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Abstract – This paper presents a comparative analysis between 
synchronizing circuits applied to control algorithms for single-
phase active converters. One of these synchronizing circuits 
corresponds to the single-phase PLL (Phase Locked Loop), 
implemented in -  coordinates, whereas the other one 
corresponds to the E-PLL (Enhanced PLL). These 
synchronizing circuits are compared in several aspects as 
processing and settling time and memory space requirements. 
Moreover, the performance of a single-phase back-to-back 
converter is also presented, with its control algorithm based on 
these Synchronizing Circuits. Each one of the control algorithms 
were implemented in a DSP microprocessor TMS320F2812F 
from Texas Instruments. Simulation and experimental results, 
through a back-to-back converter prototype, are presented. 

I. INTRODUCTION 

The proliferation of nonlinear loads in residences, offices 
and industries has contributed to increase the harmonic 
pollution observed in the power grid. Moreover, the harmonic 
current-components consumed by these nonlinear loads 
results in harmonic voltage-drop on the supply line 
impedances, which deteriorates the waveform of the voltages 
delivered to the load [1]. There are also other events as 
voltage sags or voltage swells that are resulted, respectively, 
from connection or disconnection of large loads [2] [3]. All of 
these events are the most responsible ones for the observed 
problems in sensitive loads as improperly shut down, reduced 
lifetime, malfunction, and so others. 

Power quality problems can be overcome, in real time, 
through the utilization of “Custom Power” devices. In this 
paper a back-to-back converter is used, which is composed by 
two power converters that are connected in series and in shunt 
with the power grid. The shunt converter consists in an active 
rectifier that injects or absorbs energy from the power grid, in 
order to keep the dc-link voltage regulated. The series 
converter is responsible to compensate the major power 
quality problems related with the system voltages, such that 
the voltage delivered to the load remain regulated and with 
low harmonic distortion. 

To control these converters, control algorithms based on 
the instantaneous power theory (p – q Theory) are applied [4] 
together with a synchronizing circuit. The synchronizing 
circuit is responsible to produce, in real time, sinusoids that 
are synchronized with the fundamental component of the 

system voltage. Thus it can be observed its importance, since 
the voltage produced by the series converter depends, 
directly, on the generated sinusoid by the synchronizing 
circuit. 

Due to the importance of the synchronizing circuit, this 
paper investigates two different topologies. The first one 
corresponds to the single-phase PLL (Phase - Locked - Loop) 
[4] [5] [6] [7] [8], implemented in -  coordinates, whereas 
the other one corresponds to the E-PLL (Enhanced PLL) 
[9] [10] [11]. 

The comparison involving these PLL topologies is focused 
in processing and settling time and memory space 
requirements. Both controllers where implemented in a DSP 
microprocessor TMS320F2812F from Texas Instruments. 
Being a real time processing system, computing speed and 
memory usage, as well as the settling time are important 
issues. These characteristics must be enhanced; moreover, 
they most provide compensated voltages that comprises with 
the power quality standards [12]. Simulation and 
experimental results, through a back-to-back converter 
prototype, are presented. 

II. HARDWARE CONFIGURATION 

As aforementioned in this paper and indicated in Fig. 1, the 
back-to-back converter is composed by two power converters 
that are connected in series and in shunt with the power grid. 
A step-down transformer (5 kVA – 230 V//115 V) is used to 
provide galvanic isolation between the power converters and 
the power grid. Another step-down transformer, with the 
same characteristics, is used to connect the shunt converter 
with the power grid. The series converter is directly 
connected with the power grid. 

Each one of the single-phase power converters is composed 
by two branches (4 IGBTs with anti-parallel diodes) from 
model Semikron SKM-50GB063D [13]. The IGBTs of this 
power module present as main features a collector-emitter 
voltage of 600 V and a collector current of 50 A (peak value). 

The dc-link is composed by three 4700 F capacitors 
connected in series, which corresponds to an equivalent 
capacitor of, approximately, 1566.67 F. Each one of these 
capacitors presents a dc-voltage rating of 450 V. 

