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Direct current reactive magnetron sputtering was implemented to successfully deposit dark

Ti(C,O,N) thin films on silicon substrates. A titanium target was sputtered while a mixture

of oxygen and nitrogen was injected into the deposition chamber, independently from an

acetylene source. The deposition parameters were chosen as a function of pre-existing

knowledge about sputtered Ti-O-N and Ti-C-O films. Tuning the oxygen / (nitrogen +

carbon) ratio allowed obtaining a large spectrum of properties. In particular, the colour of

the films was characterized by spectral reflectance spectroscopy, and expressed in the CIE

1976 L*a*b* colour space. An accurate control of the reactive gas mixture flow rate

allowed obtaining intrinsic, stable and attractive dark colour for decorative applications.

Surprisingly, the coatings with the lowest content of carbon and the highest content of

oxygen presented the darkest tones.

Composition analysis by electron probe microanalysis was done to quantify the titanium

and metalloid concentrations in the films. X-ray diffraction experiments revealed the

evolution of the film structure from an fcc structure for the lowest (O2 + N2) flow rates to

an amorphous one for the highest flow rates.
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1. Introduction

Decorative thin films have been used for a long time, to golden metallic parts with titanium

nitride [1] or for blackening metal objects in cars with carbon layers, for instance. Today,

decorative coatings are increasing their commercial importance, especially concerning

high-quality products like eyeglass frames, wristwatch casings, wristbands or pens.

Together with attractive colours, decorative coatings must provide high wear resistance,

surface quality, skin compatibility and protection against corrosion.

A wide range of colours can be reached now, some are intrinsic and others are obtained by

interference. Transition metal oxynitride thin films (titanium, zirconium …) are used to get

brown, golden, green, purplish-pink, blue, or violet tones. Some black coatings have been

obtained as Cu-Ni films deposited by electrochemical deposition [2], Ni-P alloys by

electroless plating [3], and Ti-N-(C,Al) [4] or amorphous carbon coatings by sputtering [5].

But none of these studies presents more than one black tone.

This paper deals with the deposition of Ti-C-O-N decorative coatings by reactive

magnetron sputtering. The goal is to produce coatings with several tones of black using the

same chamber configuration and a minimum of materials, namely one target and two

reactive gases, allowing economy of time and materials. Few publications were done on

this quaternary system [6-8] and, as far as it is known, none of them focuses on the colours

of these titanium oxycarbonitrides. A simple process using only two reactive gases, a pure

gas and a gas mixture, was used to obtain very dark attractive colours. The colorimetric

measurements were correlated to the atomic composition and the crystallographic structure.

2. Experimental details

The depositions of titanium oxycarbonitride thin films were performed in a laboratory-size

unbalanced (type II) direct current (DC) magnetron sputtering system. The films were
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prepared with the substrate holder positioned at 70 mm from the target in all runs, applying

a discharge current density of 100 A.m-2 on the titanium target. The substrates (silicon

wafers with (100) orientation and mechanically polished high speed steel AISI M2) were

grounded and kept at a constant temperature T = 473 K during the one hour deposition,

using an external heating resistance. The titanium target (99.96 % - 20×10 cm2) was

sputtered in an argon (working gas) + gas mixture (oxygen and nitrogen source) +

acetylene (carbon source) atmosphere. The gas mixture was composed of nitrogen and

oxygen, with a constant N2:O2 ratio of 17:3. The Ar flow and the acetylene flow were kept

constant at 60 sccm and 5 sccm, which correspond to partial pressures of 0.47 Pa and 0.25

Pa, respectively. The gas mixture partial pressure, pO2+N2, was systematically changed from

0 to 0.4 Pa by controlling the gas mixture flow rate (from 0 to 18 sccm). The base pressure

was below 10-3 Pa.

The thickness of the coatings was measured with a CSM Calotest 01-211 device, by ball

cratering. The elemental composition of the coatings was investigated with a Cameca SX-

50 Electron Probe Micro Analysis (EPMA), operating at 15 keV as acceleration voltage. To

note is that hydrogen could not be detected by EPMA. X-ray diffraction (XRD)

experiments were performed in a Siemens D-500 apparatus using a Co Kα radiation (λ =

0.178897 nm) in Bragg-Brentano configuration.  The film’s colour was represented in the

CIELab 1976 colour space by using a commercial Minolta CM-2600d portable

spectrophotometer (wavelength range: 400-700 nm), with diffused illumination (D65 light

source) at an 8º viewing angle (specular component included). It was equipped with a 52

mm diameter integrating sphere and 3 pulsed xenon lamps. The observer was placed at a

10º angle. The reflectance was measured by UV-visible spectroscopy in the 200-900 nm

range using a Varian Cary 500 spectrophotometer.
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3. Results and discussion

3.1 Target potential and deposition rate

As commonly observed during reactive sputtering experiments, the variation of the oxygen

and nitrogen mixture partial pressure strongly affects the titanium target voltage (Fig. 1).

