosorption technique. However, all of them concern wastewater or 

liquid effluents and no applications are found in soils. [50-55]. Therefore, a novel 

application of this technique on the decontamination of soils, passing through the use of 

permeable reactive biobarriers (BIO-PRB) will be approached in the Chapter 7 of this 

thesis. The BIO-PRBs are composed by reactive biological materials that once in 

contact with the contaminated water plume, degrade, adsorb or precipitate the targeted 

contaminant(s) [56,57]. During this work, a culture of the Arthrobacter viscosus 

bacterium, supported either on activated carbon (GAC) or zeolite, was tested in a BIO-

PRB as a downstream treatment of an electrokinetic (EK) cell, containing soil 

contaminated with Cr(VI). 

 

3.2.  Soil washing 

Soil washing pretends, essentially, to separate the smaller-grained and most 

reactive soil material, where the great fraction of contaminants is adsorbed, from the 

larger-grained soil, using water. However, chelants, complexing agents and detergents 

are nowadays used, in order to improve the process efficiency. By using these 

substances, most of the contaminants can be readily transferred to the liquid phase, 

avoiding downstream treatments [58]. It can be therefore deduced that soil washing is 

an ex situ technique comprising more than one step and several operation units, which 

were greatly investigated [59,60]. Soil washing of heavy metal contaminated soils can 

have physical or chemical nature. The physical separation consists, essentially, in the 

reduction of the metal concentration, exploiting differences between the contaminant 

and the soil properties. On the other hand, the chemical extraction, which will be here in 

approached with more detail in Chapter 6, relies on the utilization of acids or chelating 

agents in order to solubilize the heavy metals. Several complexing/chelating agents have 

been successfully used in the treatment of single and mixed contaminated sites, with 

EDTA standing out for the heavy metals effects attenuation, along with other acids and 

detergents [61-67]. Soil washing has been catalogued as a relatively cheap technique 

that can be greatly controlled due to its ex situ character, but also as a risky technique as 

some of the chemical “washers” may bring hazardous effects to the environment. 

Moreover, factors such complexity of the mixture, humic acid content and the particle 

size distribution of soil material may influence negatively the yield of the process. 
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3.3.  Electrokinetics 

Electrokinetic remediation is an in situ technology that consists of the controlled 

application of low intensity direct current through the soil between appropriately 

distributed electrodes. The removal of heavy metals and organic compounds from soils 

by the electric field action has been widely studied in the last decade [68-71]. The main 

transport mechanisms are electromigration, migration of ions towards the opposite 

charged electrode and electro-osmosis, movement of liquid through the soil matrix 

relative to the charged particles. Thus, this technique promotes the electromigration of 

the metal ions to the electrode of opposite charge and the movement of organic 

compound (usually uncharged species) with the electro-osmotic flow. However, there 

are some problems concerning this method, like its elongation in time and the 

production of liquid effluents. As already mentioned, a hybrid decontamination method, 

complying this technique and a specific application of biosorption, the BIO-PRBs, was 

applied to a Cr(VI) contaminated soil during the research work. Therefore, a clear and 

more detailed description of the specific EK technique here in approached is presented 

at Chapter 7. 
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SCOPES AND AIMS  

The present thesis aims to explore the behavior and fate of two of the most 

problematic heavy metals polluting soils worldwide, namely lead [Pb] and chromium 

[Cr]. In order to do that, few scenarios of contamination were explored by performing 

batch and flow tests that allowed the study of sorption and transport phenomena of the 

two metals. These particular studies were performed with a soil collected on the north of 

Portugal, near some agriculture fields, as this kind of data is lacking on the national 

panorama. Actually, Portugal is the country that less contributes to the European 

environment assessment, predicted by the Thematic Strategy for Soil Protection [9]. 

Besides these studies, and as the decontamination and attenuation of pollution is the 

great focus of actual studies on environmental soil science, three remediation techniques 

were used or developed during this research work. An agreement between the soil and 

the cleaning technique was obtained considering the type and level of contamination of 

the targeted soil and the novelty of the method. Therefore, bioleaching was tested in the 

decontamination of a soil artificially contaminated with Cr(VI), as this contaminant can 

be reduced to a less hazardous form and then be leached. Because good data was 

previously obtained on the transport and fate of the Cr(VI) with the soil collected at the 

north of Portugal, this was the selected soil for the bioleaching tests. The soil chemical 

washing was applied to decontaminate a historically contaminated soil, collected in 

Algeria, with a huge charge of Pb. Finally, and due to the novelty of the technique, a 

clay mineral very abundant in soils - kaolinite -was used as soil sample for the tests 

concerning the hybrid technique, which comprises EK cells and BIO-PRBs, in the 

removal of Cr(VI). In sum, this work aims to contribute for the clear description of the 

fate of heavy metals in Portuguese soils, the applicability of known techniques on the 

soil cleaning, but also and most importantly,  to the development of new remediation 

techniques. 

In order to expose the development of the research work, and the consequent 

accomplishment of the mentioned objectives, the thesis was outlined based on the 

author’s original articles, as shown in the following subsection. 
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1.  INTRODUCTION 

Release of heavy metals into soils, as a result of anthropogenic activities like 

disposal of industrial effluents and spreading of sewage sludge, has raised the 

concentration of heavy metals in soils to toxic levels [1-3]. Therefore, the study of 

sorption processes is of utmost importance to understand how the contaminants are 

transferred from the liquid phase to the solid phase and retained therein [4,5]. Moreover 

the understanding of the contamination processes of this particular loamy sand soil is 

fundamental for the recovery of extensive polluted areas, as this type of soil is very 

common in industrialized regions. 

Chromium and lead are among the most toxic heavy metals present in some 

industrial effluents, which are sometimes directly discharged in soils. Chromium has 

been widely used among various industries, such as metal plating and leather tanning. 

The most stable oxidation states of chromium commonly found in nature are Cr(III) and 

Cr(VI) [6-9]. While Cr(III) is essential for metabolic processes, Cr(VI) is toxic and 

carcinogenic. Moreover, as an oxyanion, is highly mobile in soil and water [10-12]. On 

the other hand, lead has a low mobility and is strongly retained by soil constituents. 

Lead occurs mainly as a divalent cation - Pb (II) - which, being not essential to plants or 

animals, is known to be hazardous to health [13,14]. Exogenous sources of lead in soil 

include fossil fuels, mining and smelting operations, and road runoff water [15,16]. 

The retention on soils of both metals is controlled mainly by redox reactions, 

precipitation, nucleation and adsorption/desorption processes [13,17]. These sorption 

processes are affected by many factors (e.g. organic matter, cationic exchange capacity, 

pH of soil). Many studies have focused on the sorption of chromium and lead under 

different experimental conditions, but always at the equilibrium pH of the soil and/or 

with low concentrations of those metals [1,18-21]. However, acid spills of high 

contaminated industrial effluents occur sporadically, and a different behaviour of those 

contaminants could be expected.  

Therefore, the aim of this study is to evaluate the sorption processes of Cr(VI) and 

Pb(II) present in acid solutions highly concentrated. Specifically, batch equilibrium 

experiments to generate sorption isotherms and kinetic data using single metal solutions 

at initial pH of 2 and 5, were undertaken. In addition, to obtain better and more realistic 

means of evaluating soil performance at the tested pH values, column experiments were 
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also performed. The retardation factor - R - was determined by the method used 

previously by the authors [22]. Batch tests data were analyzed and fitted by eight 

sorption isotherms - Freundlich, Langmuir, Dubinin-Radushkevich, Temkin, Redlich-

Peterson, Khan, Sips and Toth - and three kinetic models - Lagergren, Elovich and 

Power Function Equation – since some of these models have  been successfully used to 

predict and compare sorption performance of various soils and heavy metals                

[1-3,13,20,23,24].  

FTIR spectra analyses performed on different samples of contaminated soils 

indicate that clays play an important role in the overall retention process and the 

presence of surface groups usually responsible for metal ions adsorption was confirmed 

 

2.  THEORY 

2.1.  Sorption kinetics 

Lagergren’s first-order rate equation is the oldest known one describing the 

adsorption rate based on the adsorption capacity. It assumes that the reaction rate is 

limited by only one process or mechanism on a single class of sorbing sites and that all 

sites are of the time dependent type [3,25]: 

 

)( te1
t qqk

dt

dq
−=

 
                                                                                                           (1) 

 

Elovich’s equation is useful to describe sorption reactions without desorption of 

products. The adsorption rate decreases with time due to the increased surface coverage 

[26]: 

 

( )tEE
t exp q

dt

dq
βα −=                                                                                                    (2) 

 

In this study the power function equation was also used. Besides its empirical 

character, this equation provides a good method to compare experimental results [1,5]: 
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vtkq PF
PF

t =                                                                                                                      (3) 

 

In these equations t is the contact time (h); qt is the amount of metal sorbed per unit 

mass of soil at time t (mg kg-1); k1 is the first order rate constant (h-1); qe is the amount 

of metal sorbed per unit mass of soil at equilibrium (mg kg-1); αF is the initial 

adsorption rate [mg kg-1 h-1] and β is the desorption constant (kg mg-1) of Elovich 

equation; kPF (mg kg-1 h-ν ) and vPF are adjustment parameters of the power function 

equation. 

 

2.2.  Equilibrium models 

Four isotherm models with two adjustable parameters and four models with three 

adjustable parameters were used to describe the experimental data: 

 

2.2.1.  Two parameters isotherms 

Freundlich equation assumes that the stronger binding sites are occupied first and 

that the binding strength decreases with the increasing degree of site occupation. It is 

described as: 

 

nCkq
1

eFe =                                                                                                                   (4) 

 

where qe is defined earlier, Ce is the concentration of metal in the solution at equilibrium 

(mg L-1); kF is the distribution coefficient (L1/n mg kg-1 mg -1/n) and n is a correction 

factor [5,27]. 

A form of Langmuir isotherm is commonly applied to adsorption of heavy metal 

ions onto soil. It assumes that adsorption occurs until the solid surface is completely 

covered by a layer of molecules/atoms:  

 

eL

eLmax
e 1 Cb

Cbq
q

+
=                                                                                                                  (5) 
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where qmax is the maximum amount of metal that can be adsorbed (mg kg-1) and bL is a 

constant related to the binding strength (L mg-1) [5,28]. 

Dubinin-Radushkevich equation is used to describe systems where the dispersion 

forces are the dominant component of the adsorption interaction: 
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where qD is the maximum adsorption capacity (mg kg-1); BD is the activity coefficient 

(mol2 J-2)  related to mean sorption energy - E - (J mol-1), which may be calculated by 

[29-31]: 

 

D2

1

B
E =                                                                                                                       (7) 

 

The Temkin isotherm considers that the heat of adsorption of all the molecules on 

the layer decreases linearly with coverage: 

 

( )eeT
Te

ln Ca
b

RT
qe =                                                                                                           (8) 

 

where R is the gas constant (J mol-1 K-1), T is the absolute temperature (K), bTe is the 

constant related to the heat of sorption (J mol-1) and aTe is the Temkin isotherm constant 

(L mg-1) [30,32]. 
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2.2.2.  Three parameters isotherms 

The Redlich Peterson equation was proposed to improve the fit by the Langmuir 

or the Freundlich equation: 

 

P

RP

RP

1 R

e

e
e

Ca

Ck
q

β
+

=                                                                                                             (9) 

 

where kRP is the Redlich - Peterson model isotherm constant (L kg-1), aRP is the model 

constant (LβRP mg-βRP) and βRP is the model exponent [33]. 

Khan proposed a simple expression for a generalized model for a single solute that can 

cover extreme cases of Langmuir and Freundlich type isotherms: 

 

( ) K

eK

eKmax

1 ae
Cb

Cbq
q

+
=                                                                                                           (10) 

 

where qmax was defined earlier, bK is the Khan model constant (L mg-1) and aK is the 

model exponent [34]. 

The Sips equation predicts a monolayer sorption capacity for high sorbate 

concentrations and reduces to Freundlich equation for lower sorbate concentrations: 

 

S

S

eS

eS
e

1 β

β

Ca

Ck
q

+
=                                                                                                               (11) 

 

where kS is the Sips model isotherm constant (mg LβS mg-βS kg-1), aS is the model 

constant (LβS mg-βS) and βS is the model exponent [30,35]. 

The Toth’s model derived from the potential theory and applies to heterogeneous 

adsorption: 

 

( ) TT
1

eT

emax
e

nn
Ck

Cq
q

+
=                                                                                                         (12) 
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where kT is the Toth model constant (mgn
T L-n

T) and nT is the model exponent [30,36]. 

 

3.  MATERIAL AND METHODS 

3.1.  Soil characterization 

A bulk soil sample was collected in Póvoa de Varzim, Porto, Portugal at depth of 

0 cm - 50 cm, near EN 13 road (41º25’15.58’’N and 8º45’58.27’’O). The soil was air-

dried, homogenized and sifted through a 2.0 mm stainless steel sieve. 

The Cr and Pb concentrations in soil were determined by flame atomic absorption 

spectrometry (Varian SpectraAA-400), after microwave (Aurora Instruments MW600) 

digestion with nitric acid using US EPA method 3051A [37]. Soil pH was determined 

with 1:1 soil/water suspension. Particle distribution was determined by laser 

granulometry (Beckman-Coulter mod. LS230), the cationic exchange capacity and 

exchangeable cations were quantified using ammonium acetate at pH 7 [38] and the 

Mehlich methods [39], respectively. Organic matter content was determined by the 

Tinsley method [40]. The major mineral composition was determined by X-ray 

diffraction analysis (Philips PW3710). 

 

3.2.  Batch experiments 

Batch experiments with Cr and Pb were performed by adding 20 mL of single - 

metal solution, to 2 g of soil samples in 50 mL polypropylene tubes. Solutions with 

varying concentrations were prepared from PbCl2 and K2Cr2O7, in 0.01 M CaCl2. The 

initial pH of each solution was adjusted to a desire value - 2 or 5 - by addition of 

concentrated HNO3 (65%) and diluted NaOH (0.1M). The real concentration of each 

solution was determined by flame atomic absorption. The concentrations for both 

metals, varied from about 50 mg L-1 to 200 mg L-1. Suspensions were agitated in an 

orbital mixer at room temperature for different contact lengths of time, at 100 rpm - (1, 

2, 4, 8, 12, 16, 24 and 48 h) for the Pb solutions and (4, 8, 12, 24, 48, 96, 144, 192, 240 

and 288 h) for the Cr solutions. After shaking, the solutions were centrifuged at 10000 

rpm for 10 min. The supernatants were collected in eppendorfs with 2% (v/v) of HNO3 

after pH measuring, stored at 4 ºC and analyzed by flame atomic absorption 
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spectrometry. Proper blanks, without the soil sample, and duplicates, were made for 

each solution concentration and time. The amount of metal adsorbed on the soil is 

calculated by: 

 

W

VCC
q

)( ei
t

−
=                                                                                                            (13) 

 

where Ce was defined earlier, Ci is the initial concentration of metal in the liquid phase, 

(mg L-1); V is the volume of metal solution (L) and W is the weight of the soil sample 

(kg). 

 

3.3.  Column tests 

For the continuous flow experiments, 160 g of soil were manually packed into a 

column of Perspex (25 cm × 3.2 cm) forming a soil bed with 17 cm and a porosity of 

about 0.32. Deionised water was initially passed at a slow and steady rate to saturate the 

column.  

Then, 20 litters each of PbCl2 and K2Cr2O7 solutions were prepared with              

50 mg L-1 of Pb or Cr, respectively. The pH was adjusted to values of 2 or 5, with 

HNO3 and NaOH. The solutions were passed upwards through the columns via a 

peristaltic pump (Q ≈ 2.6 mL min-1) to ensure saturated flow conditions. Samples of the 

column effluent were collected, acidified after pH measurement, and analyzed by flame 

atomic absorption spectrometry. All experiments were made in duplicate.  

After the assays, soil beds were sliced in three samples that were properly 

homogenized. Then, a sample was digested, with nitric acid, in microwave, according 

US EPA method 3051A [37] and analyzed by flame atomic absorption spectrometry. 

Soil samples were also characterized, in duplicate, with transmission FTIR (BOMEM 

MB104) on KBr pressed pellets. Background correction for atmospheric air was used 

for each spectrum. The resolution was 4 cm-1 with minimum of 10 scans for each 

spectrum and the range was 500 - 4000 wavenumbers. Spectra were analyzed by 
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comparing the absorption bands of the samples with known absorption frequencies for 

different types of bonds. 

 

4.  RESULTS AND DISCUSSION 

4.1.  Soil characterization 

Table 2.1 resumes the characterization of the studied soil sample. It was classified 

as an acidic loamy sand soil, with a high content in organic matter. The cationic 

exchange capacity is low. The predominance in the clay minerals belongs to kaolinite, 

followed by illite, smectite and interstratified material. 

 

Table 2.1.  Chemical and physical properties of the soil collected at Póvoa de Varzim, Portugal 

Texture (%)    Heavy metals concentration/ (mmol kg-1)   
       

Clay   2.58  [Cr]  0.17 
       

Silt   23.06  [Pb]  0.58 
       

 Sand   74.36  [Zn]  4.21 
       

pH (H2O)  5.9  [Cd]  0.01 
       

CEC/ (cmolc kg-1)  12.52  [Cu]  0.54 
       

OMC/ (%)  3.5   CaCO3/(mg  kg-1)   
       

EC/ (cmolc kg-1)    Clay Minerals (%)   
       

[Ca2+]  7.20  Kaolinite  41 
       

[Mg2+]  0. 81  Illite  31 
       

[K+]  0. 37  Esmectite  18 
       

[Na+]  0. 52  Interstratified  10 
       

Apparent Density    [ PO
3
4

− ]/(mg kg-1)  7.2 ± 0.8 
       

ρb/(kg m-3)  1320     
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4.2.  Batch experiments 

4.2.1.  Sorption kinetics 

Table 2.2 shows the adjusted parameters of the kinetic equations for experiments 

with Cr. According to the correlation coefficient values (r
2
), better adjustment was 

achieved with the empirical power function, represented in Figure 2.1 a) and Figure 2.1 

b) for each data set. The initial concentration did affect the estimated apparent sorption 

rate (νPF), which increases with the initial metal concentration in liquid phase (Table 

2.2). This is indicative that the rate limiting factor is affected by metal initial 

concentration [41]. Figure 2.1 a) and Figure 2.1 b) shows that for similar initial 

concentrations of Cr, lower values of metal adsorbed per mass of soil were obtained for 

pH 5. Actually, the rate constants of the empirical power function are smaller than those 

obtained at pH 2 (Table 2.2). According to Impellitteri [42], soil with pH-dependent 

charge tends to deprotonate with increasing pH. However, Cr adsorption is favored if 

surfaces are positively charged, increasing with reduced pH, since the most common 

species are in the anionic form ( OCr,CrO,HCrO 2
72

2
44

−−− ). This may explain the higher 

rate constants values for pH 2 [10]. In fact, the pH of the liquid phase tends to increase 

along the batch experiments revealing the protonation of soil surface. 