The RLC coupling filter of the series converter is 
composed by a 15  resistor (Rfs), an 8.8 F capacitor (Cfs), 
and an air-core inductor of 0.6 mH (Lfs). The RLC filter of the 

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 3229

H. Carneiro, L. F. C. Monteiro, João L. Afonso, “Comparisons between Synchronizing Circuits to Control Algorithms for Single-
Phase Active Converters”, IECON 2009 - The 35th Annual Conference of the IEEE Industrial Electronics Society, 3-5 November 
2009, Porto, Portugal.



shunt converter is comprehended by a 0.6 mH inductor (Lfp), 
an 4  resistor (Rfp), and an 2.2 F capacitor (Cfs). 

The nonlinear load consists of a single-phase diode 
rectifier, with a RC Load on the dc-side (C DC = 4,7 mF and 
RDC = 25 ). To smooth the current waveform, it is used a 
3 mH inductor (L1). There is also a linear load, connected in 
shunt with the nonlinear load, composed by a 30  resistor 
(R1) and a 650 H inductor (L2). 

A diode rectifier, similar to the nonlinear load, is used to 
increase the harmonic distortion of the supply voltage. This 
rectifier is located between the transformer, connected in 
series with the power grid, and the series converter. 

A soft-start circuit was implemented to suppress the lack of 
electric isolation of a coupling transformer that is present in 
the majority of series converters [13]. It also acts as a 
protection system to overloads and short-circuits. Moreover, 
contactors are employed to connect the shunt (C3) and series 
(C4, C5, C6) power converters, as well as to connect the loads 
with the electrical system (C1, C2). 

The supply voltage is represented in Fig. 1 as being vS, and 
the load voltage is vL. The produced voltage by the series 
converter is represented as vcomp. The load and source currents 
are represented as iL and iS, respectively. The controlled 
current (ireg) is produced by the shunt converter in order to 
regulate the DC link voltage. 

III. CONTROLLER OF THE BACK-TO-BACK CONVERTER 

As introduced in section I the controller of the back-to-
back converter is constituted by control algorithms to 
determine the reference signals to be produced by the power 
converters, plus switching algorithms to command the 
IGBTs. The control algorithms to determine the reference 
signals are comprehended by a synchronizing circuit, an 
algorithm to determine the compensating currents and an 
algorithm to determine the compensating voltages. In Fig. 2 is 
shown a block diagram that represents the control algorithms 
to determine the reference signals. The control algorithms 
denominated in Fig. 2 as “Current-Reference Algorithm” and 

“Voltage-Reference Algorithm” are based on the concepts 
involving the instantaneous power theory (p – q Theory) with 
some simplifications. Hereafter, these control algorithms are 
described, and, in sequence, the investigated synchronizing 
circuits are introduced. 

A. Current-Reference Algorithm 
Since there are no power sources on the dc side of the 

power converter, a controller that keeps the dc-link voltage 
regulated has to be implemented. It is worth to notice that, 
with only this control algorithm, the shunt converter does not 
provide active filtering. In this case, the shunt converter can 
be considered as an active rectifier. Based on the dc-link 
voltage (vDC), the control signal pReg is determined as 
described as follows: 

)
s

k
(k)v(vp i_dc

p_dcDCRefgRe  . (1) 

The control signal pReg can be understood as an amount of 
energy, per time unit, that is drained or injected by the shunt 
converter in order to keep the dc-link voltage regulated. As 
indicated in (1), the control signal vRef corresponds to the 

 
Fig. 1.  Electrical Diagram of the Single-Phase Back-to-Back Converter. 
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Fig. 2.  General control scheme of the algorithms that determine the 
reference signals. 
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reference value of the dc-link voltage, and the control signals 
�p�dc and �i�dc represent, respectively, to the proportional and 
integral gains of the PI-Controller. 

In sequence, the mathematical methodology to determine 
the reference signal iRef is described. Since this algorithm is 
based on the p – q Theory, consider that is necessary to 
determine the reference signals in  coordinates (iRef� , iRef� ) 
as described as follows: 

0
1

22
g

f

f p
pllpll

pllpll
pllplli

i Re

�Re

�Re  , (2) 

where, the signals pll  and pll  are generated by the 
synchronizing circuit. For now, it is assumed that these 
signals are sinusoidal waveforms, with unitary amplitude, and 
are in phase with the fundamental frequency of the control 
signals vS  and vS , respectively. After some simplifications in 
equation (2), iRef�  and iRef�  are given by: 
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(3) 

Indeed, since the control signals pll  and pll  are sinusoids 
with unitary amplitude and pll  leads �0�pll , it can be 
assumed that the sum of their square values is equal to one. 