The evolution of the target potential shows that two different regimes are present. In the

first part of the plot, the decrease in target voltage, measured for films prepared with very

low partial pressures (below 0.11 Pa), can be attributed to the evolution of the composition

of the target surface and thus to the change of the ion induced secondary electron emission

coefficient (ISEE) at the surface. Since the ISEE is usually much higher for compounds

than for metals, and especially for oxides [9], a decrease of the plasma impedance is

expected. Then, since the current density applied to the Ti target is constant, a decrease of

the target voltage is expected.

For pO2+N2 > 0.11 Pa, the abrupt target voltage increase may be attributed to the presence of

non-reacted oxygen/nitrogen (and even carbon) on the target surface. When the reactive gas

mixture partial pressure increases above this critical value, the target oxidation (poisoning

effect) starts to prevail (resulting from the increased ionization of these reactive gases,

which evolves to their actual dissociation) and hence a contamination layer (oxide/nitride)

grows on the target surface. The increase of the contamination layer thickness on the target

surface decreases the electrical conductivity of the target. Therefore a higher cathode

potential is necessary to break this insulating barrier on the target. This induces an increase

of the cathode potential from ~470 to 537 V with the increase of gas mixture partial

pressure from 0.11 to 0.3 Pa.

In accordance with the target voltage evolution, the deposition rate, Rd, displays two similar

zones. Without injection of the gas mixture (only argon and acetylene), the deposition rate

is the highest, around 2.1 μm h-1. When the reactive gas mixture (O2+N2) partial pressure
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increases, Rd decreases and stabilizes around 1 μm h-1 for pO2+N2 higher than 0.18 Pa. For

the highest partial pressures, which correspond to the poisoned target regime, the injection

of gas mixture is now high enough to fully run the process in the oxide(nitride)-type

sputtering mode. The sputtering yield of the poisoned target (titanium oxide(nitride)) is

much lower than that of titanium [10-11], and thus the deposition rate largely decreases, as

shown in Fig. 1.

3.2 Atomic composition

Elemental composition measurements carried out by EPMA on Ti(C,O,N) samples

show a global opposite evolution of titanium and carbon contents from one side and

oxygen and nitrogen in the other side, when the (O2+N2) partial pressure increases (Fig. 2).

The stoichiometry varies from TiC0.65O0.15 to TiC0.77O1.20N1.37, for (O2+N2) partial

pressures of 0 and 0.4 Pa, respectively. The results are consistent with the increase of the

gas mixture flow rate. From Fig. 2, the first conclusion to be drawn is that there is a regular

increase of the oxygen content with increasing the gas mixture partial pressure. On the

other hand, the nitrogen content increases up to approximately 30 at. % (pO2+N2 = 0.11 Pa)

and stays approximately constant for pO2+N2 ≥ 0.11 Pa. The value pO2+N2 = 0.11 Pa seems to

be the limit between two zones that can be defined in this figure, corresponding, in fact, to

the same limit observed in Fig. 1 for the evolution of both the deposition rate and the target

potential. This shows a good correlation between the two sputtering modes and the

composition of the films. In the 0 < pO2+N2 < 0.11 Pa range, the titanium content decreases

abruptly from 55 to 27 at. % and the carbon content decreases from 36 to 28 at. %. In the

same range, the oxygen content rises from 8 to 15 at. % and the nitrogen from 0 to 28 at.

%. This must be correlated to previous results on titanium oxynitrides for which a similar

reverse evolution of titanium and oxygen (or nitrogen) by simple variation of the oxygen
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supply, was observed [12-13]. For the low flow rates, the films are varying between sub-

stoichiometric and nearly stoichiometric conditions and thus most of the sputtered atoms as

well as the reactive ones present in the plasma are adsorbed in the growing film. In this

part, the evolution of the film composition strongly depends on the gas mixture partial

pressure. It should be noticed that the standard enthalpies of formation of TiC, TiN, TiO

and TiO2 compounds are respectively, -184 kJ.mol-1, -338 kJ.mol-1, -520 kJ.mol-1 and -942

kJ.mol-1. This higher affinity of titanium towards oxygen induces much higher oxygen

content in the film (Fig. 2) than the one expected from the gas mixture.