The correlation coefficients obtained for the adjustment of the Elovich equation to 

Cr adsorption kinetics revealed a good fitting (Table 2.2). In fact, the graphs of Figure 

2.1 a) and Figure 2.1 b) show the typical behavior described by this model. There is a 

high rate adsorption at the beginning which decreases along time [43]. The initial higher 

rate of metal sorption has been attributed to adsorption on high affinity surface sites or 

on sites with higher bonding strength with the metal. Once these sites are exhausted, the 

uptake may be controlled by diffusion, precipitation and/or sorption reactions on sites 

with higher activation energy [44]. 

During the assays on Pb, with the initial solutions at pH 5, precipitation was 

noticed. In fact, in Figure 2.1 d) it is obvious that the whole Pb was retained in the solid 

phase. On the other hand, at pH 2, the adsorption occurs rapidly, Figure 2.1 c). 

Consequently, the tested models did not adjust the adsorption kinetics of Pb in the same 

conditions tested for Cr. 
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Table 2.2.  Parameters and correlation coefficients (r2) of the kinetic equations adjusted to 

experimental data with initial solution of chromium at pH 2 and pH 5. The CI column respects to 

the parameters interval for a confidence level of 95% 

pH Ci 
 

Pseudo first-order  Elovich model 
 

k1  CI   r
2  αE  CI  βE  CI  r

2 
                  

2 

75 
 

0.103  0.048  0.862  15.29  7.11  0.008  0.001  0.988 
                 

92 
 

0.052  0.024  0.989  12.13  1.90  0.006  0.000  0.992 
                 

128 
 

0.035  0.009  0.893  10.34  2.86  0.005  0.001  0.964 
                 

154 
 

0.030  0.010  0.908  9.02  2.46  0.005  0.001  0.963 
                 

172 
 

0.032  0.011  0.903  9.97  2.17  0.005  0.001  0.977 
                 

189 
 

0.025  0.008  0.913  8.17  2.19  0.005  0.001  0.960 
                 

204 
 

0.027  0.007  0.939  7.93  2.80  0.006  0.002  0.931 
                  

5 

78 
 

0.010  0.008  0.806  5.73  3.12  0.011  0.004  0.849 
                 

98 
 

0.008  0.001  0.963  4.50  1.54  0.008  0.003  0.892 
                 

131 
 

0.006  0.002  0.652  6.95  5.65  0.011  0.006  0.826 
                  

pH Ci 
 

Empirical power function       
 

kPF  CI  vPF  CI  r
2       

                  

2 

75 
 

217.6  66.2  0.226  0.061  0.893       
                 

92 
 

185.7  36.6  0.285  0.039  0.989       
                 

128 
 

146.4  30.1  0.354  0.040  0.993       
                 

154 
 

115.6  36.1  0.377  0.061  0.987       
                 

172 
 

142.5  28.0  0.364  0.038  0.994       
                 

189 
 

94.3  35.4  0.405  0.073  0.985       
                 

204 
 

78.6  22.8  0.435  0.056  0.991       
                  

5 

78 
 

36.1  32.6  0.461  0.174  0.935       
                 

98 
 

13.7  11.8  0.663  0.161  0.979       
                 

131 
 

53.8  69.6  0.388  0.247  0.880       
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Figure 2.1.  a) b) Variation of mass o Cr(VI) adsorbed per mass of soil, for different initial 

solutions, at pH 2 and pH 5 respectively (C1=75 mg L-1;C2=92 mg L-1;C3= 128 mg L-1) . Lines 

represent the empirical power function, adjusted to each kinetic data; c) d) Variation of mass o 

Pb(II) adsorbed per mass of soil for different initial solutions, at pH 2 and pH 5 respectively (C1=78 

mg L-1;C2=98 mg L-1;C3= 131 mg L-1). The error bars depict the confidence interval for a level of 

confidence of 95%. 

 

4.2.2.  Equilibrium models 

Once more it was not possible to obtain a good fitting with any of the tested 

isotherm models in the case of Pb adsorption at pH 5. Therefore, Table 2.3 shows the 

results obtained with initial solutions of both metals at pH 2. An overall analysis reveals 

that almost all isotherm equations fit better the experimental data obtained in batch test 

with Pb, compared to Cr. Besides, among the two parameters models, Langmuir 

equation presents the best fitting for Pb (Figure 2.2), meaning that these cations are 

strongly adsorbed as a monolayer covering the solid surface. According to this model, 

Cr shows more affinity to this soil, since the parameter bL found is higher. However, the 

tested soil showed a higher maximum adsorption capacity - qmax - for Pb, as it can be 

seen in Table 2.3. This can be explained by the hard - soft acid - base principle. The 

sorption capacity increases with increasing polarizability and ionic radii and decreasing 
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electronegativity, thus decreasing hardness [45]. According to Ghosh and Biswas [46], 

the global hardness of Pb is lower than the global hardness of Cr, explaining the lower 

value of the Langmuir constant - qmax - founded for this metal. For Cr, the best fit was 

obtained with the Dubinin-Radushkevich equation (Figure 2.2) and the value obtained 

for the mean energy sorption is lower than 8 kJ mol-1, which indicates that adsorption is 

mainly physical due to weak Van der Waals forces [47]. 

 

 

Figure 2.2.  Sorption isotherms obtained for Cr(VI) and Pb(II) for high equilibrium concentrations. 

Two parameters models are represented by solid lines and three parameters models by the dash 

lines. The error bars depict the confidence interval for a level of confidence of 95%. 

 

From the three-parameter models fitting, the best correlation coefficients were 

found for Redlich-Peterson isotherm applied to Cr adsorption and for Khan equation 

applied to Pb(II) adsorption (Table 2.3). Redlich-Peterson and Khan equations, properly 

represented in Figure 2.2, covers Langmuir and Freundlich isotherms, suggesting the 

existence of a monolayer strongly adsorbed on the solid surfaces, and, eventually, one 

or more layers weakly adsorbed due to distance to soil surface [28,30,34]. 
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Table 2.3.  Isotherms constants and correlation coefficients (r2) obtained for the two and three 

parameter models, for Cr(VI) and Pb(II) sorption onto soil, for initial pH of 2. Confidence intervals 

- CI - determined for a 95% confidence level 

T
w

o 
Pa

ra
m

et
er

 M
od

el
s 

    Cr(VI)  Pb(II)       Cr(VI)  Pb(II) 
             

Fr
eu

nd
lic

h 

 kF  1078  387.1  

T
hr

ee
 P

ar
am

et
er

 M
od

el
s 

R
ed

lic
h-

Pe
te

rs
on

 

 kRP  975  1584 
             

 CI  409  202.5   CI  271  29 
             

 nF  11.33  2.38   aRP  0.304  0.025 
             

 CI  17.46  0.96   CI  0.197  0.027 
             

 r
2  0.460  0.940   βRP  1.191  1.285 

             

         CI  0.100  0.247 
             

L
an

gm
ui

r 

 qmax  1570  2168   r
2
  0.987  0.998 

             

 CI  304  255         
             

 bL  1.32  0.095  

K
ha

n 

 qmax  3306  6087 
             

 CI  1.36  0.030   CI  1334  5365 
             

 r
2  0.783  0.990   aK  1.262  0.028 

             

         CI  0.190  0.028 
             

D
ub

in
in

-
R

ad
us

hk
ev
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h 

 qD  1525  1563   bK  0.327  1.904 
             

 CI  96  200   CI  0.220  1.230 
             

 BD  2.55E-7  4.46E-6   r
2  0.985  0.999 

             

 CI  -  2.39E-6         
             

 E  1400  335  

Si
ps

 

 kS  1199  125.6 
             

 r
2  0.933  0.929   CI  1000  98.9 

             

         aS  0.796  0.067 
             

T
em

ki
n 

 aTe  4443  0.785   CI  0.662  0.044 
             

 CI  6.448E4  0.366   βS  2.360  1.307 
             

 bTe  19.84  4.855   CI  2.183  0.465 
             

 CI  27.78  0.901   r
2  0.949  0.996 

             

 r
2
  0.496  0.982        

         

T
ot

h 

 qmax  1496  1786 
              

          CI  134  258 
              

          kT  23.44  66.35 
              

          CI  128.15  152.86 
              

          nT  4.05  1.69 
          CI  5.90  0.86 
          r

2
  0.970  0.997 

 

4.3.  Column Tests 

Variations of Cr and Pb concentration in the effluents [C/(mg L-1)] relative to the 

influent [Ci/(mg L-1)] are shown as breakthrough curves (C/Ci vs t) in Fig. 3. As it was 

mentioned before the Cr oxyanions ( OCr,CrO,HCrO 2
72

2
44

−−− ) are weakly sorbed by 



CHAPTER 2| Retention of Cr(VI) and Pb(II) on a loamy sand soil: Kinetics, equilibria and breakthrough 

 

 
Fonseca, B | 2011 50 

soils under alkaline to slightly acidic conditions leading to high mobility in the 

subsurface [11]. Thus, Cr appears in higher concentrations in the leachate of the column 

fed with dichromate solution at pH 5, Figure 2.3 a).  

 

 

Figure 2.3.  a) Effect of influent pH on the Cr(VI) breakthrough curves; b) Effect of influent pH on 

the Pb(II) breakthrough curves (Ci ≈ 50 mg L-1); c) Variation of the pH on Cr(VI) effluents d) 

Variation of the pH on Pb(II) effluents. 

 

As it can be seen in Figure 2.3 c), pH values of the column fed with Cr solution at 

pH 2 decreased fast. This may be due to the high concentration of protons in this 

influent that are rapidly sorbed by soil, which has a low buffering capacity, implying a 

large number of positively charged sites that can retain Cr oxyanions [22]. On the other 

hand, the lowest concentration of protons in the influent at pH 5 leads to a slower 

protonation of the solid surfaces. However, these differences can also result from Cr(VI) 

reduction to Cr(III) that is less mobile due its stronger  adsorption and complexation. 

Other researchers [48,49] showed that organic compounds do not directly reduce Cr(VI) 

at pH values greater than 2, which can explain the higher retention of Cr in the soil 

column at pH 2, as it can be seen in Figure 2.4 by the higher values of metal 

concentration in  the three soil bed sections. Also, the determination of the retardation 
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factor, by the method used elsewhere by the authors [22], confirmed the higher retention 

of Cr at pH 2, Table 2.4. 

 

 

Figure 2.4.  Mass of metal retained per mass 

of soil in three different zones of the soil bed, 

for column test with Pb and Cr. The error 

bars depict the confidence interval for a level 

of confidence of 95%. 

Table 2.4.  Retardation factors determined 

for the tested metals and pH values 

C0/(mg/L) Influent pH R 
   

47 
2 27 

  

5 23 
   

54 
2 18 

  

5 339 
   

 

The breakthrough curve shown in Figure 2.3 b) for the assay with Pb influent at 

pH 5, indicates that no saturation occurred in this column. On the other hand, at pH 2, 

Pb showed higher mobility. In fact, the retardation factor obtained for this influent is 

about 19 times higher than the retardation factor obtained for the influent at pH 2 

containing the same concentration of Pb (Table 2.4).  This behavior is due to the high 

pH values of the effluent along the experiment at pH 5, as it can be seen in Figure 2.3 

d), which promotes the Pb precipitation. Accordingly, Figure 2.4 shows a higher 

retention at the bottom of the column where the influent is feed, for the tests at pH 5, 

implying a promptly high immobilization.  In contrast, the effluent pH along the 

experiment at pH 2 tends to decrease due to the already mentioned lower buffering 

capacity of the soil, avoiding precipitation phenomena.  
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4.4.  FTIR spectral analysis 

Figure 2.5 shows the FTIR spectra of the soil samples of the bottom, centre and 

top of the columns bed after the sorption tests with the influent at pH 2 and of an 

uncontaminated soil sample. Clay minerals represented by the SiO-H stretch at 3695 

cm-1, 3620 cm-1, Si-O-Si stretch at 1030 cm-1 and a small weak band at 694 cm-1 appear 

to play an important role in the sorption process of both metals, especially of Pb, since 

these bands tend to overlap for the contaminated samples [5,50,51]. In fact, heavy 

metals are sorbed by a variety of soil phases with hydroxyl groups on their surfaces and 

edges including the clay minerals, where sorption reactions are often more rapid. 

FTIR spectra of the soil used in Pb experiment shows a variation of O-H bend of 

adsorbed water (~1635 cm-1), suggesting the formation of PbOH+ in the surface. The 

soil sample contains some natural organic matter that greatly adsorbs trace metals 

resulting in the overlapping of the C-H stretch band (2920 cm-1, 2850 cm-1) in both 

spectrums. As already mentioned in previous sections, in the case of Cr this 

phenomenon can also result from the reduction of Cr(VI) to Cr(III) by natural organic 

matter [11,50,52,53]. 
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Figure 2.5.  FTIR spectra of columns soil samples, before and after the flow experiments with 

Cr(VI) and Pb(II) influents at pH 2. 
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1.  INTRODUCTION 

Soil is a key element in human survival and can be described by various 

definitions according to its main utility. Nowadays, it is accepted that soil is a very 

complex heterogeneous medium which consists of solid phases containing minerals and 

organic matter, and soil solution, defined as the fluid phase where soil reactions, 

transport and adsorption occur [1]. The understanding of the contamination processes of 

this particular soil herein presented is fundamental for the recovery of extensive 

polluted areas, as this type of loamy sand soil is very common in industrialized regions. 

Heavy metals are natural constituents of rocks and soils in concentrations that do 

not represent any risk to animal or plants. Some anthropogenic activities like the 

spreading of sewage sludge or fertilizers, the discharge of domestic and industrial 

effluents in land and also the atmospheric disposal, promoted the augmentation of these 

metals concentration to toxic levels [2]. For example, electroplating, tannery and 

galvanization activities are important sources of chromium contamination [3]. 

The high aqueous solubility of hexavalent chromium is a public health concern 

since the anionic forms, chromate and dichromate, are considered hazardous and are 

highly mobile in soil and water environment. Exposure to Cr(VI) has been associated 

with allergic contact dermatitis in sensitive individuals and bronchial carcinomas and, at 

high concentrations, with skin ulcerations and perforation of the nasal septum [4-6]. 

Heavy metals sorption onto soils is highly affected by soil solution pH [7,8], but 

sorption studies are usually focused on the soil pH. However, spills near industries or 

direct discharge of high concentrated effluents occur in uncontrolled conditions of pH 

and a rapid intervention is mandatory. Therefore this piece of research intends to 

complement the knowledge about hexavalent chromium sorption onto soil by describing 

this process with three highly concentrated influents and at three different pH values. 

Usually, batch experiments are used to obtain equilibrium adsorption isotherms 

and to evaluate the sorption capacity of soils for given metals present in fluid phases. 

Despite the importance of this information, those experiments presents certain 

limitations because batch equilibrium models do not give any information about 

hydrodynamic parameters [9]. Thus, an accurate prediction of transport and adsorption 

of contaminants in soils can be obtained through flow experiments. 

Specifically in this study, the adsorption of hexavalent chromium present in 

contaminant solutions with pH of 2, 5 and 7 was evaluated by batch and by flow 
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methods. In order to do this, CXTFIT code [10] was used to estimate the parameters of 

the two-site non-equilibrium convection-dispersion equation (TSM/CDE) by adjusting 

the model to the experimental breakthrough curves (BTC). The batch equilibrium 

parameters were determined by the adjustment of Freundlich and Langmuir equations. 

In general, adsorption of chromium was higher in flow experiments and at low pH 

values. Consequently, to study the effect of the ratio soil/solution concentration, flow 

experiments with influents with 50, 75 and 100 mg L-1
 of hexavalent chromium at pH 2 

were performed. Concentrations were chosen in the range used to obtain the isotherm 

curves. Retention was about three times higher for the concentration of 100 mg L-1. 

Functional groups present in the soil that may have some role in the sorption 

process were evaluated by FTIR. 

 

2.  MATERIAL AND METHODS 

2.1.  Soil characterization 

A sample of a loamy sand soil collected in a zone of great agricultural activity at 

Póvoa de Varzim, Porto, Portugal (41º25’15.58’’N and 8º45’58.27’’O), was used in this 

study. The soil was collected from the O-horizon and from the A-horizon (0 cm - 30 

cm) and stored in plastic bags. The mixed sample was passed through a 2 mm stainless 

steel sieve after being air dried. Particle size distribution was determined in a laser 

granulometer (Beckman-Coulter mod. LS230). Carbonate content was determined with 

a Scheibler calcimeter (Scheibler). Cationic exchange capacity was quantified using 

ammonium acetate at pH 7 [11]. The metals concentrations in soil were determined by 

flame atomic absorption spectrometry (Varian SpectraAA-400), after microwave 

(Aurora Instruments MW600) digestion with nitric acid using US EPA method 3051A 

[12]. Soil pH was determined with 1:1 soil/water suspension and organic matter content 

was determined by the Tinsley method [13]. These characteristics were already 

summarized in Table 2.1. Titration analyses were performed to assess the acid buffering 

capacities of the soil as described by Reddy et al. [14]. 
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2.2.  Batch experiments 

To obtain sorption isotherms of Cr(VI), 2 g of soil samples were placed in 50 mL 

polypropylene tubes and equilibrated with 20 mL of 0.01 M CaCl2 solution containing 

graded levels of hexavalent chromium concentration, i.e. 50, 75, 100, 125, 150, 175 and 

200 mg L-1 as K2Cr2O7 solution. Sorption sets were made for pH values of 2, 5 and 7, 

and each of them was duplicated. Blanks and quality control were also made. The soil 

suspensions were equilibrated for 240 h at room temperature (25 ºC) in an orbital mixer 

(Certomat® S), at 100 rpm. After shaking, the solutions were centrifuged at 5000 rpm 

for 5 min. The supernatant was collected in pre-acidified eppendorfs (2% HNO3), after 

pH measuring, stored at 4 ºC and analyzed by flame atomic absorption spectrometry 

(FAAS). Freundlich and Langmuir isotherm models were fitted to the equilibrium data. 

Kinetic assays were very similar. However, they were only performed for Cr(VI) 

concentration equal to 50 mg L-1, for different contact times  - 4, 16, 48, 92, 144, 192 

and 240 h. The pseudo-first order equation was adjusted to kinetic data in order to 

determine the first order kinetic rate coefficient, k1 (h
-1). 