Based on the Clarke Transformation [13] [14] and 
assuming a “fictitious” three-phase three-wire system, the 
control signal iRef is given by: 

�Re

�Re
Re

f

f
f

i
i

i

23
23

0

21
21

1

3
2

0
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As it can be observed in (4), iRef is only associated with 
iRef� . Combining (3) and (4) the reference signal iRef can be 
determined in a very simple way as described as follows: 

�� ReRe gf pplli
3
2  . (5) 

Based on the aforementioned e�planation, it can be noted 
that the computational effort to determine iRef is directly 
related with the synchronizing circuit and with the PI-
Controller. In sequence, the control algorithm that determines 
the reference voltage vRef is described. 

�. �olt�ge-Reference Algorithm 
As illustrated in Fig. 3, this algorithm presents as inputs the 

signals derived from the source current (iS) in  coordinates 
(iS , iS ), the control signal obtained from the system 
voltage(vS ), plus the signals generated by the synchronizing 
circuit (pll , pll ). In this algorithm there is also a control 
block that determines control voltages with the objective to 
damp resonance phenomena, denominated as “Damping 

Algorithm” block. Indeed, as described in [6], instability 
problems due to the resonance phenomena, involving the 
passive filters and the system impedance, may occur. In order 
to enhance the overall system stability, an au�iliary algorithm 
can be added to the controller of the series converter. In 
sequence, it is described a mathematical methodology, based 
on the p – q Theory, to determine the control signal vS� . 

In a similar way of the presented one in (4) the control 
signals iS  and vS  are determined, respectively, from the 
source current (iS) and system voltage (vS) as described as 
follows: 

�� ii
2
3  

�� vv
2
3  

� 

 

. 

(6) 

The signal iS  is shifted by �0� from iS . The control signals 
iS  and iS , together with to the ones generated by the 
synchronizing circuit (pll , pll ) are applied to calculate the 
real and imaginary powers as described as follows: 

�

�

i
i

pllpll
pllpll

q
p  . (7) 

In sequence, the control signal iS�  is determined according 
to the following equation: 

q
p

pllpll
pllpll

pllpll
i�h

�

�
22

1
0

 , (�) 

where, the powers p�  and ��  corresponds to the oscillating 
components of the real (p) and imaginary (�) powers, and 
they can be obtained through high-pass filters. The direct 
product involving the control signal iS�  by a gain 
denominated as �� results in the harmonic controlled-voltage 
(vS� ). The gain �� can be understood as a resistance only for 
the harmonic components. Further details involving the 
damping algorithm are described in [14]. 

Finally, the reference voltage (vRef) is determined as 
indicated in Fig. 3. � hen vRef is produced by the series 
converter, it is e�pected that power quality problems 
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Fig. 3.  Diagram blocks of the Voltage-Reference Algorithm 
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obser�e� at the s�stem �oltages can be com�ensate�� an�� 
moreo�er� it is e��ecte� that �roblems relate� �ith resonance 
�henomena can be a�oi�e�. �n se��ence are �resente� the 
s�nchroni�ing circ�its aforementione� in section �. 

C. Single-Phase Phase-Locked-Loop (Single-Phase PLL) 
�his s�nchroni�ing circ�it is similar to the one 

im�lemente� to three-�hase s�stems� �ith some 
sim�lifications as intro��ce� in ���. �n Fig. � is ill�strate� the 
single-�hase ��� in  coor�inates. 

As in�icate� in Fig. �� the fee�back signals pll  an� pll  are 
b�ilt �� b� the ��� circ�it� ��st �sing the time integral of 
o�t��t  of the ��-�ontroller. �hese fee�back signals ha�e 
�nit� am�lit��e an� pll  lea�s ��� pll . �he ��� circ�it 
becomes stable onl� if the a�erage com�onent of the 
�fictitio�s� imaginar� �o�er reaches �ero �al�e � 0'q � an� 
has minimi�e� lo�-fre��enc� oscillating �ortions in its 
oscillating com�onent � 'q~ �. �nce the circ�it is stabili�e�� the 
a�erage �al�e of q’ is �ero an�� �ith this� the �hase angle of 
the f�n�amental fre��enc� is reache�. At this con�ition� the 
fee�back signal pll  becomes in �hase �ith the f�n�amental 
com�onent of the control signal vS . F�rther e��lanations 
in�ol�ing this ��� for three-�hase s�stems are �resente� in 
���. 