For pO2+N2 > 0.11 Pa, the titanium and nitrogen contents are constant around 20 at. %

and 32 at. %, respectively, while oxygen continuously increases from 15 to 28 at. % (much

higher than the 17:3 ratio in the gaseous phase). The carbon content presents a decrease

down to 18 at. % for pO2+N2= 0.4 Pa. The film composition changes slowly with the mixture

partial pressure.

3.3 Crystallographic structure

The structural evolution of the Ti(C,O,N) coatings as a function of the gas mixture partial

pressure is shown in Fig. 3. X-ray diffraction patterns of the films deposited on (100)

silicon substrates reveal a strong dependence of the film texture on the gas mixture partial

pressure, as well as the atomic composition. For the titanium carbide film (0 sccm for the

gas mixture flow or pO2+N2 = 0 Pa), diffraction peaks corresponding to the fcc TiC phase

appear with a preferential orientation along the (111) direction, but (200) and (220)

diffraction peaks are also observed with quite a lower intensity. The crystallite size

calculated by the Scherrer’s method from the full width at half maximum of the (111)

diffraction peak is 16 nm. When the O2+N2 gas mixture is injected, the (111) preferential

orientation disappears as previously reported for other Ti(C,O,N) coatings [8]. For low
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partial pressures (0.09 and 0.11 Pa), the films exhibit peaks shifted to higher angles,

corresponding to an fcc structure, which may be a titanium carbide structure with inclusion

of oxygen and/or nitrogen atoms (TiCx(O,N)). It is important to note that TiC, TiN and TiO

present the same crystallographic structure with close lattice parameters (aTiC = 0.4328 nm

from JCPDS04-004-2919, aTiN = 0.4241 nm, JCPDS04-001-2272 and aTiO = 0.4177 nm,

JCPDS04-001-6834). Therefore, X-ray diffraction is not a suitable method to distinguish

between these three compounds (especially in a sub- or over-stoichiometric condition such

as the one possible in this case), or a solid solution-type compound, where all or some of C,

O and N atoms may be within the same cubic lattice. Anyway, XRD analyses clearly show

that Ti(C,O,N) films deposited at low pO2+N2 exhibit an fcc structure. When pO2+N2 grows

from 0.09 to 0.18 Pa, the three main peaks located around 42º, 49º and 73º become less

intense and disappear for the highest gas mixture partial pressures (0.4 Pa): the films

containing a strongly dominant metalloid concentration clearly exhibit an amorphous

structure. These structural features show a clear coherency with the two zones illustrated in

both figures 1 and 2. The crystalline films are those located in the first zone (pO2+N2 < 0.11

Pa), where the composition of the films is sub- to roughly stoichiometric (ratio of N+O+C

over Ti roughly higher than 0.7). Moreover it is important to emphasize the slight decrease

of the carbon content, for pO2+N2 ≤ 0.11 Pa, which may be related with the lowest value of

standard enthalpy of formation for TiC. The fact that the ratio N+O+C over Ti is increasing

rapidly above 1 (pO2+N2 > 0.11 Pa) makes the films pass from a situation where almost all

arriving species are added to the growing film (first zone), to a zone where the excess of

N+O+C in respect to Ti is most likely inducing some preferential reactions of Ti, according

to the reactivity of each reactive gas. In the second zone, the films lose their long range

order, which may result from the joined effects of both low surface diffusion of the

particles impinging on the substrate or the growing film (the depositions were made at only
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473 K), and the significant over-stoechiometric condition of the films (Ti is only around 20

at. % within the higher partial pressures zone).

Although the available thermodynamic data of all binary compounds may induce some

tendency to form preferentially an oxide-based compound (TiO2-based), Fig. 2 shows that

the ratio of O over Ti roughly varies between 0.5 and 1.2 and thus this tendency might be

somehow reduced. Moreover, the ratio of N over Ti is around 1.5 throughout this high

pressures zone. These ratios certainly impose a great deal of difficulties within the

structural arrangements. One possibility is that the former cubic lattice becomes

significantly Ti deficient with many (N, O, or even C) interstitials/substitutions which

induce significant lattice distortions. Another possibility is that a nano-scaled type

composite may be present, where nano-grains (cubic lattice type, with Ti vacancies and

mixed O+N) are dispersed in a C amorphous phase. Anyway, this amorphisation was

already observed for high contents of oxygen in ternary compounds like Ti(O,N) [14-15] or

Ti(C,O) [16] sputter deposited thin films.