 

2.3.  Continuous flow experiments 

All column experiments were conducted in duplicate, in two columns of acrylic 

(25 cm × 3.2 cm). The air-dried soil samples were packed into the column under 

vibration and progressively saturated with distilled water to prevent air entrapment. The 

influent Cr(VI) solutions of 50, 75 and 100 mg L-1 at pH 2, 5 or 7, were introduced from 

the bottom of the column to ensure saturation flow conditions [15]. Effluent samples 

were collected for about 80 h in 50 mL propylene tubes at the top of the column. After 

the pH measurement, the samples were acidified (2% HNO3) and stored for posterior 

analyses by FAAS. Breakthrough curves were fitted by two site adsorption model 

(TSM) using CXTFIT code [10]. The Freundlich adsorption parameter, kF, and the 

Langmuir adsorption parameter, qmax, were obtained from the fitting. Table 3.1 

summarizes the experimental conditions for all flow experiments. 
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Table 3.1.  Experimental conditions of flow experiments 
      

Influent pH 2 5 7 2 2 
      

C0 (mg L-1) 48.6 48.6 44.7 80.8 110 
      

θ  (m3 m-3) 0.42 0.41 0.45 0.39 0.38 
      

L (cm) 15.3 15.0 14.1 15.3 15.5 
      

q (cm h-1) 20 20 18 20 20 
      

ρb (kg m-3) 1300 1243 1322 1324 1293 
      

 

Previously to the flow tests with the hexavalent chromium, a flow experiment 

using CaCl2 (0.01M) as a tracer was also conducted to evaluate independently the 

average pore water velocity (ν) and the dispersion coefficient (D), by measuring the 

conductivity of 25 mL samples and fitting the breakthrough curve with CXTFIT code to 

the equilibrium convection dispersion equation (CDE). These two parameters were kept 

constant for the fitting of Cr(VI) breakthrough curves. 

At the end of the experience, a homogeneous sample of each column was digested 

[12] and analyzed by FAAS. Samples were also characterized with transmission FTIR 

(FTIR BOMEM MB 104) on KBr pressed pellets (100 mg of KBr and 1 mg of sample). 

Background correction for atmospheric air was used for each spectrum. Spectra were 

obtained in the range 500 - 4000 wavenumbers, with a minimum of 10 scans and a 

resolution of 4 cm-1. 

 

2.4.  Evaluation of batch sorption parameters 

For the evaluation of the equilibrium data two isotherm models were used: 

 

Freundlich equation: 

Fn
eFe Ckq =

                                                                                                                    (14) 

 

Langmuir equation: 

( )
( )eL

Lemax
e 1 Cb

bCq
q

+
=                                                                                                              (15) 
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where qe is the mass of metal adsorbed per mass of soil (mg kg -1), in equilibrium with 

the concentration of the metal in the liquid phase, Ce (mg L-1), kF is the Freundlich 

constant (L1/n mg (1-1/n) kg-1), nF is the Freundlich exponent, qmax is the maximum 

adsorption of the metal (mg kg-1) and bL is the Langmuir equilibrium constant (L mg-1) 

[16-18]. 

To evaluate the adsorption kinetics, the pseudo-first order equation was adjusted 

to the kinetics data sets (qt vs t) of the three pH values: 

 

( )[ ]tkqq 1et exp1−=                                                                                                        (16) 

 

where qt and qe are  the amount of metal sorbed in soil (mg kg-1) at the equilibrium and 

at the time t (h), respectively, and k1 is the first order kinetic rate coefficient (h-1) [19]. 

 

2.5.  Evaluation of transport and sorption parameters by the convection-dispersion 

equation (CDE) 

2.5.1.  Two-site non-equilibrium adsorption 

Heavy metals can be sorbed by different constituents of soils, like minerals or 

organic matter, at different rates and intensities while being transported through a 

packed column. Therefore, the two site adsorption model assumes that the adsorption 

can occur instantaneously (equilibrium) or be time dependent (first-order kinetic) 

[20,21]. 

If there is no production or degradation of the solute, the two site non-equilibrium 

model can be written as: 
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where C is the flux average or resident concentration (mg L-1), ρ is the soil bulk density 

(kg m-3), θ is the volumetric water content (m3 m-3), t is time (h), q1 is the solid phase 

concentration on equilibrium sites (mg kg-1), q2 is the solid phase concentration on 
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kinetic non-equilibrium sites (mg kg-1), D is the dispersion coefficient (cm2 h-1), x is 

distance (cm) and v is the average pore water velocity (cm h-1). 

The non-equilibrium adsorption process is defined by: 

 

( ) ( )[ ]21
2 1 qCfFk
t

q
−−=

∂

∂
                                                                                            (18) 

 

where F represents the fraction of the sites available for instantaneous adsorption and at 

equilibrium adsorption on both sites is described by a nonlinear isotherm [9,21]: 

 

( )CFfq =1                                                                                                                     (19) 

 

and 

 

( ) ( )CfFq e −= 12                                                                                                          (20) 

 

The CXTFIT code was used in this work under flux-type boundary conditions as 

described by Kreft [22]. This code adjusts the following dimensionless form of the two-

site non-equilibrium model to the breakthrough curves in order to estimate the transport 

and sorption parameters: 
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where the dimensionless parameters are defined as follows 
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In the above equation C1 and C2 are the relative concentration of chromium in 

equilibrium (1) and kinetic (2) sites scales to the input concentration C0; P is the Peclet 

number; T is the dimensionless time; L is column length; R is the retardation factor; β is 

a partitioning coefficient, ω is a dimensionless mass transfer coefficient and kL is the 

linear isotherm sorption coefficient [10,23]. To calculate the non linear adsorption 

parameters of Freundlich and Langmuir isotherm models it was assumed that [24]: 

 

1
FL

−= Fn
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Transport of reactive solutes in soils may also be affected by physical non-

equilibrium processes. To discard this hypothesis, a saturated flow regime was kept 

through a homogeneous soil bed [10,21]. 

 

2.5.2.  Equilibrium model parameters 

For nonreactive tracers, like the CaCl2 used to characterize the hydraulic 

conditions in this study, the CDE can be reduced to [21,25]: 
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                                                                                                     (33) 

 

The flow regime can then be characterized by applying the tracer Cl- at the same 

flow rate as the contaminant influent. 

 

3.  RESULTS AND DISCUSSION 

3.1.  Batch Experiments 

The Freundlich, Langmuir and linear isotherm models were fitted to the batch 

equilibrium data. However, the fitting of the linear model was always very poor (0.0 < 

r
2 < 0.2) and these results were discarded of discussion. Values of the Freundlich and 

Langmuir parameters and also of the pseudo-first order kinetics equation are listed on 

Table 3.2. 

 

Table 3.2.  Freundlich, Langmuir and pseudo-first order parameters of batch experiments 

Influent 
pH 

 Freundlich isotherm 
parameters 

Langmuir isotherm 
parameters 

 
Pseudo-first order 

equation 
 kF  nF  r

2
  qmax  b  r

2  k1  r
2 

                 

2  62  0.36  0.965  452  0.03  0.930  0.003  0.757 
                 

5  58  0.34  0.584  389  0.03  0.509  0.003  0.929 
                 

7  28  0.47  0.715  431  0.01  0.650  0.002  0.882 
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Analyzing the Freundlich isotherm coefficient, kF, it may be concluded that raising 

the liquid phase pH from 2 to 5 resulted in a moderate decrease in adsorption. However, 

when the pH was elevated to 7 the decrease in adsorption is considerable. 

A decrease in the pH of the liquid phase results in the fast protonation of the soil 

surface due to the low acid buffering capacity of the soil compared with a simpler soil, 

kaolin (Figure 3.1). Hexavalent chromium form exists mainly as oxyanions and these 

can be adsorbed in the positively charged sites. So, for lower pH values adsorption is 

higher [4,14].  

The Langmuir sorption parameter, qmax, is quite constant for the three batch 

equilibrium data sets (Table 3.2). This would be expected since the tested soil was the 

same in all the experiments, and this parameter measures the maximum adsorption 

capacity of the adsorbent [26,27]. Like the Freundlich parameter, nF, also the Langmuir 

parameter, bL, remained practically constant, as expected since these parameters are 

constants of the models. 

 

 

Figure 3.1.  Buffering capacity test results. 

 

It should be noticed that both models described well the adsorption for the low pH 

value. The non saturation of all adsorption sites may be the explanation of this scenario 

[28]. 

The pseudo-first order equation fits quite well the Cr(VI) adsorption kinetics for 

all the tested pH values. Covelo et al. [29] also obtained good fitting of this model for a 

quite similar soil. The higher values of the coefficient rate, k1, show that adsorption 

occur rapidly at lower pH values, due to the protonation of soil surface as referred 

previously. 
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3.2.  Flow experiments 

3.2.1.  Tracer experiments 

The BTC curve obtained for the nonreactive tracer (CaCl2) was fitted by Equation 

(33), using the CXTFIT code, Table 3.3. The dispersion coefficients obtained for the 

columns used in the flow tests at pH 2 were smaller than the other two, indicating that 

the axial dispersion was lower in these columns, probably due to unsaturated conditions 

[10]. However, the values of the pore water velocity, v, are quite similar to the values of 

the experimental flux, q (Table 3.1). This could be indicative that all the water is 

mobile. 

 

Table 3.3.  Physical parameters obtained by fitting the equilibrium CDE to the BTC of CaCl2 

tracer. TSM model parameters fitted to the BTC of the hexavalent chromium influents and 

isotherm models parameters 

C0/(mg L-1) 
Influent 

pH 

 
Physical 

parameters 
(R=1) 

 
Two site adsorption model 

parameters 
 Freundlich  Langmuir  

Pseudo-
first 

order 

 D  v r
2  R  β  ω  r

2
  kF  qmax  k1 

                     

47.3 

2  15  16 0.992  27  0.05  0.03  0.837  280  1738  0.001 
                    

5  49  22 0.994  23  0.04  0.02  0.938  284  1560  0.001 
                    

7  32  18 0.993  2.2  0.46  0.20  0.952  7.1  85  0.217 
                     

80.8 2  15  14 0.991  30  0.03  0.03  0.980  280  1738  - 
                     

110 2  15  16 0.986  95  0.01  0.04  0.838  918  5697  - 
                     

 

3.2.2.  Two-site non equilibrium model 

The curves of the adjusted two-site adsorption model can be observed in Figure 

3.2 for all the influent pH values. A good fit was obtained for all pH values and 

concentrations, denoting that this model describes well the transport and adsorption 

processes (Table 3.3). A prior analysis of these results shows that sorption parameters, 

kF and qmax, determined for the lower pH values and concentrations are similar. 

However, these values are about four/five times higher than those observed for the batch 

equilibrium data. According to Miller [30] this appears to be due to the removal of 
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competitive anions in flow systems effluent. To determine these parameters the other 

two constants, nF and bL, were kept constant, since they did not vary significantly for 

batch tests experiments. 

 

 

 

 

Figure 3.2.  Experimental and fitted BTCs with the two-site model (TSM), for soil columns 

contaminated with different hexavalent chromium influents: a) C0 = 50 mg L-1 and pH = 2; b) C0 = 

50 mg L-1 and pH = 5; c) C0 = 50 mg L-1 and pH = 7; d) C0 = 75 mg L-1 and pH = 2; e) C0 = 100 mg L-

1 and pH = 2.  

 

0

2

4

6

8

10

12

14

0,0

0,4

0,8

1,2

0 40 80
pH

C
/C

0

t /h

a)

0

2

4

6

8

10

12

14

0,0

0,4

0,8

1,2

0 40 80

pH

C
/C

0
t /h

d)

0

2

4

6

8

10

12

14

0,0

0,4

0,8

1,2

0 40 80

pH

C
/C

0

t /h

b)

0

2

4

6

8

10

12

14

0,0

0,4

0,8

1,2

0 40 80
pH

C
/C

0

t /h

e)

0

2

4

6

8

10

12

14

0,0

0,4

0,8

1,2

0 40 80

pH

C
/C

0

t /h

c)

BTC
CDE
pH



CHAPTER 3| Modelling of the Cr(VI) transport in typical soils of the North of Portugal 

 

 
Fonseca, B | 2011 72 

3.2.3.  Effects of initial solution pH 

A decrease in the retardation factor (Table 3.3) and in the total mass of metal 

retained per mass of soil (Figure 3.3) is noticed when the influent pH is increased. The 

protonation of soil surface may also occur in the flow tests. However, also the 

reduction, at low pH values, of hexavalent chromium to the trivalent form that is less 

mobile and strongly adsorbed may explain this behavior [5]. 

 

 

Figure 3.3.  Mass of chromium adsorbed per mass of soil during the contamination with influents 

with 50 mg L-1 of concentration and different pH values – 2, 5 and 7 – and with influents at pH 2 

with different concentrations – 50, 75, 100 mg L-1. 

 

Despite of the above considerations, a notable decrease of the retardation factor, 

R, and of the sorption parameters was observed when the pH was raised to 7, a value 

very close to the pKa2 (6.49) of the chromic acid ( -
4

CrO / -2
4

CrO ) [31]. The adsorption 

of anions of polyprotic conjugate acids decreases with increased pH, with a more 

pronounced decrease above the pKa2, explaining the drastic decrease of the retardation 

factor for pH 7. For pH values higher than pKa2 the predominant specie is -2
4

CrO , 

which can be adsorbed by formation of inner sphere bidentate complexes, releasing two 

−OH  anions from the surface. This factor, coupled with the higher concentration of 

−OH  at higher pH values that compete with the -2
4

CrO  for the positive charged sites 

may explain the large decrease of the retardation factor [26,32]. On the other hand, at 
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low pH values HCrO4- can be easily adsorbed at positive charged sites without 

competition or releasing only one OH- anion [27]. 

At pH 7, values of relative concentration higher than 1 were achieved, which are 

related to the under estimation of the isotherm models sorption parameters and the 

upper estimation of first-order rate coefficient presented at Table 3.3. Desorption of 

chromium oxyanions due to the elevated pH of the influent may explain the unexpected 

values of relative concentration [27]. 

 

3.2.4.  Effects of soil/solution ratio 

The analysis of Figure 3.2 e) reveals very low relative concentrations in the 

effluents of the soil bed contaminated with the most concentrated solution. In fact, the 

retardation factor is about three times higher than those found for the two lower 

concentrations. Du et al. [33] reported similar results with cadmium [Cd(II)], verifying 

that adsorption increased with the increase in soil/solution ratio. Aksu [34] also found 

the same behavior in the biosorption of Ni(II), and attributed the phenomenon to the 

diminution of the mass transfer resistance between the aqueous and solid phase. In fact, 

the mass transfer coefficient, ω, also increased (Table 3.3), maybe due to diffusivity of 

the chromium adsorbed onto clay minerals and metal oxides into the lattice structures of 

these minerals. Then, hexavalent chromium becomes strongly fixed into the pore 

spaces, not being easily desorbed to the liquid phase [26]. Figure 3.3 shows no big 

difference between the mass of metal retained per mass of soil, in the columns 

contaminated with the highest concentrated solutions. Although it confirms that the 

retention in the assay with the influent with 100 mg L-1 of chromium was elevated. 

In opposition to the results obtained by Miretzky et al. [35] with Zn(II) in similar 

conditions, the BTC does not shift to the left when the concentration of the influent 

solution increases. Which means that breakthrough occurs at the same time for all the 

tested concentrations. Therefore, and since break occurs very rapidly in all the cases, 

adsorption is mainly controlled by mass transfer in the columns contaminated with the 

influents at pH 2 [36]. 
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3.2.5.  FTIR spectral analysis 

Figure 3.4 shows the FTIR transmittance spectra of the soil samples of the 

columns bed after the sorption tests and of an uncontaminated soil sample.  

The main evidence of these spectra is the similarity between the spectrum of the 

sample contaminated with the solution of 50 mg L-1 at pH 7 and the uncontaminated 

sample. In fact, like the Figure 3.3 demonstrates, the quantity of hexavalent chromium 

adsorbed at this pH was very small.  

The kaolinitic OH vibrations are represented mainly by two bands at 3695 and 

3620 cm-1. This band clearly decreases for the lower pH values when the adsorption is 

higher, denoting that the oxyanions may be adsorbed at the edge of this clay mineral 

[37]. The water molecule is unstable and can be exchanged by an inorganic anion, what 

may explain the decrease of the band correspondent to the OH bend of adsorbed water 

(~1635 cm-1), for pH 2 and 5 [27,38]. 

 

 

Figure 3.4.  Infrared spectra of soil bed samples before and after flow experiments with chromium 

influents with 50 mg L-1, at pH 2, 5 and 7. Spectra of soil beds contaminated with chromium 

influents with 50, 75 and 100 mg L-1, at pH 2. 
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characteristic band (~ 694 cm -1) decreases in the spectra of the contaminated samples, 

because these groups can dissociate and bind protons. Thus it is evident the intervention 

of these groups in the adsorption of the chromium oxyanions [27,37]. 

Specifically, in the spectra of the soil sample contaminated with the influents at 

pH 2 (Figure 3.4 b) it is evident the appearance of two peaks around 3530 cm-1 and 

3445 cm-1 in the samples contaminated with the most concentrated influents. These 

peaks are located in a region characterized by intense OH absorption (3300 cm-1 - 3800 

cm-1). This means that this surface functional group, found also in metal oxides, has an 

important function in chromium adsorption. In fact some metal oxides are known to 

great adsorbed metals, because their hydroxyls groups can be protonated and complex 

metal anions [39]. 

In both spectra, there are well resolved peaks around 2850 cm-1 and 2922 cm-1 

that tend to overlap for the contaminated samples. These bands result from the extensive 

transformation of simpler aliphatic moieties from the mineral wax, for example. Also 

the small peak around 1380cm-1 is attributed to CH deformations from aliphatic 

structures [40-42]. 

Since the soil was collected in a zone of agricultural activity it would be expected 

the presence of primary amine groups characteristic from fertilizers and sludges. That 

was corroborated by a sharp peak at 774 cm-1, in the spectrum of the uncontaminated 

sample, which almost overlapped in the spectra of the contaminated ones. This may 

happen due to the reaction/sorption of the hexavalent chromium with these compounds.
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1.  INTRODUCTION 

The release and disposal of heavy metals from anthropogenic activities have been 

responsible for the increasing concentrations of these contaminants in soil 

environments. The high loading of metals in soils may affect the growth of plants and 

the health of animals, thereby representing a significant threat to public health [1]. 

Consequently, the development of effective strategies to manage heavy metal pollution 

is of great importance [2] but requires extensive knowledge of the sorption and transport 

behaviors of heavy metals and of the diverse variables affecting these processes. Several 

studies have been performed in order to establish the influence of different parameters 

on heavy metal sorption/desorption [3-9]. Most of these studies primarily reported the 

results of batch tests, giving detailed information on the sorption process but little on the 

transport of the heavy metals. Therefore, because the simultaneous presence of 

competing metals is known to affect sorption processes and leaching potentials through 

soil profiles, this study sought to evaluate the retention of heavy metals using either 

batch or flow tests, simulating single- and multi-metal contamination, in order to obtain 

more realistic results [10]. However, it is also important to perform these types of 

studies for different regions and soils, as the composition of the soil matrix may result 

in unexpected behavior. 