�ereafter� it follo�s some sim�lation res�lts relate� �ith 
the single-�hase ���. �nitiall�� in this case test� the in��t 
signal corres�on�s to vS = 100 sin ( t + 45º). At t = 2.0 s� the 
�hase angle of the in��t signal is mo�ifie�� s�ch that the 
mo�ifie� in��t signal corres�on�s to vS = 100 sin ( t + 90º). 

�n Fig. �is sho�n the �erformance of the single-�hase ��� 
tracking the in��t signal vS = 100 sin ( t + 45º). �he ��� 
starts at t = 0.1 s. After � c�cles� the control signal pll  tracks 
the in��t signal vS . 

Fig. � ill�strates the control signal pll  tracking the in��t 
signal vS � at the transient �t = 2.0 s� �hen the �hase angle of 
the in��t signal � Ref� is increase� from ��� to ���. As it can 
be seen in Fig. �� at t = 2.07 s� the control signal pll  tracks 
again the in��t signal vS . 

�ase� on these �reliminar� sim�lation res�lts� it can be 
note� the feasibilit� of this s�nchroni�ing circ�it. �t can also 
be seen in literat�re ��� ��� the �erformance of this ��� �n�er 
�orse con�itions than the �resente� ones in this �a�er. 

D. Single – Phase Enhanced PLL 
�n Fig.�� the �ro�ose� algorithm is sho�n as a block 

�iagram of the �nhance� ��� ��� ��� ���. �riginall�� the 
���� com�rises a control loo� to �etermine the am�lit��e� 
an� another control loo� that e�tracts the fre��enc� an� �hase 
angle of the in��t signal. �herefore� �ifferent from the ���� 
the �-��� reall� �etermines the f�n�amental com�onent of 
the in��t signal� �hich one is com�rehen�e� b� its am�lit��e� 
fre��enc� an� �hase angle. 

�nfort�natel�� it is �esire� that the generate� signals b� the 
s�nchroni�ing circ�it �resent constant am�lit��e. �h�s� the 
generate� signals �ro��ce� b� the ���� �Epll � Epll � can not 
be �irectl� �se�. �n Fig. � the single-�hase ���� is sho�n. 
�e�t� it follo�s a brief �escri�tion in�ol�ing the ���� 
str�ct�re �ith the a��lie� mo�ification. 

�he error signal e corres�on�s to the total �ist�rbance 
bet�een the in��t signal vS  an� the generate� one b� the 
���� �Epll �. �he fee�back signals cos ( t) an� sin ( t) are 
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b�ilt �� �sing the time integral of o�t��t  of the ��-
�ontroller. �he ���� circ�it becomes stable onl� if the 
a�erage com�onent of the error signal �e� reaches �ero �al�e. 
�nce this circ�it is stabili�e�� the control signal Epll  tracks 
the in��t signal vS  an�� as a conse��ence� the �hase angle of 
the f�n�amental fre��enc� is reache�. F�rther e��lanations 
in�ol�ing the ���� are �resente� in ���� ����. �n Fig. � an� 
Fig. � are �resente� the sim�lation res�lts �ith the same test 
cases a��lie� to the single-�hase ���. 

�V. ����R�����A� R������ 

�he s�nchroni�ing circ�its �ere im�lemente� on the �e�as 
�nstr�ments ���3��F����F D�� micro�rocessor. For 
memor� re��irements assessment� �ariables si�e �as 
meas�re�. �n �able �� the �ariables n�mber an� si�e are 
sho�n an� total memor� s�ace �eman�e� for each 
s�nchroni�ing circ�it is calc�late�. 