3.4 Decorative properties

Colour specification of the films deposited on silicon is represented in the CIELab

colour space in Fig. 4. It can be noticed in this figure that the gas mixture partial pressure

of 0.11 Pa is again the limit between two groups of films. For pO2+N2 < 0.11 Pa, the

brightness L* is higher than 56 %. Moreover, the b* value is higher than three, which

makes the film tend to be dark grey and very slightly brownish. Then, for pO2+N2 ≥ 0.11 Pa

the brightness becomes lower than 50 and {a*;b*} tends to be closer to {0;0}. These

samples are considered as black for a human observer. Actually the farther away a point

from the centre {a*;b*}={0;0}, the higher the colour saturation. This quantity can be

measured using the chromaticity 2 2* *a b+ , expressing the amount of colour. In our case,
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the Ti-C film presents a chromaticity of 6.34 while the Ti(C,O,N) film deposited with

pO2+N2 = 0.4 Pa has the lower chromaticity (1.87). This decrease can be divided in two

steps. The chromaticity is higher than 2.5 for pO2+N2 < 0.11 Pa, and then is located between

2.5 and 1 for pO2+N2 ≥ 0.11 Pa. Therefore the samples with the highest content of oxygen

present the best colorimetric characteristics to be considered as black. It is important here

to notice the advantage of the use of the gas mixture (oxygen and nitrogen). This mixture is

used in order to obtain a smooth transition from the grey to the black, more easily than with

a conventional process, by injecting nitrogen mixed with little oxygen, and increasing the

window of possibilities to prepare coatings with low oxygen content.

This analysis is completed by the reflectance measurements in UV-visible range (Fig. 5).

The films deposited with pO2+N2 = 0 and 0.09 Pa clearly present a similar behaviour. Their

reflectance increases up to 28 and 35% at 900 nm, which can be correlated to a metallic

behaviour. It is confirmed by the metallic aspect detected by eye. Except for pO2+N2 = 0.09

Pa, the film reflectance in the visible region decreases continuously when the pO2+N2

increases, indicating that the films become darker. The film deposited at pO2+N2 = 0.40 Pa

exhibits an almost constant reflectance of 15 ± 2 % in the visible range.

The different reflectance behaviour and the metallic aspect of the films obtained with

pO2+N2 < 0.11 Pa, with respect to those obtained for higher partial pressures can be related

to the different structure of these films. For the higher partial pressures, the small variations

of the colour parameters are in agreement with the slight variations of the composition of

these X-ray amorphous films.

4. Conclusion

Together with argon (working gas) and acetylene (carbon source), a gas mixture with an

appropriate N2:O2 ratio was used to deposit reactive sputtered Ti(C,O,N) coatings, varying
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the mixture flow rate. Structural characterisation results revealed a strong dependence of

the structure on the oxygen + nitrogen partial pressure. Without injection of O2+N2, the

films exhibited diffraction peaks corresponding to fcc TiC. For intermediate oxygen +

nitrogen partial pressures, the diffraction patterns revealed an fcc (TiC, and/or TiO and/or

TiN) phase. The films are amorphous for the highest partial pressures and thus oxygen

contents. Finally, the metallic dark grey colour of titanium carbide became very dark or

black with the increase of the oxygen content in the films.

The simple method used in this work to prepare the Ti(C,O,N) samples with different dark

tones proved that one can smoothly tailor the decorative properties by adjusting only the

flow rate of one gas mixture.
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Figure captions

Figure 1: Variation of the deposition rate of Ti(C,O,N) coatings and the target potential as a

function of the (O2 + N2) partial pressure in the chamber.

Figure 2: Influence of the (O2 + N2) partial pressure on the atomic composition of titanium

oxycarbonitride thin films (measured by EPMA).

Figure 3: X-ray diffraction patterns of titanium oxycarbonitrides deposited on silicon (100),

with (O2 + N2) partial pressure pO2+N2 = a) 0 Pa; b) 0.09 Pa; c) 0.11 Pa; d) 0.15 Pa; e) 0.18

Pa. Vertical lines correspond to the TiC diffraction peak positions. The patterns were

vertically shifted for the shake of clarity.

Figure 4: Average colour coordinates of Ti(C,O,N) films on silicon in the CIELab colour

space under the standard CIE illuminant D65, as a function of the (O2 + N2) partial pressure.

Figure 5: Reflectance spectra of titanium oxycarbonitride thin films on silicon substrates

deposited with different (O2 + N2) partial pressures.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

13

Fig 1
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Fig 2
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Fig 3
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Fig 4
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Fig 5