Some heavy metals such as cadmium (Cd), zinc (Zn) and copper (Cu) can be found 

in fertilizers used on agricultural lands [11,12]. In addition, Zn and Cu are also present 

in high concentrations, along with lead (Pb), in roadside soils [13]. These four metals, 

together with chromium (Cr), are frequently identified in wastes from several industrial 

activities including electroplating, car manufacturing, and metallurgy [12,14,15]. Thus, 

these five metals can be readily found as co-contaminants in agricultural lands as well 

as near roads and/or automotive facilities. For this reason, a soil sample collected in a 

location of great agricultural activity near an automotive facility was used to study the 

competitive and noncompetitive sorption and transport of Cr, Pb, Cd, Zn and Cu. 

Batch tests were undertaken using single- and multiple-metal solutions with 

equimolar concentrations of the aforementioned heavy metals in order to study their 

sorption equilibria. The Langmuir isotherm model was adjusted to experimental data, 

allowing the determination of the soil’s maximum sorption capacity for each metal, with 

and without competition. To evaluate the retention of each metal in single- and 

multiple-metal flow systems, the respective solutions were pumped through soil 
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columns. Finally, the CXTFIT code was used to fit the dimensionless two-site 

nonequilibrium convection-dispersion equation to the breakthrough curves [16,17] in 

order to determine the retardation factor for each metal under the tested conditions. 

Functional groups present in the soil that may have some role in the sorption process 

were identified by FTIR. 

 

2.  MATERIAL AND METHODS 

2.1.  Soil characterization 

Several representative soil samples of a loamy sand soil were collected at Póvoa de 

Varzim, Porto, Portugal (41º25’15.58’’N and 8º45’58.27’’O), homogenized and 

characterized as described elsewhere [9,18]. The particle distribution was determined by 

means of laser granulometry (Beckman-Coulter mod.LS230). The soil pH was 

determined according to US EPA method 9045D [19]. The ammonium acetate [20] and 

the Tinsley [21] methods were used to quantify the cationic exchange capacity and the 

organic matter content of the soil, respectively. Moreover, the concentration of each 

element - Cr, Cd, Pb, Zn, Cu - was determined by flame atomic absorption (Varian 

SpectraAA-400), after microwave digestion (Aurora Instruments MW600) with nitric 

acid using US EPA method 3051A [22]. Iron and manganese oxides were determined 

by the dithionite-citrate method [23]. Finally, the carbonate content and mineral 

composition were determined with a Scheibler calcimeter and by X-ray diffraction 

analysis (Philips PW3710), correspondingly. Table 2.1 summarizes the physical and 

chemical characterization performed for the studied soil. 

 

2.2.  Batch experiments 

Sorption isotherm assays for Cr, Pb, Cd, Zn and Cu, with either single or mixed 

solutions, were performed using the batch equilibrium technique. The experiments were 

conducted by adding 20 mL of each metal solution or an equimolar solution of the five 

metals to 2 g of soil in 50 mL polypropylene centrifuge tubes. The experiments were 

performed using seven different solutions, prepared on a molar concentration basis, in 

order to prevent mass effects [24]. The heavy metal concentration range [0.05 mM - 

0.48 mM] was selected considering the legislated limit for Pb, as this was the heaviest 
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metal tested. Except for the Cr solutions, which were prepared from potassium 

dichromate salt, the solutions were prepared using nitrate salts of the desired heavy 

metals in a background of 0.01 M of CaCl2. This background was used to improve 

centrifugation and minimize cation exchange [25]. The solutions were acidified with 

concentrated HNO3 (65 %), in order to avoid the precipitation of metal cations (pH ≤ 2). 

It should be noted that the initial concentration of every metal was determined by flame 

atomic absorption spectroscopy after the preparation of the solutions. 

Preliminary studies showed that over the concentration range tested, Cr reached 

sorption equilibrium after 192 h, the longest equilibration time of the five metals studied 

[10,18,26,27]. Therefore, all the batch equilibrium tests, including blanks, were 

undertaken in an orbital mixer (Certomat® S) for 192 h at room temperature (25 ± 0.5 

ºC) and at a shaking speed of 100 rpm. The polypropylene tubes containing the soil-

solution mixtures were then centrifuged at 5000 rpm for 5 min, and an aliquot of the 

supernatant was collected in pre-acidified sample tubes (2 % HNO3). These samples 

were stored at 4ºC for future analysis by flame atomic absorption spectroscopy. The pH 

of the supernatant was measured and was always approximately 6 ± 0.5. 

The concentration of metal adsorbed onto the soil at equilibrium - qe/(mmol kg-1) - 

was calculated as: 

 

( )
W

VCC
q e−

= i
e                                                                                                             (34) 

 

Where Ce is the concentration of metal in the solution at equilibrium (mM); Ci is 

the initial concentration of metal in the liquid phase (mM); V is the volume of metal 

solution (L) and W is the weight of the soil sample (kg). The results were plotted in a 

graph of qe versus Ce and the Langmuir isotherm model was fitted to data: 

 

eL

eLmax
e 1 Cb

Cbq
q

+
=                                                                                                               (35) 

 

qmax is the maximum mass of metal that can be sorbed by the sample (mg kg-1); bL is a 

constant related to the binding strength (L mg-1) [18,28,29]. 
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2.3.  Continuous flow experiments 

All column experiments, including duplicates, were conducted at room 

temperature - 25 ± 1 ºC - in acrylic columns 2.5 cm in diameter by 25 cm deep. The 

packed soil in the columns had a mean bulk density of (2.3 ± 0.3) g cm-3 and a bed 

height of (22 ± 1) cm. Single-metal solutions with 0.05 mM of each metal - Cr, Pb, Cd, 

Zn and Cu - and also a mixed solution with equimolar concentrations of the five metals, 

each with a pH lower than 2, were passed through the columns for approximately 35 h 

at an average flow rate of (15 ± 0.2) mL min-1. To ensure saturation flow conditions 

and, consequently, the absence of immobile regions, the columns were operated in an 

upward flow mode [30]. The samples were collected in 50 mL polypropylene tubes, and 

an aliquot was acidified with 2% (v/v) of concentrated HNO3 (65 %) for final analyses 

by flame atomic absorption spectroscopy. The pH of the effluent samples was also 

measured. The dimensionless two-site nonequilibrium convection-dispersion equation 

(TSM) was then fitted to the obtained experimental breakthrough curves (C/C0 vs t) 

using the CXTFIT model [16], in order to determine the retardation factor - R - the 

coefficient of partitioning between the equilibrium and nonequilibrium phases - β - and 

the mass transfer coefficient for transfer between the two phases - ω. The hydraulic 

parameters, namely the dispersion coefficient - D/(cm2 h-1) - and the pore water velocity 

- v/(cm h-1) - were determined independently for each column. Specifically, the 

equilibrium convection-dispersion equation (CDE) was fitted to the breakthrough 

curves of a nonreactive tracer - CaCl2 (0.01 M). Consequently, a residence time of 

approximately 50 min was estimated for the flow experiments. The detailed procedure 

has been described elsewhere by Fonseca et al. [9]. 

After each displacement experiment, the soil bed was collected and homogenized, 

three samples of each column were digested [9,22], and the metal concentration in each 

sample was determined through flame atomic absorption spectroscopy. These samples 

were also analyzed by transmission FTIR (FTIR BOMEM MB 104) on pressed KBr 

pellets (100 mg of KBr and 1 mg of sample). Background correction for atmospheric air 

was used for each spectrum. Spectra were obtained in the range 500-4000 wavenumbers 

with a minimum of 10 scans and a resolution of 4 cm-1. 
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3.  RESULTS AND DISCUSSION 

3.1.  Soil characterization 

According to the data compiled in Table 2.1, it can be inferred that the studied soil 

is slightly acidic loamy sand. It has considerable organic matter content, but low 

cationic exchange capacity and no carbonate [18]. Kaolinite was found to be the 

predominant mineral composing the clay fraction of the soil sample. Finally, all the 

heavy metals were found in concentrations below the national legislated limit for soils 

with pH between 5.5 and 7.  

 

3.2.  Batch Experiments 

Figure 4.1 shows the isotherm curves obtained for each metal in competitive 

(multiple-metal) and noncompetitive (single-metal) systems. Generally, the isotherm 

curves have the shape of an L-curve isotherm, resulting from the relatively high affinity 

of the soil particles for the metal at low surface coverage, an affinity that decreased as 

the surface became saturated [24,31]. For the noncompetitive sorption of Pb and the 

competitive sorption of Cr, the isotherms obtained took the form of nearly vertical lines, 

or H-type isotherms. These are usually produced by inner-sphere surface complexation 

or by significant van der Waals interactions in the adsorption process [31]. Finally, the 

curves obtained for the non-competitive sorption of Cu and Zn revealed an S-type 

curve. This is related to the low affinity between the soil particles and the metal at low 

concentrations due to the interference of other substances, such as soluble organic 

matter, that can compete with soil particles for the metal cations [31]. Except for Cr, all 

the other equilibria were reached more slowly in the case of competitive sorption 

(Figure 4.1) as the ions competed for sorption sites [32]. Nevertheless, the higher 

sorption density of Cu may also be due to the formation of Cu-Cr precipitates, since the 

soil solution at the end of the experiment had a pH of approximately 6 [33]. This could 

also explain the higher retention of Cr when in competition with Cu and other metals 

[34]. 
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Figure 4.1.  Adsorption isotherms obtained for the tested metals in competitive and non competitive systems. Lines represent the adjusted Langmuir model. The 

error bars depict the confidence interval for a level of confidence of 95%. 
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As mentioned before, the experimental isotherm obtained for the sorption of Pb in 

the absence of competition was a nearly vertical line (Figure 4.1), revealing its total 

sorption and its high affinity for the soil despite the variation in the solution 

concentration. Given this observation and the values of the Langmuir affinity constant - 

bL - determined for each metal in both systems (Table 4.1), a sorption trend can be 

defined as: Cr > Pb > Cd > Cu > Zn. This trend can be mainly explained by the 

conventional hard–soft acid–base (HSAB) principle and the nature of the ions studied. 

The “hard” ions are those with high electronegativity, low polarizability and small ionic 

size. These ions prefer hard ligands but form weak complexes with them. However, the 

“soft” ions have greater affinity for “soft” sites and are more strongly bounded 

[4,29,35,36]. It should be noted that, at low pH values, Cr(VI) exists mainly as an 

oxyanion, which is adsorbed at positively charged sites. In fact, the equilibrium pH 

values of the sorption experiments, including the blank, were between 5.5 and 6.5, 

indicating the degree of protonation of the soil surface. Furthermore, oxyanions are 

“soft” bases and, according to the Pearson concept, can react strongly with Lewis acid 

sites created by inner-sphere surface complexation [9,31,37-39]. 

 

Table 4.1.  Values of Langmuir and Sips equations parameters determined in the mono- and multi- 

metal batch systems, for each tested metal. The standard deviations were under 10% 

Langmuir 
 

Mono-metal  Multi-metal  Langmuir  Mono-metal  Multi-metal 
 

  

Cr  Cd 
 

      

qmax  
3.10  -  qmax  10  10 

     
      

bL 
 

1364  -  bL  41  30 
     

      

r
2 

 
0.964  -  r

2  0.988  0.991 
     

      

Pb  Cu 
 

      

qmax  
-  14.0  qmax  9977  8531 

     
      

bL 
 

-  183  bL  0.1  0.1 
     

      

r
2 

 
-  0.793  r

2  0.735  0.956 
     

      

Zn   
 

      

qmax  
9879  17.0       

     
      

bL 
 

0.04  21.0       
     

      

r
2 

 
0.831  0.971       

     
      

 

As the working concentration range is very narrow in these studies, the experimental 

maximum sorption capacities observed (Figure 4.1) differ largely from the estimated 
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values (Table 4.1), because the trend of the isotherm curves for higher concentrations is 

unpredictable. However, it is clear from the experimental data (Figure 4.1) that all the 

metals at the tested concentration range were totally sorbed in this soil, in either 

noncompetitive or competitive scenarios. 

 

3.2.  Flow experiments 

In Figure 4.2, the breakthrough curves obtained for each metal in competitive and 

noncompetitive flow tests are shown. The respective adjusted two-site adsorption 

models are also presented. Generally, the fit provided by the two-site adsorption model 

was good, as demonstrated by the correlation coefficient values in Table 4.2. However, 

the breakthrough curve of Zn in the competitive sorption experiment could not be fit 

using this model. Values of relative concentration much higher than 1 were obtained for 

this assay, with more expression in the first 5 h before the breakthrough point of the 

other metals (Figure 4.2). The Zn cations can be easily exchanged when competing with 

other metal cations [40]. Therefore, it can be assumed that a fraction of the highly 

concentrated native Zn (Table 2.1) was washed out from the column, increasing its 

concentration in the effluent, especially before the saturation of the exchangeable 

surfaces.  

Examining the single-metal systems, it is evident that the highest retardation factor - 

R - was obtained for Cr, whose affinity for the soil was already shown to be the highest 

among the metals studied (Table 4.2). Cr oxyanions were specifically sorbed to sites 

with high dissociation constants, making them less vulnerable to leaching. However, the 

batch tests revealed that the other metals were sorbed at less energetic sites, making 

them more susceptible to acid leaching. A trend in relative metal mobility under the 

conditions studied can be defined as: Zn > Cd > Pb > Cu > Cr, which is slightly 

different from what would be expected after the analysis of the affinity constants (bL) 

obtained in the batch tests (Table 4.1), although it is known that the sorption and 

transportation of heavy metals in dynamic environments do not always occur under 

equilibrium conditions [31]. In fact, compared with Cd and Cu, the values of the 

partitioning coefficient between the equilibrium and nonequilibrium phases - β - 

obtained for Cr and Zn were significantly lower (Table 4.2). This suggests that the 

sorption of these metals occurs instantaneously at equilibrium sites but is time-
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dependent at the remaining sites, with higher sorption energy [16]. However, the values 

found for the mass transfer coefficients (ω > 1) suggest that not only Cd and Cu cations 

but also Zn cations are promptly sorbed at equilibrium sites. The results with respect to 

Pb transport and sorption are less conclusive. The mass transfer coefficient points to a 

nonequilibrium process (ω <1), but the value of β reveals that a larger amount of these 

cations are sorbed at equilibrium sites than at nonequilibrium sites [17,41,42]. 

According to the batch experiment results, both Cr and Pb cations were retained at sites 

with high sorption energies; therefore, sorption at nonequilibrium sites seems to be 

predominant, as this reaction is kinetically controlled. When in competition, the mass 

transfer coefficient did not vary significantly for Cr and Pb, as these metals seemed to 

be sorbed more specifically. By contrast, the value of this variable decreases for the Cd 

and Cu cations, probably because competition stimulates the specific sorption of these 

ions. 

The values obtained for the retardation factor - R - estimated for Cr and Cu 

transport in the competitive system were much higher than the values obtained for the 

other metals. This strengthens the aforementioned hypothesis of the precipitation of a 

Cu-Cr solid in the column, which is especially reasonable given that the pH of the 

effluent in the first five hours was above 6 (Figure 4.3), due to the low acid-buffering 

capacity of the soil [9,33]. It should be noted that the hydroxides of the tested metals do 

not precipitate in the pH range at which experiments were conducted [43]. Finally, as 

expected, the Cd retardation factor decreased when Cd was in competition with other 

cations for sorption sites [10,26,32]. Pb ions experienced a slightly higher retardation in 

the competitive scenario, as this metal is adsorbed specifically on sites with high 

dissociation constants. As can be observed, the curve correspondent to the competitive 

scenario in Figure 4.2 grew more slowly, suggesting increasing sorption density at high-

energy sites [31,44].  
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Figure 4.2.  Experimental breakthrough curves obtained for each metal in competitive and non competitive scenarios. Lines represent the adjusted two-site model. 

The error bars depict the confidence interval for a level of confidence of 95%. 

0 5 10 15 20 25 30 35
0

0.5

1

 t/h

C
/C

0

Cr

0 5 10 15 20 25 30 35
0

0.5

1
Pb

 t/h

C
/C

0

0 5 10 15 20 25 30 35
0

3

6

9
Zn

 t/h

C
/C

0

0 5 10 15 20 25 30 35
0

0.5

1

1.5
Cd

 t/h

C
/C

0

0 5 10 15 20 25 30 35
0

0.5

1

1.5
Cu

 t/h

C
/C

0

Mono-metal
Mono-metal
Multi-metal
Multi-metal



CHAPTER 4| Mobility of Cr, Pb, Cd, Cu and Zn in a Loamy Sand Soil: a comparative study 

 

 
Fonseca, B | 2011 93 
  

Table 4.2.  Quality of fit and parameter estimates based on the two site chemical nonequilibrium 

convective dispersion equation, for mono- and multi-metal flow systems. The standard deviations 

were under 10% 

Parameters 
 

Mono-metal 
 

Multi-metal  Parameters  Mono-metal  Multi-metal 
   

      

Cr  Cd 
   

      

R 
 

107 
 

502  R  27  13 
   

      

β  
0.11 

 
0.00  β  0.99  0.72 

   
      

ω  
0.13 

 
0.17  ω  100  0.58 

   
      

r
2
 

 
0.924 

 
0.73  r

2
  0.987  0.996 

   
      

Pb  Cu 
   

      

R 
 

34 
 

39  R  49  198 
   

      

β  
0.63 

 
0.62  β  0.99  0.09 

   
      

ω  
0.01 

 
0.02  ω  60  0.03 

   
      

r
2
 

 
0.999 

 
0.995  r

2
  0.998  0.993 

     
      

Zn       
   

      

R 
 

6 
 

-       
   

      

β  
0.18 

 
-       

   
      

ω  
100 

 
-       

   
      

r
2
  0.887  0.030       

     
      

 

 

 

Figure 4.3.  Variation of the effluent pH along the competitive flow test. The experiment was 

performed in duplicate being the standard deviation less than 10%. 
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3.2.1.  FTIR spectral analysis  

Figure 4.4 shows the FTIR spectra obtained for an uncontaminated soil sample 

and from the single-metal contaminated and co-contaminated soil samples collected 

from the soil bed columns. The bands of clay minerals represented by the SiO–H 

stretches at 3706 cm-1 and 3622 cm-1 (kaolin) and the Si–O–Si stretch at 1030 cm-1 were 

slightly different from the spectra of the contaminated samples [45]. The authors have 

reported similar results previously, when studying the noncompetitive sorption of 

chromium, and attributed these to the sorption of metals at the edges of the clay 

minerals [9,46]. However, the acidic character of the inlet solutions may have enhanced 

the dissolution of silicates, as these peaks decreased for the contaminated sample. 