�A��� � 
�����R������� ��R���� ����R� R����R������ 

Memory Space 
Type 

Single-Phase PLL Enhanced PLL 
double (4 x 32) 128 bits (6 x 32) 192 bits 
long int (14 x 32 ) 448 bits (17 x 32) 672 bits 
long int array (640 x 32) 20480 bits - 
TOTAL 21096 bits 864 bits 

The system voltage is sampled 640 times each grid period. 
These instantaneous values are stored in a 640 position array, 
which is used to create the 90° shifted signal used in the 
Single-Phase PLL. This causes the Single-Phase PLL 

memory requirements to be wider than the EPLL. Given the 
vast amount of memory available in the selected 
microprocessor, this matter has a small importance. 

The processing speed of each synchronizing circuits was 
also measured. This was made by counting the system clock 
cycles of the synchronizing circuit routine. The all control 
system has a 31.25 s available processing time, actuating 
640 times by grid cycle. The DSP TMS320F2812F system 
clock frequency was set at 135MHz. The EPLL 
synchronizing circuit takes 2197 system clock cycles, which 
corresponds to 16.27 s. It occupies 52% of the control 
system routine available time. The Three-Phase Adapted PLL 
takes 1511 system clock cycles, 11.19 s, which corresponds 
to 35.8% of the available processing time. 

To evaluate performance characteristics, the Series Active 
Conditioner was set to compensate the load voltage 
distortion. For each proposed algorithm, the load voltage (vL) 
presents a 7.9% THD, and a RMS value of 102.2V before 
compensation. In Fig. 10 is shown the systems voltages and 
currents when the Conditioner starts with the Single-Phase 
PLL. vL THD drops to 2.1%, and the RMS value rises to 
114.3 V. In Fig. 11 is showed the same transient, being the 
EPLL the synchronizing circuit. vL THD drops to 2.1% and 
RMS value is of 114.3 V. The two synchronizing circuits 
present the same behavior in this transient analysis. In both 
cases it can be seen that iS rises, in order to regulate the DC 
link voltage. 

Another transient was applied to the system. It consisted in 
closing contactor C1 (see Fig. 1,) thus connecting the shunt 
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Fig. 8.  Performance of the single-phase EPLL to track the input signal (vS ). 
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rectifier to the system, with the series converter turned on. 
This action would degrade vL THD to 8.8%, and the RMS 
value to 99.7V if there was no compensation. In Fig. 12 can 
be seen the system voltages and currents when the rectifier is 
connected with the Conditioner already compensating, with 
the Single-Phase PLL algorithm. It can be seen that vS 
becomes more distorted, but vL maintains a low THD. It is of 
1.8% and the RMS voltage is at 115 V. The same values 
where obtained when the same transient was applied to the 
system with the Conditioner compensating using the EPLL 
algorithm. This can be seen in Fig. 13. Since the distortion in 
vL increases, the series converter has to in�ect more power in 
order to compensate it. This forces the shunt power converter 
of the Conditioner to drain more power to regulate the DC 
link. Thus, an increased system current (iS) is also observed. 
Also, the compensated vL. THD is improved when compared 
with the first analysis. This is due to the increasing of vref that 
leads to a better modulation index of the series power 
converter. 

V. CO�CL�SIO�S 

A comparison between to synchronizing circuits for the 
control algorithm of a Series Active Converter is made in this 
paper. 

The Single-Phase PLL presents higher memory 
requirements. �ut given the vast amount of memory available 
in the selected microprocessor, this matter has a relative 
importance. His synchronizing circuit, however, presents 

higher speed performance. In a real time processing control 
system, this is an important advantage, since it releases time 
for other processing routines. In this particular, the Single-
Phase PLL can overtake the Enhanced PLL. Even though the 
EPLL uses less memory resources, its processing time is 
long. Thus, one can conclude that the Single-Phase PLL is 
more suited for real time processing systems such as the one 
presented in this paper. 

Experimental results also showed that the compensated 
load voltage (vL) delivered to the load is in accordance with 
international standards that regulate harmonic distortion and 
RMS value. These standards are CEI 61000 and A�SI�IEEE 
519 � 1992 for harmonics. For RMS value, the standard taken 
in account is A�SI�IEEE 519 � 1992, that describes power 
quality problems. This was seen on both synchronizing 
circuits. 
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Fig. 12.  Series Active Conditioner with Single-Phase PLL under the
connection of the shunt rectifier. Dot line marks the connection of the
rectifier. 
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Fig. 13.  Series Active Conditioner with Single-Phase PLL under the
connection of the shunt rectifier. Dot line marks the connection of the
rectifier. 
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