However, the peaks do not overlap, revealing the persistence of these edges, even if 

they are less concentrated. There are two bands at approximately 2900 cm-1, attributed 

to the C-H stretch of aliphatic structures, and a band at approximately 1634 cm-1 that 

change in all spectra [47]. However, the change is more evident in the cases of Pb and 

Cr. Pb forms strong complexes with soil organic matter and can compete with most 

other metals for sorption sites [44]. Cr transport can also be significantly retarded by the 

presence of organic matter, as this material has been reported to reduce Cr(VI) to Cr(III) 

under acidic conditions or to complex chromium oxyanions, as mentioned previously 

[37,48]. In this particular case, the bands assigned at 1634 cm-1 and 1384 cm-1 may also 

be related to the interactions with the free water and the organic matter fractions [49]. 

The bands at 692 cm-1 and 797 cm-1 commonly associated with inorganic materials 

tended to overlap for the contaminated samples, probably due to the presence of heavy 

metal complexes [50]. 
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Figure 4.4.  FTIR spectra of an uncontaminated and contaminated soil samples collected 

in each column after the flow tests. 
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1.  INTRODUCTION 

The release of hexavalent chromium - Cr(VI) - into soils, due to several 

anthropogenic activities, is more and more a matter of major concern, as this is an 

highly mobile, toxic and carcinogenic compound, also designated as a priority pollutant 

in various countries. Consequently, the development of cleaning technologies aiming its 

attenuation/elimination has been a challenge for scientific researchers. Several physico-

chemical techniques are already being used to decontaminate Cr(VI) polluted soils, but 

the “green” ones are an increasingly focus of attention, mostly because of their cost 

effectiveness. It is estimated that bioremediation using microorganisms can reduce total 

treatment costs in 28%, compared with conventional systems [1-8].  

Bioleaching is a bioremediation technique usually applied to heavy metals 

contaminated soils, sediments and sludges. Its application, using iron and sulfur 

oxidizing bacteria, either indigenous or laboratorial, has been fairly studied [8-19]. 

However, there is a lack of specific studies on Cr(VI) bioleaching, as the metal is 

basically quantified concerning its total concentration. In 1922, Waksman et al. [20] 

isolated acidophilic and chemoautotrophic bacteria - Acidithiobacillus thiooxidans - that 

can use elemental sulfur as its source of energy, and consequently acidify the media, 

due to the production of sulfuric acid: 

 

42222 SO2HO2H3OS  →++ iooxidansacillus thAcidithiob                                                        (36) 

 

Later, Allegretti et al. [21] proved that Cr(VI) can be reduced to a less toxic, less 

mobile and non carcinogenic cation - trivalent chromium, Cr(III) - by the action of 

higher polythionates, which are intermediate compounds of the oxidation process of 

elemental sulfur, catalyzed by Acidithiobacillus thiooxidans. Furthermore, it is also 

known that, due to its high redox potential (Eº ≥ 1.3V), the Cr(VI) oxyanions can be 

easily reduced to Cr(III) by some biomaterials, especially in acidic media [22]: 

 

O7H2Cr6e14HOCr 2
3-2

72 +↔++ +−+                                                                       (37) 

O4HCr3e8HCrO 2
3-2

4 +↔++ +−+                                                                            (38) 

O4HCr3e7HHCrO 2
3-

4 +↔++ +−+                                                                          (39) 
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O4HCr3e6HCrOH 2
3

42 +↔++ +−+                                                                        (40) 

 

In consequence of the above mentioned reasons, this study aims to be a 

contribution on the characterization and optimization of bioleaching operational 

parameters, using Acidithiobacillus thiooxidans DSM504, to clean soils contaminated 

with Cr(VI). With this purpose, and based on previous tests performed with a typical 

loamy sand soil from the north of Portugal [6,23], two values of the Cr(VI) contaminant 

solution - pH 2 and pHfree - of the Cr(VI) concentration in soil - 50 mg kg-1 and 100 mg 

kg-1 - and of the operational temperature - 26°C and Troom - were evaluated by means of 

batch tests. Considering that each of the three parameters - n - could assume two values 

- L - eight experiments were performed - Ln [24]. 

 

2.  MATERIAL AND METHODS 

2.1.  Material 

Soil: Various soil samples of the loamy sand soil were collected in Póvoa de 

Varzim, Porto, Portugal (41°25’15.58’’N and 8°45’58.27’’O), homogenized, and 

characterized over again as described elsewhere [6,7,23]. Table 2.1 resumes the main 

characteristics of this soil sample. 

Contaminant: The potassium dichromate (K2Cr2O7) used to contaminate the soil 

was 99.5% pure and was purchased from Panreac. 

Inoculum: The bacteria used for leaching experiments were the Acidithiobacillus 

thiooxidans DSM 504, obtained from the German Collection of Microorganisms and 

Cell Cultures. The bacteria was revived form frozen cultures (-80 C in 20% glycerol) by 

growing cells in DSMZ 35 medium: 0.10 g of NH4Cl, 3.00 g of KH2PO4, 0.10 g of 

MgCl2·6H2O, 0.14 g of CaCl2·2H2O and 10 g of elemental sulfur, per liter of distilled 

water. The inoculum for the bioleaching assays resulted from a six day incubation of 

500 mL of culture media in a rotary shaker at 150 rpm and 26°C. The absorbance of the 

inoculum at 620 nm was averagely 0.034, corresponding to the beginning of the 

exponential phase of the growth curve. 
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2.2.  Soil preparation and analysis 

Four sub-samples of the collected soil were spiked with solutions of K2Cr2O7, in 

order to obtain two contamination levels of Cr(VI): 50 mg kg-1 and 100 mg kg-1. The pH 

of two contaminant solutions, with different concentrations, was adjusted to 2 using 

concentrated HNO3 (65%). The pH of the two remaining solutions was kept unadjusted 

(pH �7.7). The mixtures were stirred frequently till they were dry (2/3 days). For each 

sample, including the original soil, the real concentration of Cr(VI) was determined by 

Flame Atomic Absorption (FAA), after an acid digestion of the soil, according to the 

US EPA method 3051 [25]. The concentration of phosphates - [ PO3
4
− ]/(mg kg-1) - was 

determined using the stannous chloride method, described in standard methods [26], 

after the extraction with sodium bicarbonate as described by Olsen et al. [27]. And, the 

pH was determined according to the US EPA method 9045D [28]. The analyses were 

made in triplicate. Table 5.1 compiles the main characteristics of the four contaminated 

samples. 

 

2.3.  Bioleaching experiments 

The batch bioleaching tests were performed in 250 mL Erlenmeyer flasks. The 

working volume, of 150 mL, was constituted by 10 % (v/v) of inoculum, 1% (w/v) of 

elemental sulfur, 3% (w/v) of contaminated soil and 90% of DSMZ 35 medium. The 

absorbance of the inoculum was 0.034 ± 0.022. For each set of experiments, eighteen 

flasks, sealed with solid silicone caps, were incubated in a rotary shaker, at 150 rpm, for 

seventy days. A pair of flasks - duplicates - was removed, each five days during the first 

twenty days, and each ten days for the remaining period, in order to keep the chemical 

equilibrium undisturbed. The liquid and solid phases were separated by centrifugation 

(5000 rpm, 10 min) and properly stored for future analyses. Eight sets of experiments 

were prepared, by varying the contamination level - 50 mg kg-1 and 100 mg kg-1 - the 

pH of contaminant solution - pH 2 and pHfree - and the operation temperature - 26°C and 

Troom. A different code was ascribed to each experimental set, according to the studied 

variable (Table 5.1). Three sets of blank experiments were undertaken. In Set I 

(chemical control) the soil was autoclaved, in Set II (biological control) the elemental 
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sulfur was annulled, and in Set III (biological control) the flasks were not inoculated 

with Acidithiobacillus thiooxidans. 

 

Table 5.1.  References ascribed to each assay, according to the variable parameters. Chemical 

properties of the soil samples contaminated with hexavalent chromium 

   Characteristics of the soil samples 

Code  
[Cr]/(mg kg-1) 

 
pH (H2O) 

 
[ PO

3
4

− ]/(mg kg-1) 
T = 26°C  T = Troom    

         

C50pH2T26  C50pH2T  46 ± 0  5.9 ± 0.0  7.8 ± 1.2 
         

C50pHT26  C50pHT  51 ± 2  6.7 ± 0.1  10.8 ± 0.7 
         

C100pH2T26  C100pH2T  120 ± 2  6.1 ± 0.1  5.5 ± 0.3 
         

C100pHT26  C100pHT  118 ± 0  7.0 ± 0.0  16.9 ± 2.0 
         

 

2.3.1.  Chemical analyses 

The liquid phase was analyzed for total chromium by FAA and for Cr(VI) by US 

EPA method 7196A [29]. The concentration of the Cr(III) in solution - CCr(III)/(mg L-1) - 

and the mass of total chromium desorbed per mass of soil - qCr/(mg kg-1) - were 

determined by the expressions: 

 

Cr(VI)CrCr(III) CCC −=                                                                                                   (41) 

 

W

VC
q Cr

Cr =                                                                                                                   (42) 

 

where CCr and CCr(VI) are, respectively, the concentrations of total and hexavalent 

chromium in solution (mg L-1), V is the batch working volume (L) and W is the mass of 

soil sample (kg). In order to follow the production of sulfuric acid, the sulfates -              

[SO 2
4

− ]/(mg L-1) - were quantified in the liquid phase according to the modified 

turbidimetric method described by Kolmert et al. [30]. The variation of phosphates -        
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[ PO 3
4

− ]/(mg L-1) - in solution was also evaluated applying the stannous chloride method 

to the liquid samples. 

 

3.  RESULTS AND DISCUSSION 

3.1.  Soil characterization 

As mentioned before, the soil used to perform the tests here in described, was 

already characterized [6,23]. However, and to ensure the soil steadiness, some of its 

characteristics were reevaluated. As expected, physical characteristics like the particle 

size distribution did not reveal significant discrepancy, and the loamy sand soil 

designation stills fitting. Values concerning the pH, organic matter content and metal 

oxides concentration were kept almost equal. However, the total chromium 

concentration did decreased in the meanwhile. This can be explained, by the time 

interval between sampling: the atmospheric conditions, especially the rain, may have 

drained the chromium sorbed at the superficial layers - A- horizon and O-horizon. This 

phenomenon greatly justifies the need of this study. Finally, the phosphates 

concentration was also determined, as this element was followed during the bioleaching 

assays, in order to evaluate the dissolution of insoluble rock phosphate [31]. However, 

the found concentration was very low.  

 

3.2.  Total chromium removal: influence of concentration, pH and temperature 

First and foremost, it is essential to refer that sulfur oxidation to sulfuric acid was 

recorded for some of the blank tests. Concretely, either for the sterilized and unsterilized 

soil - Set I and III - the oxidation was not very extent, but sporadic values of 30% were 

achieved for the Cr(VI) removal. Fact that is in accordance with what was stated by 

Waksman et al. [31]: when sulfur is added to soil, it is slowly oxidized to sulfuric acid, 

depending on the substances present in the sample. However, for the Set II, where no 

sulfur was added, maximum values of 2% were achieved for the removal of Cr(VI). 

This may correspond to the fraction that was weakly sorbed to the soil matrix through 

van der Waals forces [7]. 



CHAPTER 5| A combined remediation technology for the reduction and bioleaching of hexavalent 

chromium from soils using Acidithiobacillus thiooxidans 

 

 
Fonseca, B | 2011 108 
   

Even so, the main gold of this study was to test the ability of the Acidithiobacillus 

thiooxidans DSM504 bacterium to catalyze, and consequently accelerate the sulfur 

oxidation, while it is reducing and leaching Cr(VI) from a contaminated soil, in 

different scenarios. Figure 5.1 resumes the main results obtained. The removal values, 

concerning total chromium, were represented according to the tested parameter, for the 

eight experimental sets. 

 

 

 

Figure 5.1.  Cr(VI) removal, obtained for the variation of each parameter. Dot lines represent the 

removals mean values, concerning each parameter variation. 

 

The lowest removal values - 33.3% and 53.4% - were obtained for the tests at 26 

°C, using the soil contaminated with 50 mg kg-1 and 100 mg kg-1, and with solutions of 

free pH and equal to 2, respectively. The higher removal values - 83.3% and 79.5% -
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were obtained for the tests respecting the contaminant solutions with pH 2, performed at 

26 °C and at room temperature, with either 50 mg kg-1 or 100 mg kg-1 of Cr(VI), 

correspondingly. Here in appears the first evidence of the great influence of soil pH in 

the efficiency of the chromium dissolution process. It should be noted that the 

contamination using the solutions with pH 2 resulted in the acidification of the soil 

samples - Table 5.1. According to the adopted sensitive analysis method, described by 

Hatzikioseyian et al. [32] and presented in Figure 5.1, the relative change of the 

contamination pH resulted in a higher relative change of the Cr(VI) removal, compared 

with the other two variables - T/°C and qCr/(mg kg-1). This method was applied 

considering the mean values of free contamination pH, room temperature and 

contamination level of 50 mg kg-1, as the base point. Still focusing on this graphic, a 

relative lower interference of the operation temperature and of the contaminant 

concentration was observed. Strengthening these results are the removal mean values - 

Figure 5.1 - concerning the variation of temperature and concentration parameters, that 

dist very little from each other, compared with the results obtained due to pH variation. 

However, it is important to refer that, averagely an increasing removal was observed for 

the increase in the contaminant loading, as reported by Jeyasingh et al. [2] for 

indigenous microorganisms. And also, that the expected enhancement of the 

contaminant removal for increasing temperatures, frequently associated to biological 

treatments, was not observed at such minor variation [5].  

During similar studies with contaminated sludge, Villar and Garcia [13] did not 

note a significant discrepancy between removals for an initial pH of 4 and 7. On the 

other hand, but in longer assays, Kumar and Nagendran [18] observed a difference of 

18% between bioleaching efficiencies, on soil systems at initial pH of 3 and 7, but with 

opposite trend, and registered a maximum removal - 90% - for the assay with an initial 

pH of 5. Although, besides the shorter contact time and the lower variation on pH in the 

first case, only total chromium was determined in both studies. And, as it is well known, 

trivalent chromium cations and hexavalent oxyanions have different mobility in 

acid/basic media [6]. Therefore, these removal values may be essentially related with 

one of the forms present in the contaminated sludge or soil, but also with the ideal pH 

for the bacteria growth. In order to clarify this, a closer approach was made through the 

evaluation of important parameters like media pH, Cr(VI) dissolution and sulfate 
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production, along the most efficient assays for each contaminant concentration - 

C50pH2T26 and C100pH2T. 

 

3.3.  Sulfur oxidation, pH variation and Cr(VI) dissolution 

As properly introduced, the Acidithiobacillus thiooxidans bacteria have the ability 

to oxidize elemental sulfur and produce sulfuric acid. Therefore, the sulfates production 

was followed, in all assays, and a representative result is shown on Figure 5.2, for the 

assays C50pH2T26 and C100pH2T. 

 

 

Figure 5.2.  Sulfates concentration and pH in the liquid phase, registered along the most successful 

assays, performed with the soil samples contaminated at 50 mg kg-1 (C50) and 100 mg kg-1(C100). 

 

The maximum sulfate production is in accordance with the concentration range 

reported by other authors in similar studies [11,16,18].  An exponential increasing of the 

sulfate concentration is clear between the days 6 and 60. According to Liu et al. [16], 

this is an evidence of positive correlation between the exponential growth phase of the 

bacteria and the oxidation of elemental sulfur. However, the production of sulfuric acid 

kept growing after 60 days, meaning that other mechanisms than the bacteria 

metabolism may be involved in its production [16]. Therefore a decreasing pH was 

noted during the all experiment due to the constant production of sulfuric acid, as it can 

be seen on Figure 5.2. As expected, a higher total production of sulfuric acid, during the 

test with the soil contaminated with 100 mg kg-1 of Cr(VI), resulted in lower pH values, 

and consequently in a highly oxidizing environment [8]. Most of the heavy metal 

cations are then easily removed from soil matrices, except the Cr(VI) that exists mainly 
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as oxyanions in natural environments, being less mobile in such acidic media [6,23]. 

Even though, dissolution of total chromium was recorded along the bioleaching batch 

tests - Figure 5.3. 

 

 

Figure 5.3.  Cr, Cr(III) and Cr(VI) concentrations in the liquid phase, along the batch tests. A) Test 

undertaken at 26°C with the soil contaminated with 50 mg kg-1 of Cr(VI), at pH2 (C50pH2T26). B) 

Test undertaken at room temperature with the soil contaminated with 100 mg kg-1 of Cr(VI), at 

pH2 (C100pH2T). 

 

A closer analysis to Figure 5.3 reveals that almost the whole chromium in solution 

is in the trivalent form, which means that the Cr(VI) was reduced and then leached. As 

mentioned previously, Allegretti el al. [21] proved that the oxidation of elemental sulfur 

generates a few sulfur compounds - polythionates, Sx(SO3)2H2·wH2O - which may be 

responsible for Cr(VI) reduction. Actually, these polythionates are known to be 

oxidized by substances with less reduction potential than Cr(VI) oxyanions. Steudel 

[33] proposed the spherical unilamellar and multilamellar vesicles model action: 

elemental sulfur is dissolved in a hydrophobic membrane - polythionates - that 

constrains an aqueous internal cavity. When the environment is acid these vesicles lose 

stability and the polythionates are slowly oxidized and released to the media. Therefore, 

given the high oxidizing environment during the bioleaching tests, the polythionates 

were responsible for the Cr(VI) reduction, and consequently for the bioleaching of 

Cr(III) cations, also favored by the acidic conditions.  It is evident that higher levels of 

sulfur oxidation, expressed by the high concentration of sulfuric acid, in Figure 5.2, 

resulted in higher Cr(VI) reduction, explaining the elevated removal values - Figure 5.1. 
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The importance of the pH on the all process may also explain the lower removal values, 

obtained for the scenarios where a pH non adjusted contaminant solution was used - 

Figure 5.1. The low pH registered for these soils - Table 5.1 - resulted in a faster 

decrease of the media pH, due to the soil buffering capacity, favoring the Cr(VI) 

removal. Some authors reported the remnant chromium as bounded to the organic and 

residual fractions, and also noted an increasing on bioleaching efficiency with contact 

time. From the author’s perspective, and because only total chromium was determined, 

it is plausible to attribute the non removed chromium to the hexavalent fraction. On the 

other hand, the same authors refer consistently the exchangeable and Fe/Mn oxide-

bound fractions as the more mobile and bioavailable, which may justify the presence of 

few dissolved Cr(VI) - Figure 5.2 [11,12,18]. 

 

3.4.  Phosphates dissolution 

The digestion of soil organic matter and erosion of the original rock, and the 

consequent release of bounded nutrients, are often attributed to the highly oxidizing 

environment and the low pH, registered during the bioleaching experiments [8,34].  

 

 

Figure 5.4.  Phosphates concentration in the liquid phase, along the batch tests with soil 

contaminated at 50 mg kg-1 (C50) and 100 mg kg-1 (C100), concerning the higher removal values. 

 

Therefore, this may represent a clear disadvantage on the application of this 

technique, as nutrients such phosphorus and nitrogen may be lost during the process. 
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the liquid phase was performed, and a relatively constant behavior was observed - 

Figure 5.4. The slight decrease at the beginning was clearly related with phosphorus 

consumption during bacteria growth. Therefore, either if the soil is poor or not in 

phosphorus, the adding of this nutrient is mandatory for the success of the operation.
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1.  INTRODUCTION 

In the last decade, the decontamination of soils containing heavy metals and 

polycyclic aromatic hydrocarbons (PAHs) has been intensely investigated [1-6]. This 

type of soil contamination has been increasing, especially in urban areas, near gas 

stations or major roads and metalliferous mines, due to several human activities. 

A set of cleaning technologies have been proposed and used effectively, including 

bioremediation, soil flushing, soil washing, electrokinetics and enhanced 

phytoextraction [4,7-12]. However, the success of these techniques depends on the 

availability of the contaminants in the aqueous phase of the soil/solution system. 

Several chelants and surfactants have been tested to determine if they are capable of 

enhancing the extraction/solubilisation of heavy metals and PAHs, respectively. 

Notably, the efficacies of (ethylenedinitrilo)-tetraacetic acid disodium salt (Na-EDTA) 

as a chelant and of polyethylene glycol sorbitan monooleate (Tween® 80/T80) and 

polyethylene glycol dodecyl ether (Brij® 35 P/ B35) as surfactants have been 

incontestably proven by several studies [4,5,8,12-18]. 

Despite all of the attention paid to this subject, to our knowledge, there are few 

reports that describe the desorption kinetics of contaminated sites polluted with both 

heavy metals and PAHs [12]. 

This study pretends to explore the application of composed solutions containing 

both a chelant and a surfactant (EDTA and/or T80 and B35) in the remediation of a soil 

contaminated with pollutants mixtures. It also pretends to evaluate and describe the 

desorption kinetics through mathematical modelling, providing therefore an useful tool 

to predict pollutants behaviour, during the decontamination process. Phenanthrene 

(PHE) and lead (Pb) were chosen as representative contaminants from each class, as 

both are in the priority pollutants list of the Environmental Protection Agency and are 

commonly found at high concentrations in environmental samples. Further, Pb is a 

positive charged ionic contaminant and PHE is a neutrally charged non-ionic 

contaminant [1,6,19]. 

The data obtained in batch desorption, of single and composed solutions 

containing EDTA and/or T80 and B35, were fitted to two kinetic models: the pseudo-

second-order equation and the empirical power function. Moreover, scanning electron 

microscopy was used to characterise the soil before and after decontamination and to 

identify the role of some of its constituents during the sorption/desorption processes. 
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2.  MATERIAL AND METHODS 

2.1.  Material 

Contaminant: The phenanthrene used to contaminate the soil was > 97% pure and 

purchased from Sigma-Aldrich. 

Extractants: The surfactants utilised were Brij® 35 P/ B35 (Fluka) and Tween® 

80/T80 (Panreac), and the chelant agent used was EDTA (Panreac). 

Original Soil: Typical samples of soil contaminated with approximately 5000 mg 

kg-1 of Pb were collected near an industrial waste site located at 12 km east of Algiers, 

Algeria (36º46’34.68’’N and 3º3’30.6’’E). The soil samples were previously 

characterised as described elsewhere by Amrate et al. [20]. 

 

2.2.  Soil preparation 

The co-contaminated soil samples were prepared by mixing the collected soil with 

a PHE solution (completely dissolved in hexane) to obtain an initial concentration of 

500 mg kg-1
, which is the typical PAH concentration found near source zones of 

contaminated sites [21] Then the mixture was placed in a ventilation hood for 7-9 days 

until the hexane was completely evaporated. 

 

2.3.  Batch experiments 

A series of batch experiments were conducted in order to evaluate the extraction 

of Pb and PHE under different operational conditions. Based on our previous studies 

[6,18,22], the nonionic surfactants T80 and 1% (w/v) B35 were chosen; EDTA (0.01 M) 

was chosen as the complexing agent. The EDTA concentration was selected based on its 

stability constants, the optimal molar ratio range and the type of complexation reactions 

being performed [4,16].  

Then, 2 g of co-contaminated soil were mixed with each of the extraction 

solutions at three different soil:solution ratios (1:2.5, 1:5 and 1:10) in 100 mL 

Erlenmeyer flasks on a horizontal shaker (150 rpm) at room temperature. During the 

subsequent 24 h period, each experimental set was stopped at varying contact time in 
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order to not disturb the equilibrium. The supernatant was collected, centrifuged at 

10,000 rpm for 5 min and analysed for Pb and PHE content.  

Then, an extraction process was tested by employing a 24 h contact time between 

the co-contaminated soil and one solution at a time. The pH was monitored in all 

experimental sets. A blank test using deionised water was properly performed, and no 

desorption was observed. The experiments were performed in duplicate being the 

standard deviation less than 10%. 

 

2.3.1.  Evaluation of the batch data 

For the evaluation of the resultant kinetic data from the assays with composed 

extraction solutions and soils contaminated with Pb or with Pb and PHE, two kinetic 

models were selected: 

 

Pseudo-second-order equation: 

( )2
2 te

t qqk
dt

dq
−=                                                                                                        (43) 

 

Empirical power function: 

PFv
PFt tkq =                                                                                                                 (44) 

 

where qt (mg kg-1) is the amount of contaminant desorbed from soil at time t (h); kPF (kg 

mg-1 h-v) and k2 (kg mg-1 h-1) are the rate constants of the respective equations; qe (mg 

kg-1) is the amount of contaminant desorbed per mass of soil at equilibrium and v is the 

constant of the empirical power function. The amount of each contaminant desorbed 

from the soil for each reaction time was calculated by 

 

W

VC
q t

t =                                                                                                                       (45) 

 

where Ct (mg L-1) is the concentration of contaminant in the liquid phase at varying 

contact times and V (L) is the volume of the liquid phase [23,24]. 
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2.4.  Analytical methods 

Samples were taken from the soil and solutions, before and after the extraction 

assays, for chemical analysis. All analytical determinations were performed in triplicate 

with an experimental error below 3%. 

 

2.4.1.  PHE extraction and concentration 

The PHE was extracted from the soil samples by a pressurised solvent extraction 

system using an OnePSE instrument (Applied Separations Inc.). The dry sample was 

thoroughly mixed with pelletized diatomaceous earth. When a free-flowing powder was 

obtained, it was placed into an extraction vessel inside of the instrument. The extraction 

solution was composed of acetone/hexane (1:1 v
/v). After four cycles of 5 min at 110°C 

and 100 bar of pressure, the extraction was complete, and the PHE concentration in the 

collected sample was determined. Pressurised solvent extraction has been approved for 

use following EPA Method 3545A and can replace Soxhlet and sonication techniques. 

The PHE concentration was determined by an HPLC (Agilent 1100) equipped 

with an XDB-C8 reverse-phase column (150×4.6 mm i.d., 5 µm). Prior to injection, the 

samples were filtered through a 0.45-µm Teflon filter. The injection volume was set at 5 

µL and the isocratic eluent (60:40 acetonitrile/water) was pumped at a rate of 1 mL min-

1 for 10 min. Detection was performed with a diode array detector from 200 to 400 nm, 

as the detection wavelength of phenanthrene is 252 nm, and, the column temperature 

was maintained at 20°C. 

 

2.4.2.  Pb extraction and concentration 

The protocols used for the chemical extraction and analysis of metals were 

performed in accordance with EPA Methods 3010 and 3050B [25]. Flame atomic 

absorption spectrometry (FAAS) was performed using a Varian SpectrAA-250 Plus to 

determine the Pb concentration. 
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2.5.  SEM analysis 

The morphology and chemistry of samples, in the same conditions mentioned in 

the previous section, were analysed by scanning electron microscopy (SEM). The 

microscope used was a Nova™ 200 NanoSEM with an integrated electron-dispersive 

X-ray spectroscopy (EDAX) system (Pegasus X4M). The integrated system enabled 

simultaneous collection of data by an energy dispersive spectrometer (EDS) and a back-

scattered electron detector (EBSD). 

 

3.  RESULTS AND DISCUSSION 

3.1.  Soil characterization 

As mentioned previously, the soil samples used in the present work correspond to 

those used by Amrate et al. [20]. The chemical soil properties are listed in Table 6.1. 

These soil samples are poor in organic matter, have a pH close to neutral and are 

contaminated with high concentrations of Pb (approximately 5000 mg kg-1). In the co-

contaminated soil, the PHE concentration was around 500 mg kg-1. 

 

Table 6.1.  Chemical properties of soil 1 

Parameter  Data 
 

Parameter  Data 
       
pH (only with Pb)  7.30 ± 0.02  Quartz (%)  45.0 
       
pH (Pb and PHE)  6.18 ± 0.13  Calcite (%)  24.5 
       
Ignition loss at 550 ºC (%)  5.0±0.9  Dolomite (%)  1.6 
       
Active calcareous (%)  4.9±0.7  Gypse (%)  1.4 
       
C.E.C. (meq/100 g)  4.82±0.17  Albite (%)  8.3 
       
Organic matter (%)  1.26±0.11  Chlorite (%)  7.3 
       
Lead (mg kg -1)  5489±383  Kaolinite  6.3 
       
Nickel (mg kg-1)  139±13  Illite (%)  2.4 
       
Cadmium (mg kg -1)  22±8  Orthoclase (%)  3.2 
       

Phenantrene (mg kg -1)  455.0±0.5     
       

1 Adapted from Amrate et al. [20] 
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3.2.  Batch experiments 

The effects of surfactants and complexing agents on the removal of PHE and Pb 

polluted soil were observed. According to previous research, EDTA may improve Pb 

solubility [22,26,27]. To enhance PHE removal, nonionic surfactants were selected 

because of their higher solubilisation capacities and lower cost when compared to 

cationic and anionic surfactants. Specifically, the nonionic surfactants T80 and B35 

were chosen based on our previous studies [18]. 

 

 

Figure 6.1.  Percentage of extraction obtained after 24 h of contact between soil samples 

contaminated with Pb (~5000 mg kg-1) and PHE (~500 mg kg-1) and the composed solutions 

EDTA/B35 or EDTA/T80 for varying soil:solution ratios. (A) Values obtained for the PHE 

extraction. (B) Values obtained for the Pb extraction. 

 

At first, batch experiments were performed to examine the extraction behaviour of 

PHE and Pb from co-contaminated soil using an extraction solution that contained a 

mixture of T80 (1% 
w
/v) or B35 (1% w

/v) and 0.01 M EDTA. Initially, the optimal soil: 

solution ratio was determined. The extraction levels of PHE and Pb, obtained with three 

different soil: solution ratios via application of the EDTA/T80 and EDTA/B35 solutions 

to 2 g of co-contaminated soil, are shown in Figure 6.1. In contrast to results reported 

previously by other authors [28], we found that generally a decreasing soil:solution ratio 
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resulted in a higher extraction efficiency, with a higher efficiency of extraction 

especially noted when the ratio was reduced from 1:2.5 to 1:5 or 1:10. However, there 

was no remarkable difference between the two lower soil: solution ratios. Therefore, to 

avoid unnecessary costs and waste production, the subsequent tests were carried out at 

the soil: solution ratio of 1:5, which also enabled measurement of adequate kinetic 

profiles.  

 

3.2.1.  Single and composed solutions 

As with the previous extraction assays, the efficiency and kinetic behaviour of the 

two composed solutions in the remediation of co-contaminated soil (containing both Pb 

and PHE contaminants) and of the soil containing only the original Pb contamination 

were tested using the soil: solution ratio 1:5.  

The kinetics profiles of Pb desorption in the original and co-contaminated soil 

with both of the extraction solutions (EDTA/B35 and EDTA/T80) are illustrated in 

Figure 6.2. The maximum extraction of Pb was obtained using the soil contaminated 

only with Pb; this result was verified when single extraction solutions comprised solely 

of EDTA, B35 or T80 were tested in both contamination scenarios (Figure 6.3). The 

main difference between these soils samples, most likely resulting from the type of 

contamination, was the pH value (Table 6.1). Several authors have demonstrated that, to 

obtain high extraction values, the pH of the soil-solution system must be maintained as 

slightly alkaline or higher than the pKa2 (6.16) of EDTA [4,13,20,29,30]. These 

conditions guarantee predomination of the EDTA4- ion, which coordinates with Pb via 

four acetate groups and two nitrogen atoms with four electron pairs, making a highly 

stable Pb complex [15,20]. In this study, pH values lower than the pKa2 were reported at 

the initiation of the assays performed with the soil co-contaminated with Pb and PHE, 

resulting in a decreased Pb extraction efficiency. Also, according to recent studies, at 

high concentrations phenanthrene is sorbed mainly through non-specific hydrophobic 

forces and therefore can form cation-π bond with Pb to eventually enhance its sorption 

[31]. 
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Figure 6.2.  Kinetic profiles for lead extraction obtained for the composed solutions, EDTA/T80 and 

EDTA/B35, applied to soil samples contaminated with Pb [× Pb] or  with Pb and PHE [·  Pb 

(Phenanthrene)]. The lines represent the kinetic model with the best fit.  

 

 

Figure 6.3.  Percentages of Pb and PHE extraction from soil contaminated with PHE and Pb 

[Pb(Phenanthrene); Phenanthrene (Pb)] and soil contaminated only with Pb after 24 h of contact 

with single and composed solutions comprised of EDTA and/or EDTA with B35 or T80. 
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The PHE extraction appeared to be independent from the type of solution, single 

or composed, employed to remediate the co-contaminated soil (Figure 6.3). As shown in 

Figure 6.3, the application of the chelant agent EDTA as a single solution or as a 

component of a composed solution did not improve the extraction efficiency of the 

contaminant. 

 

3.2.2.  Kinetics modelling of extractions with composed solutions 

The desorption profiles of Pb and PHE from co-contaminated soil are shown in 

Figures 6.2 and 6.4. The rapid desorption of both contaminants during the first eight 

hours was followed by a plateau that corresponded to a decrease in desorption velocity. 

According to a recent report by Labib et al. [32], when the adsorption energy is 

considerably high, the desorption process is limited by the transport rate of 

contaminants that move from the surface layer to the sub-layer. Therefore, the 

contaminants sorbed in the low energy sites are easily and quickly desorbed compared 

to the fraction that is strongly sorbed. On the other hand, other authors believe that in 

the slower phase, the desorption of PHE is mainly controlled by intraparticle diffusion 

[33]. 

 

 

Figure 6.4.  Kinetic profile of PHE extraction obtained for systems of a composed solution, 

EDTA/T80 or EDTA/B35, and co-contaminated soil samples. The lines represent the empirical 

power function, adjusted to the experimental data. 
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function and also by the pseudo-second-order equation, for both contaminants (Table 

6.2). It should be noticed that, besides its empirical character, the first model provides a 

good method to compare experimental results [23]. Given this, the values derived for 

the empirical power function constant, k, suggest a higher efficiency in the simultaneous 

extraction of Pb and PHE with the EDTA/T80 solution. Use of this solution resulted in 

extraction of 46% of the Pb and 54% of the PHE after 24 h, whereas 48% and 55% of 

Pb and PHE were extracted with the EDTA/B35 solution, respectively. These findings 

are in accordance with results reported by Cheng and Wong [5] and Alcantara et al. 

[18]. These previous studies demonstrated that T80 has a higher capacity for PHE 

extraction in the soil-water systems than B35. Nevertheless, the percent of the total PHE 

extracted with the EDTA/B35 and the B35 solutions in this study were higher than the 

values obtained in these previous studies (< 40%). This discrepancy between the 

percents of extraction may have occurred mainly due to differences in soil composition, 

as clay minerals or organic matter strongly bind PAHs [34], but the equilibrium 

between the soil:solution ratio and the concentration of the extracting solution may also 

have contributed. It should be noted that in all studies conducted, the concentration of 

surfactants was higher than their respective critical micelle concentrations in order to 

enhance PHE solubilisation via micelle and microemulsion formation [5,17,18]. 

The values estimated through the adjustment of the pseudo-second-order equation 

for the mass of PHE and Pb desorbed from the contaminated soil - qe, Table 6.2 - were 

very similar to the correspondent experimental values obtained - Figure 6.2 and 6.4. 

Therefore, and as recently reported by Wang et al. [35], the pseudo-second-order 

equation is suitable for desorption process of phenanthrene and lead, from a 

contaminated soil. Focusing now the soil contaminated only with Pb, a significantly 

higher maximum (de)sorption capacity value, qe, was found for the EDTA/B35 solution. 

In fact, Figure 6.3 demonstrates that when used alone, B35 promoted a higher 

desorption of Pb than T80; however, EDTA used alone still resulted in a more efficient 

extraction. The EDTA concentration in the single or composed solutions was 0.01 M in 

order to use an EDTA:Pb molar ratio of two, which is within the optimal range 

identified by Zhang and Lo [4]. Though others have reported results similar to those 

obtained in this study [4,36], the values obtained for Pb extraction from the original soil 

were high (~100%) compared to values obtained with soils that had a longer period of 
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contamination [13,29]. Once again, the soil and/or the contamination characteristics 

may have affected the success of the remediation enhanced by composed solutions. 

 

Table 6.2.  Parameters and correlation coefficients (r2) obtained for the adjustment of two kinetic 

desorption equations. The values correspond to four data sets – desorption of Pb from the mono 

and co-contaminated soils, using the composed solutions of EDTA/B35 and EDTA/T80. Desorption 

of phenanthrene, using the same composed solutions, from the co-contaminated soil 

Soil contaminated with lead (Pb) and phenanthrene (PHE) 
                     (Solution) 
 
Contaminant 
Kinetic parameters      

 
(EDTA/B35) 

Pb 
 

(EDTA/B35) 
PHE  

(EDTA/T80) 
Pb 

 
(EDTA/T80) 

PHE 

 

         

Po
w

er
 

Fu
nc

tio
n k/(mg kg-1 h-v)  1150 ± 204  168 ± 20  1217 ± 232  177 ± 19 

         v  0.261 ± 0.073  0.135 ± 0.055  0.236 ± 0.081  0.118 ± 0.052 

         r
2
  0.917  0.873  0.877  0.882 

          

Se
co

nd
-o

rd
er

 
ra

te
 e

qu
at

io
n k2/(kg mg-1 h-1)  0.001 ± 0.001  0.031 ± 0.034  0.001 ± 0.001  0.042 ± 0.045 

         

qe/(mg kg-1)  2422 ± 684  223 ± 45  2357 ± 715  224 ± 41 
         

r
2
  0.783  0.770  0.720  0.795 

 

         

Soil contaminated with lead (Pb)     
                     (Solution) 
 
Contaminant 
Kinetic parameters      

 
(EDTA/B35) 

Pb 
 

(EDTA/T80) 
Pb   

  

 

         

Po
w

er
 

Fu
nc

tio
n k/(mg kg-1 h-v)  2179 ± 547  2179 ± 610     

         

v  0.309 ± 0.099  0.256 ± 0.116     
         

r
2
  0.911  0.826     

          

Se
co

nd
-o

rd
er

 
ra

te
 e

qu
at

io
n k2/(kg mg-1 h-1)  0.0001 ± 0.0001  0.0002 ± 0.0002     

         

qe/(mg kg-1)  5718 ± 1202  4781 ± 1242     
         

r
2
  0.914  0.842     

 

3.3.  SEM analysis 

The images obtained by scanning electron microscopy with a back-scattered 

electron (BSE) detector are shown in Figure 6.5 (A and B). These images correspond to 

co-contaminated samples before and after decontamination. The "brighter" BSE 

intensity (Figure 6.5, A, Z1) suggested the presence of atoms with higher atomic 

numbers, which was confirmed by the respective energy dispersive spectroscopy data 

(Z1). Pb was detected as the major element present, followed by oxygen (O) and iron 
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(Fe), which suggested that Pb was mainly sorbed by iron oxides, as suggested by 

Amrate et al. [20] with the procedure of Tessier [37]. In the second analyzed zone 

(Figure 6.5, A, Z2), and also in the image of the decontaminated sample (Figure 6.5, B), 

“dark” areas are predominant, and only residual Pb was detected by the energy 

dispersive spectroscopy. Once more, atoms of Fe and O were detected as well as atoms 

of silica (Si) and aluminum (Al), which indicated the presence of aluminosilicates that 

are characteristic of clay minerals. Several images were acquired, and a decreased BSE 

or “bright” intensity was detected in all of the decontaminated samples. 
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Figure 6.5.  SEM images of a soil sample contaminated with Pb (A) and of a decontaminated soil 

sample (B) obtained with the EBSD detector. The lower graphs shows the EDS results for a zone 

highly concentrated with Pb (Z1) and for a non-taminated zone (Z2). 
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1.  INTRODUCTION 

Hexavalent chromium - Cr(VI) - is extensively used in a wide range of industrial 

activities, like manufacturing of stainless steel, chrome leather tanning, ceramics, 

pyrotechnics and electronics. It is frequently released to waters and soils, due to 

accidental spills, storm water run-off and uncontrolled leaching from storage ponds or 

dumps. Moreover, it is known as one of the most toxic heavy metals, being in evidence 

in the EPA list of human carcinogens and designated as a priority pollutant in many 

countries [1-3]. 

Several techniques have been developed and actually used to treat soils 

contaminated with Cr(VI), like flushing, phytoremediation, excavation and landfill 

disposal. However, for over a decade, the removal of Cr(VI) from soils through the 

operation of electrokinetic (EK) cells has attracted significant attention, as they can be 

applied, either in or ex situ, with cost effectiveness. Basically, this technique promotes 

the electromigration of the Cr(VI) oxyanions towards the anode chamber, when a low 

voltage gradient is applied to the EK cell [4-12]. However, there are some problems 

concerning this method, like its elongation in time and the production of liquid effluents 

[13,14].  

On the other hand, the use of permeable reactive barriers (PRBs) has gained 

popularity in the groundwater cleaning field, due to its high efficiency, low cost and 

simple operation procedures. These barriers are composed by reactive materials that 

once in contact with the contaminated water plume, can degrade, adsorb or precipitate 

the targeted contaminant(s) [15,16]. Due to the evolution of biotechnology, biologic 

materials are being successfully used in these PRBs. Previous experiments using 

Arthrobacter viscosus supported either in zeolites or activated carbon (GAC), showed 

great efficiency in the treatment of Cr(VI) effluents. Succinctly, when these systems are 

applied, Cr(VI) is reduced by the bacteria to the trivalent form Cr(III), which is 

entrapped in the physical support by adsorption or ion exchange [3,17-22]. This 

biosorption mechanism is known as the “adsorption coupled reduction”. The Cr(III) is a 

less soluble, mobile and toxic form of chromium, and above all this, it is an essential 

micronutrient [1,23,24]. Furthermore, these biobarriers (BIO-PRBs) containing the 

immobilized chromium can then be used as catalysts. [25]. 
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Based on the above-mentioned knowledge, this work aims to evaluate the 

application of a system, which couples an EK cell with specific BIO-PRBs, in the 

cleaning of soils contaminated with Cr(VI). In order to perform it, reactive biobarriers 

consisting of Arthrobacter viscosus supported on zeolite 13X or on GAC, were placed 

before the anode chambers of EK cells, packed with contaminated soil. This system was 

tested using kaolin which is a model sample representative of low permeability soil with 

low buffering capacity. 

 

2.  MATERIAL AND METHODS 

2.1.  Material 

Contaminant: The potassium dichromate (K2Cr2O7) used to contaminate the soil 

was purchased from Normapur AR. 

Soil: The soil selected for this research was the clay mineral kaolin, since it 

represents a low permeability soil, with consistent and uniform mineralogy and low 

cation exchange and buffer capacities. The composition and properties of this soil were 

summarized elsewhere [26] 

Bacteria: Arthrobacter viscosus was obtained from the Spanish Type Culture 

Collection of the University of Valencia. It was maintained at 4ºC on 15 g L-1 agar 

slants and plates with culture medium containing 10 g L-1 of glucose, 5 g L-1 of peptone, 

3 g L-1 of malt extract and 3 g L-1 of yeast extract. 

Supports: GAC was purchased from MERCK. It was characterized by an average 

particle size of 2.5 mm, a Langmuir area of 1270 m2 g-1 and an average pore diameter of 

2 nm [27]. The Zeolite 13X was provided by Xiamen Zhongzhao Imp.&Exp. Co., Ltd. 

The pellets size was 5-8 mm and normal pore diameter 13 Å. Both supports were 

macerated with the purpose of working with their powder.  

 

2.2.  Soil preparation 

The soil was spiked with K2Cr2O7 solution, in order to obtain a concentration of Cr(VI) 

around 50 mg kg-1. The quantity required to obtain the desired concentration, was 

dissolved in a volume of water. The mixture was placed in a fume hood and stirred 
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every day, till complete dryness (2-3 days). Then, the soil was mixed with water to 

obtain a moisture content of 30 % (w/w).  The mixture was performed in a glass vat with 

stirring rod. At the end, a sample was collected to determine the initial concentration of 

Cr(VI). 

  

2.3  Biobarriers preparation 

A volume of 500 mL of culture medium for Arthrobacter viscosus previously 

prepared. Then, the zeolite or the activated carbon, were added in order to obtain the 

same ratio of solid:solution (v/v) for both supports (1:12.5). This decision was supported 

by previous tests performed with the same supports [17,22,27-29]. Each set was 

sterilized at 121 °C for 20 min, cooled to room temperature, inoculated with bacteria 

and kept at 28 °C for 48 h. Half of the volume of the growth culture, together with the 

support, was filtered by using a mechanical vacuum system with cellulose filters 

(Whatman, Ø 32 mm). The pairing of two filters, containing biomass supported on 

zeolite or carbon, constituted a “biobarrier”. 

 

2.4.  Experimental setup 

The experiments correspondent to the blank assays were performed in glass cells 

with 13.5 cm of length and 32 mm of diameter [30], filled with the contaminated kaolin. 

Then, a cathode and anode electrode chambers (with 300 mL working volume) were 

coupled at the ends of the column, isolated from the matrix with filter papers and porous 

stones. Graphite electrodes were used for both chambers and three auxiliary electrodes 

allowed the measurement of the electric field through the column. The electrode 

chambers were filled with distilled water and the liquid was recirculated, by peristaltic 

pumps, to prevent the development of concentration gradients. The pH in both 

chambers was controlled in order to maintain it around 5, which is a value that 

represents a commitment between the optimum pH for the bacteria and the optimum pH 

for the Cr(III) adsorption by each support [20,23,31,32]. The adjustment was made with 

NaOH (0.1 M) and HNO3 (0.1 M). A potential difference of 10 V was applied to the 

horizontal column. Readings of voltage drop and current intensity were made 

periodically. Since the dichromate anions migrate towards the anode chamber, as 
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proved by the blank assays results, the tests with biobarriers were performed by 

inserting the biobarrier, comprised between two filter papers and two porous stones, 

before this compartment. All the tests, either blank or with carbon or zeolite biobarriers, 

were performed for two time intervals - 9 and 18 days - aiming the optimization of the 

decontamination process. Table 7.1 resumes the various experimental setups.  

After each experiment, the soil column was divided in five sections (S1 to S5). 

These soil samples, the biobarrier and the liquid from the electrode chambers were 

analyzed for total and hexavalent chromium, after pH determination. Consequently, 

trivalent chromium was determined through the numerical difference between these two 

forms. All samples were processed in duplicate.  

 

Table 7.1.  Experimental conditions 

     Current  pH control 
Assay 

interval 
 

Assay  Biobarrier  Voltage  
Anode 

chamber 
 

Cathode 
chamber 

9 d 
 1 

 
Blank  

10 V 
 

NaOH 
0.1M 

 
HNO3 

2M 

 2 Activated carbon   
 3 Zeolite  

Intensity 
 

18 d 
 4 

 
Blank   

 5 Activated carbon  
0.5 mA 

 
 6 Zeolite   

 

2.5.  Analytical methods 

The analytical methods used to determine the total and the hexavalent chromium 

concentrations, on the liquid and solid phases are listed below.  

Total chromium: The soil samples were digested in a microwave (CEM MDS-

2000) with HNO3 (65%), according to the US EPA method 3051 [33]. The 

determination of total chromium was made by flame atomic absorption (Varian 

SpectrAA-250 Plus). 

Hexavalent chromium: Prior to the Cr(VI) determination on soil samples, an 

alkaline digestion was performed as described on US EPA method 3060A [34]. The 

quantification of Cr(VI) was made by the US EPA colorimetric method 7196A. The 

absorbance was measured using a Thermo Heλios β spectrophotometer [35].  



CHAPTER 7| An innovative hybrid technology - electrokinetic and biobarriers - applied to hexavalent 

chromium contaminated clays 

 

 
Fonseca, B | 2011 145 
   

pH: The pH of liquid samples was directly measured with a Jenway 3520 pH 

meter, and the pH of soil samples was determined following the US EPA method 

9045D [36]. 

 

2.6.  SEM analysis and bioviability 

The morphology and chemistry of the biobarrier after each test were analysed by 

scanning electron microscopy (SEM). The microscope used was a Nova™ 200 

NanoSEM with an integrated electron-dispersive X-ray spectroscopy (EDAX) system 

(Pegasus X4M). The integrated system enabled simultaneous collection of data by an 

energy dispersive spectrometer (EDS) and a back-scattered electron detector (EBSD). 

The bioviability of the Arthrobacter viscosus was also tested at the end of the 

assays, by streaking in an agar plate containing the growth medium. 

 

3.  RESULTS AND DISCUSSION 

3.1.  Blank assay: evaluation of hexavalent chromium mobility  

In order to evaluate the mobility of the Cr(VI) in an electrokinetic cell, under the 

applied current, two blank assays were performed. The first one lasted 9 days, but no 

satisfactory removal was achieved. Therefore, the time interval was elongated to the 

double - 18 days - and better results were achieved. The analysis of the Figure 7.1 

reveals that the higher percentage of Cr(VI) - 76.9% - was found in the anode chamber, 

which means that the Cr(VI) oxyanions migrated toward this compartment. 

Consequently, the contaminant remaining on the kaolinite was gradually concentrated in 

the anode chamber direction. It should be noted that 100% of the initial charged Cr(VI) 

was recovered, from the different section of the electrokinetic cell, after the test. 
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Figure 7.1.  Distribution of the hexavalent chromium across the electrokinetic cell - soil and 

electrode chambers - recorded for the blank assay. 

 

The regular analysis of the anode chamber liquid revealed a growing 

concentration of the Cr(VI) in this compartment, enabling therefore the construction of 

an experimental breakthrough curve (BTC). Then, by approximating the system to the 

transport of a solute in a homogeneous saturated porous media, the equilibrium 

convection dispersion equation (CDE) was successfully adjusted to the obtained BTC - 

Figure 7.2 - using the CXTFIT code [2,37,38]: 

 

x

C
v

x

C
D

t

C
R

∂

∂
−

∂

∂
=

∂

∂
2

2

                                                                                                  (46) 

 

and 

 

D

vL
P =                                                                                                                           (47) 

 

R is the retardation factor, C is the Cr(VI) concentration (mg L-1),  t is the elapsed time 

(d), D is the dispersion coefficient (cm2 d-1), x is the distance along the direction of flow 

(cm) and v is the average pore water velocity (cm d-1) and P is the Peclet number 

[39,40]. The values obtained for the estimated parameters - R, D and v - the BTC and 

the adjusted CDE are presented in Figure 7.2. The R values relatively higher than 1 

express the occurrence of the Cr(VI) adsorption onto the kaolinite [41]. On the other 
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hand, the low value of the pore water velocity reflects the low nonequilibrium effects, 

which strength the applicability of the equilibrium selected model to the transport of the 

Cr(VI) through the electrokinetic cell [42]. Finally, the Peclet number obtained for the 

studied system - 0.315 - expresses the predominance of dispersion in the transport of 

Cr(VI) through the kinetic cell, which is in accordance with the distribution of the 

contaminant after the electrokinetic treatment - Figure 7.1 - and may result from the 

counter osmotic flow of water: towards the cathode [43].  

 

 

Figure 7.2.  Equilibrium convection dispersion equation adjusted to the experimental breakthrough 

curve of the hexavalent chromium, concerning the liquid collected at the anode chamber during the 

blank assay. 

 

3.2.  Application of a biobarrier 

As mentioned previously, blank assays were performed for periods of 9 and 18 

days. In the same way, the tests with biobarriers, composed by Arthrobacter viscosus 

supported either by activated carbon or zeolite, were undertaken for 9 and 18 days.  

 

3.2.1.  Removal and conversion of hexavalent chromium 

On a first approach, overall results concerning the reduction of the Cr(VI) to 

Cr(III) - conversion - and the full amount of Cr(VI) eliminated from the kaolinite -

removal - were generated. Figure 7.3 shows two graphics, where the percent values of 

conversion - C - and removal - R - can be consulted. 
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Focusing on the results regarding the assays of 9 days, the small difference 

between the removal and the conversion of the hexavalent chromium stands out for both 

experimental setups. It appears that almost all the hexavalent chromium eliminated from 

the soil was reduced to the trivalent form. By extending the test period, high removal 

values were generally recorded. Nevertheless, the reduction of the contaminant, in the 

system that contains the biobarrier with zeolite, did not vary significantly. So, we 

assume that the rest of the hexavalent chromium was mobilized, due to the electric 

current applied. On the other hand, a different behavior was observed for the system 

containing the biobarrier with activated carbon. Both values increased greatly. The 

conversion come up to values similar to the ones obtained with the zeolite and the 

removal values were the higher recorded in the all experiment. Nevertheless, the 

removal was once more superior to the conversion, denoting that other processes 

contributed to the decontamination of the soil. In order to clarify these considerations, a 

closer study was made by analyzing the Cr(VI) mass distribution through the various 

sections of the electrokinetic cells regarding the most successful assays - 18 days. 

 

 

Figure 7.3.  Fraction of hexavalent chromium reduced to the trivalent form - C/% - and total 

removal of the hexavalent chromium - R/% - determined for the assays regarding the both types of 

biobarriers. 
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3.2.2.  Distribution of the hexavalent and trivalent chromium through the soil columns: 

pH dependence 

Figure 7.4 shows the mass distribution of Cr(VI) and Cr(III) according to the type 

of biobarrier coupled to the electrokinetic cell - zeolite (A) or activated carbon (B).  

First and foremost it is important to point and discuss the concentration of Cr(III) in 

both biobarriers. It is well known that the Arthrobacter viscosus are great producers of 

exopolysaccharides (EPS), which confers to the bacteria the ability for adhesion to a 

support and also enhances its metal retention capacity. On the other hand, these bacteria 

are recognized reducers of Cr(VI) to Cr(III). Therefore, and according to the 

“adsorption coupled reduction” theory, the trivalent cations were effectively entrapped 

in both supports after de Cr(VI) reduction, explaining the high levels of this cation in 

both biobarriers [17,19,20]. Nevertheless, the mass of Cr(III) decreased from the 

biobarrier to the cathode, highlighting the release and consequent movement of these 

cations towards this section as a result of the electric field applied. 

 

 

Figure 7.4.  Mass and pH distribution observed for the assays with both type of biobarriers. A) 

Zeolite supported biobarrier. B) Activated carbon supported biobarrier. 
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it, having more expression in this biobarrier due to its higher porosity and specific area. 

It is important to focus that for this system in particular, the increasing of the test period 

enhanced the conversion, as more Cr(VI) reached the biobarrier being effectively 

dispersed on it. In fact, observing Figure 7.4, it is evident that the highest mass of 

trivalent chromium (0.83 mg vs 0.76 mg) was determined for the biobarrier composed 

with activated carbon. In opposition, the higher compaction of the biobarrier with 

zeolite probably interfered with the ionic migration of the Cr(VI) oxyanions, but also 

with its dispersion through the biobarrier, affecting negatively the conversion, even for 

the elongated test period. However, the difference between the mass of Cr(III) 

determined in both biobarriers has not such expression as the difference between the 

quantities of Cr(VI) determined in the anodes chambers. Therefore, it is reliable to infer 

that the conversion efficiency is very close for both types of biobarriers, but due to its 

highest porosity, the activated carbon biobarrier promotes an higher removal of Cr(VI), 

after the saturation of the barrier matrix with Cr(III). 

The pH determined across the EK cell showed the same tendency for both tests, 

and varied between 3.9 and 5.4, for the soil sections. The slight increasing pH in the 

direction of the anode chamber may also explain the increasing quantities of Cr(VI) in 

the same direction, as its mobility tends to increase with the pH [2,44]. However, as the 

system is under an electrical current, it is difficult to infer the level of correlation 

between these two variables. Comprehensively, the pH determined in the anode 

chamber was 5 ± 0.2 for both experiments. As mentioned before, the pH was controlled 

in both chambers in order to be kept around 5, which is the pH reported to increase 

Cr(III) biosorption, by several authors [18,23,45-47]. On the other hand, the pH 

determined in the cathode chambers was 1.2 ± 0.2. The typical basic environment of 

this chamber created by the reduction of water, implied its regular acidification in order 

to avoid the migration of a base front towards the biobarrier [48]. Therefore, punctually 

low values of pH are reliable. Finally, the highest pH values determined in the 

biobarriers - 6.4 for the zeolite and 5.6 for the activated carbon - are clearly related with 

the supports nature, as both increase the pH in the medium, with more expression for 

the zeolite [23,49]. The pH range (4-6) was reported by Mohan et al. [32] as the 

optimum for the adsorption of Cr(III) on carbon surface, as this presented a negative 

charge and all the Cr(III) species were cationic. Therefore, the adsorption process was 

classified as an electrostatic attraction between the ionized acid sites of the activated 
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carbon and the Cr(III) cations. Wu et al. [31] studied the sorption of Cr(III) onto a 

zeolite in the pH range (2.5 - 9.0) and noted an increase tendency till a pH of 6.5. As 

zeolites have permanent negative charge, the sorption of Cr(III) above its solubility 

limit (pH = 4.71) was attributed to the precipitation of the metal hydroxides on the 

surface of the zeolite [19]. In fact, this phenomenon may have occurred in both supports 

used in this study. 

 

3.2.3.  Biobarriers uptake and microorganisms viability 

It was above-mentioned that the mass of Cr(III) retained in the biobarrier with 

activated carbon was superior to the mass of Cr(III) retained by the zeolite biobarrier. 

Even the low significant difference between the total mass of Cr(III) retained by both 

biobarriers - 0.07 mg - the value of uptake, relative to the total chromium, was 

considerably higher for the activated carbon biobarrier - 0.074 mg g-1 vs 0.048 mg g-1. 

This is clearly related with the difference between the bulk densities and specific areas 

of the supports, as the activated carbon has a lower density and a higher specific area. 

Nevertheless, the pointed uptake respects to the total chromium and consequently the 

difference between the Cr(VI) retained in each biobarrier - Figure 7.4 - should also 

influence their values. In fact, the activated carbon has more ability to retain the Cr(VI) 

oxyanions on its positive charged sites, generated by the liberation of OH- ions during 

the reaction with water [49]: 

 

[ ] −+
+=+ 2OHOCOHOC 2

x22x                                                                                   (48) 

 

Finally, the biobarriers were positively tested for the adhesion and bioviability of 

the Arthrobacter viscosus, by means of SEM analysis and growth on solid media, 

respectively. The microorganism did growth on the agar plates, revealing a high 

resistance to the Cr(VI) tested levels. During the SEM/EDS analysis, elements like N, C 

and O were detected punctually in noticeable reasons, allowing the caption of images of 

biomass adsorbed to each support - Figure 7.5. 
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Figure 7.5.  SEM images of the biobarriers after the combined treatment. The arrows are pointing 

the biomass adhered to each support. A) Zeolite supported biobarrier. B) Activated carbon 

supported biobarrier. 
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CONCLUSIONS AND PERSPECTIVES 

This thesis focused two main subjects: the transport and fate of chromium and 

lead in Portuguese soils and the application or development of few remediation 

techniques, according to the contamination scenario, to clean soils contaminated with 

these two heavy metals. 

On a first approach, the retention of Cr oxyanions and Pb cations onto a common 

Portuguese loamy sand soil was studied at low different pHs -2 and 5 - and high initial 

concentrations of the contaminant solutions - (50 to 200) mg L-1 [Chapter 2]. Despite 

the solution pH used in the batch tests, the cations of Pb were always rapidly retained, 

in opposition to Cr whose sorption occurred slowly. Consequently, only the sorption 

kinetics of Cr allowed the adjustment of a mathematical model, the empirical power 

function, whose rate constant increased with decreasing pH. On the other hand, the 

equilibrium studies showed that Pb adsorption was well described by the Langmuir 

monolayer theory and that Cr was mainly retained by physical adsorption, described by 

Dubinin-Radushkevich model. On their turn, the performed continuous tests confirmed 

the high retention of Pb that increased with pH due to precipitation. It was also showed 

that the reduction of Cr(VI), suggested by FTIR results, and the protonation of soil 

groups at low pH values, may be responsible for the high retention of Cr onto soils. 

Finally, and according to FTIR results, both metals adsorb mainly on the hydroxyl 

groups at the edge of the clay minerals. So, both metals have great mobility in acid 

environments threatening the quality of groundwater near industrial environments. 

Due to its distinct behavior in nature, and also due to the fact that it is associated 

with several Portuguese industrial sectors, Cr was object of a more detailed study in 

what concerns its sorption and transport [Chapter 3]. In order to do that, few factors 

affecting its fate in soils were evaluated, namely the influence of the contaminant 

solution pH and its Cr(VI) concentration, which is the most pernicious form of Cr. The 

increase in the contaminant solution pH resulted in the decrease of the adsorption of 

Cr(VI) and therefore in its higher mobility. Adsorption was markedly dependent on 

chromium speciation and on the type of oxyanions present at each solution pH. The 

existence of marked concentration gradients may result in absorption processes, 

following adsorption phenomena, which may explain the increase of the hexavalent 

chromium retention recorded for the influent concentration increase. The presence of 

OH groups, usually responsible for sorption phenomena, was once more confirmed by 
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FTIR. It was also shown that the two site adsorption model - TSM - describes quite well 

the mobility of Cr(VI) in soils. Nevertheless, since at high pH values the desorption of 

the targeted heavy metal may occur, this dynamic model seems to be inappropriate to 

describe the transport of Cr(VI) in these situations. Finally and remarkably, it was 

proved that batch adsorption parameters are frequently underestimated; even though 

they can be used to compare the adsorption process at different scenarios, since they 

vary in accordance with the correspondent parameters determined from flow tests. 

As mentioned, the release and disposal of heavy metals may occur by single or 

mixed wastes. Therefore, Cr and Pb may be found as isolated pollutants, but also, and 

most likely, in sites co-contaminated with other heavy metals like Cd, Cu and Zn. For 

that reason, the effect of competition in the sorption and transport of the two targeted 

heavy metals was approached in Chapter 4. The batch and continuous tests showed that 

this type of soil - loamy sand - has a high affinity for all the tested metals but a different 

maximum sorption capacity for each one. An affinity trend was defined as: Cr > Pb > 

Cd > Cu > Zn, according to the respective Langmuir constant – bL. Similarly, a trend of 

the maximum sorption capacities of the soil - qmax values - was described as: Cu ≈ Zn > 

Cd > Pb > Cr. The results of the flow tests showed that in dynamic systems, reactions 

were not in equilibrium, and therefore, the trend of the retardation factor was different: 

Zn>Cd>Pb>Cu>Cr. Generally, in competitive situations, the heavy metals were less 

strongly sorbed by soil, due to the competition for sorption sites. However, Cr and Cu 

seemed to precipitate as a Cu-Cr solid, due to the increase in the soil pH. Also, Zn is 

less effectively retained in flow systems, mainly due to the acid leaching of Zn ions, 

which were highly concentrated in this soil. The existence of competition among heavy 

metals does not always reduce their retention in soil, depending on the concentration, 

pH and types of metals involved. Other processes besides adsorption may also occur, 

thereby influencing the selection of decontamination techniques. 

During this research work, three decontamination techniques were applied. The 

applicability of the bioleaching, using Acidithiobacillus thiooxidans DSM 504, on the 

decontamination of soils polluted with Cr(VI), was explored in Chapter 5. Parameters 

such operation temperature, contamination pH and contaminant concentration were 

evaluated and a maximum removal of 83% was obtained for the bioleaching test 

concerning the soil contaminated with 50 mg kg-1 of Cr(VI), at pH 2, and operated at 26 

°C. The parameter that most influenced the efficiency of the process was the 
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contamination pH, whose decrease improved the removal of Cr(VI). On the other hand, 

at the temperature range tested no significant changes were observed in the yield of the 

method. Finally, the increased contaminant concentration affected positively the same 

factor. It was also proved that, during the oxidation of sulfur, Cr(VI) was reduced to 

Cr(III) that was easily leached in the acidic environment. In sum, the laboratory scale 

study proofs that bioleaching of Cr(VI) contaminated soils can be economically 

performed, using Acidithiobacillus thiooxidans: no temperature control is needed in 

temperate climate; high Cr(VI) charges favor its reduction rate to Cr(III); stream 

treatments can be eliminated as Cr(III), less toxic and less mobile; and finally, due to 

the acidic character of most Cr(VI) contamination, that was proved to enhance the 

efficiency of the bioleaching process. Even though, larger scale work is needed to fully 

assess this technology. 

In Chapter 6, another cleaning technique was evaluated: the desorption process of 

PHE and Pb from a contaminated soil via application of composed solutions comprised 

of a surfactant (T80 or B35) and the chelant EDTA. The extraction of PHE was not 

influenced by the presence of the chelant EDTA, but the opposite occurred for the 

extraction of Pb, which was negatively affected by the presence of EDTA. Therefore, 

the usage of a composed solution in the extraction of Pb from soils contaminated only 

with this metal is not advisable. Further, the extraction of Pb from the contaminated soil 

samples was considerably affected by the presence of the co-contaminant PHE, which 

suggested that the presence of this co-contaminant may prolong the residence time of Pb 

in soils. Succinctly, the use of composed solutions enhanced the solubilization of a 

mixture of organic and inorganic contaminants. Moreover, the desorption kinetics of 

PHE and Pb from soil with those solutions can be described by the empirical power 

function and the pseudo-second-order equation. Consequently, composed solutions 

could be employed to enhance remediation of co-contaminated soils using other 

techniques, such as electrokinetic remediation or phytoremediation. As the 

concentration of two pollutants can be reduced in the same time interval, it may be cost 

effective to use composed solutions for the remediation of heavy metals and 

hydrocarbons mixtures. 

The last tested technique was exposed and discussed on Chapter 7 and concerns 

the applicability of a novel technique on the remediation of soils contaminated with 

hexavalent chromium. The described technique consists in the coupling of two well 



CHAPTER 8| Conclusions and Perspectives 

 

 
Fonseca, B | 2011 164 
   

known and successfully tested set-ups - electrokinetic cells and permeable reactive 

biobarriers. Two types of barriers were tested, either with activated carbon or zeolite, 

supporting a biofilm of Arthrobacter viscosus. For an eighteen days period, the systems 

showed similar conversion of Cr(VI) to Cr(III) - 45% and 44 % - and also similar 

retention of Cr(III) - 0.76 mg and 0.83 mg - for the systems composed by the biobarrier 

with zeolite and activated carbon, respectively. However, the application of the system 

composed by activated carbon was more advantageous. Explicitly, its lower density, 

high specific area and capability to adsorb Cr(VI) oxyanions, resulted in higher uptake 

values - 0.074 mg g-1 vs 0.048 mg g-1. The elevated porosity of activated carbon 

facilitated the transport of Cr(VI) towards the anode chamber of the electrokinetic cell, 

after the biobarrier saturation, improving therefore the total removal of the targeted 

contaminant - 79% vs 60%. In sum, these laboratory scale tests demonstrated the 

efficiency of this novel remediation technique. However, futures tests concerning its 

optimization and application on real soils are required in order to validate it as a large 

scale solution. 

In sum, the transport, sorption and fate of chromium and lead in a typical soil 

from the north of Portugal were herein described and explored in detail. It was 

essentially proved that an acidic media promotes an high retention of hexavalent 

chromium and low retention of divalent lead, and that competitive scenarios may 

improve the retention of hexavalent chromium due to mineral precipitation, but 

influences negatively the lead sorption equilibrium. On the other hand, the bioleaching 

technique proved its efficiency in the attenuation of moderate charges of hexavalent 

chromium in this soil. On its turn, the chemical washing/extraction was successfully 

used in a soil highly and historically contaminated with lead, either solely or co-

contaminated with a polycyclic hydrocarbon. Finally, the development of a hybrid and 

novel technique for the cleaning of soils contaminated with hexavalent chromium was 

herein successfully approached. 

Besides the encouraging results obtained by the application of the targeted 

remediation techniques, a lot of work work is still required. The implementation of each 

technique at the pilot scale is of utmost importance and appears as the next step on this 

line of research. On the other hand, deep knowledge and characterization of the 

Portuguese soils and its contamination urges, as Portugal is a very poor contributor to 

the Soil Thematic Strategy, proposed by the European Commission in 2006. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 9| Quality criteria of the 
publications 

The evaluation of the publications included on this thesis are based on the Journal 

Citation Reports ® of the ISI Web of Knowledge  



 

 



CHAPTER 9| Quality criteria of the publications 

 

 
Fonseca, B | 2011 167 
   

9.1. Retention of Cr(VI) and Pb(II) on a loamy sand soil: Kinetics, equilibria and 

breakthrough  

JOURNAL: Chemical Engineering Journal 

VOLUME: 152 

PAGES: 212-219 

YEAR: 2009 

ISSN: 1385-8947 

COUNTRY: Switzerland 

PUBLISHER: Elsevier Science SA 

IMPACT FACTOR IN THE PUBLICATION YEAR: 2.816 

RANKING OF THE JOURNAL IN ITS SUBJECT CATEGORIES BASED ON 

IMPACT FACTOR IN 2009: Occupies the 13th position, in a total of 128, of the 

Chemical Engineering category - Quartile 1 (Q1). 

 

 

 

2,
03

4

1,
59

4

1,
70

7 2,
81

3

2,
81

6

0,0

1,0

2,0

3,0

2005 2006 2007 2008 2009

Im
pa

ct
 F

ac
to

r

Year

Chemical Engineering Journal



CHAPTER 9| Quality criteria of the publications 

 

 
Fonseca, B | 2011 168 
   

9.2.  Modelling of the Cr(VI) transport in typical soils of the North of Portugal 

JOURNAL: Journal of Hazardous Materials 

VOLUME: 167 

PAGES: 756-762 

YEAR: 2009 

ISSN: 0304-3894 

COUNTRY: Netherlands 

PUBLISHER: Elsevier Science BV 

IMPACT FACTOR IN THE PUBLICATION YEAR: 4.144 

RANKING OF THE JOURNAL IN ITS SUBJECT CATEGORIES BASED ON 

IMPACT FACTOR IN 2009: Occupies the 1st position, in a total of 106, of the Civil 

Engineering category - Quartile 1 (Q1); the 4th position, in a total of 42, of the 

Environmental Engineering category - Quartile 1 (Q1); the 11th position, in a total of 

181, of the Environmental Sciences category - Quartile 1 (Q1). 

 

 

1,
54

4

1,
85

5

2,
33

7

2,
97

5

4,
14

4

0,0

1,0

2,0

3,0

4,0

5,0

2005 2006 2007 2008 2009

Im
pa

ct
 F

ac
to

r

Year

Journal of Hazardous Materials



CHAPTER 9| Quality criteria of the publications 

 

 
Fonseca, B | 2011 169 
   

9.3.  Mobility of Cr, Pb, Cd, Cu and Zn in a Loamy Sand Soil: a comparative study  

JOURNAL: Geoderma  

STATUS: Submitted 

YEAR: 2011 

ISSN: 0016-7061 

COUNTRY: Netherlands 

PUBLISHER: Elsevier Science BV 

IMPACT FACTOR IN THE PUBLICATION YEAR: 2.461 

RANKING OF THE JOURNAL IN ITS SUBJECT CATEGORIES BASED ON 

IMPACT FACTOR IN 2009: Occupies the 5th position, in a total of 31, of the Soil 

Science category - Quartile 1 (Q1). 

 

1,
77

3

2,
12

4

1,
89

8

2,
06

8

2,
46

1

0,0

1,0

2,0

3,0

2005 2006 2007 2008 2009

Im
pa

ct
 F

ac
to

r

Year

Geoderma



CHAPTER 9| Quality criteria of the publications 

 

 
Fonseca, B | 2011 170 
   

9.4.  A combined remediation technology for the reduction and bioleaching of 

hexavalent chromium from soils using Acidithiobacillus thiooxidans 

JOURNAL: Journal of Biotechnology 

STATUS: Submitted 

YEAR: 2011 

ISSN: 0168-1656 

COUNTRY: Netherlands 

PUBLISHER: Elsevier Science BV 

IMPACT FACTOR IN THE PUBLICATION YEAR: 2.881 

RANKING OF THE JOURNAL IN ITS SUBJECT CATEGORIES BASED ON 

IMPACT FACTOR IN 2009: Occupies the 48th position, in a total of 152, of the 

Biotechnology & Applied Microbiology category - Quartile 2 (Q2). 

 

 

2,
60

7

2,
60

0

2,
56

5

2,
74

8

2,
88

1

2,0

3,0

2005 2006 2007 2008 2009

Im
pa

ct
 F

ac
to

r

Year

Journal of Biotechnology



CHAPTER 9| Quality criteria of the publications 

 

 
Fonseca, B | 2011 171 
   

9.5.  Desorption kinetics of phenanthrene and lead from historically contaminated 

soil 

JOURNAL: Chemical Engineering Journal 

VOLUME: 167 

PAGES: 84-90 

YEAR OF PUBLICATION: 2011 

ISSN: 1385-8947 

COUNTRY: Switzerland 

PUBLISHER: Elsevier Science SA 

IMPACT FACTOR IN THE PUBLICATION YEAR: 2.816 

RANKING OF THE JOURNAL IN ITS SUBJECT CATEGORIES BASED ON 

IMPACT FACTOR IN 2009: Occupies the 13th position, in a total of 128, of the 

Chemical Engineering category - Quartile 1 (Q1). 

 

2,
03

4

1,
59

4

1,
70

7 2,
81

3

2,
81

6

0,0

1,0

2,0

3,0

2005 2006 2007 2008 2009

Im
pa

ct
 F

ac
to

r

Year

Chemical Engineering Journal



CHAPTER 9| Quality criteria of the publications 

 

 
Fonseca, B | 2011 172 
   

9.6.  An innovative hybrid technology - electrokinetic and biobarriers - applied to 

hexavalent chromium contaminated clays  

JOURNAL: Chemosphere 

STATUS: Submitted 

YEAR OF PUBLICATION: 2011 

ISSN: 0045-6535 

COUNTRY: England 

PUBLISHER: Pergamon-Elsevier Science Ltd 

IMPACT FACTOR IN THE PUBLICATION YEAR: 3.253 

RANKING OF THE JOURNAL IN ITS SUBJECT CATEGORIES BASED ON 

IMPACT FACTOR IN 2009: Occupies the 23rd position, in a total of 181, of the 

Environmental Sciences category - Quartile 1 (Q1). 

 

2,
29

7

2,
44

2

2,
73

9

3,
05

4

3,
25

3

0,0

1,0

2,0

3,0

4,0

2005 2006 2007 2008 2009

Im
pa

ct
 F

ac
to

r

Year

Chemosphere



 

 



 

 

 


	Página 1
	Página 2
	Página 3
	Página 4



