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The implantation of biomaterials may elicit a host response to this foreign body, and the magnitude of
that reaction depends on the host and on the implanted material. The aim of this study was to compare
the inflammatory response induced by the implantation of starch-based (SPCL) scaffolds in two implan-
tation rat models: subcutaneous (SC) and intramuscular (IM). Moreover, two methodologies, wet spin-
ning (WS) and fibre-bonding (FB), were used to prepare the scaffolds. The short-term inflammatory/
immune host reaction was assessed by SC and IM implantations in rats after 1 and 2 weeks, and the
long-term host response was addressed after 8 and 12 weeks of SC implantation of both types of SPCL
scaffolds in rats. After each time period, the scaffolds, surrounding tissue and nearby lymph nodes were
explanted, and used for histological analysis and molecular biology evaluation. The results showed that
SPCL-WS scaffolds seem to induce a slight lower inflammatory/immune reaction in both types of implan-
tation models. Nonetheless, comparing the two models, the IM implantation resulted in a slightly higher
inflammatory response than the SC implantation with early activation of the lymph nodes. The overall
data suggests a good integration of the materials in the host, independently of the tissue location with
a normal progress of the reaction for all the conditions.

� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The constant development of biomaterials in the field of tissue
engineering (TE) is an attempt to meet the rising demands of new
tissue replacement/regeneration strategies. However, the increas-
ing complexity of the TE devices, comprising cells [1–6] and/or
bioactive agents [7–10] within 3-D scaffolding structures, involves
additional concerns regarding adverse host reactions to the implant-
able constructs [11]. A considerable number of studies [12–17] have
demonstrated that the immunomodulatory properties of mesen-
chymal stem cells obtained from different sources seem to circum-
vent a potential host rejection of the transplanted cells.

The incorporation of foreign growth factors, eventually consid-
ered as immunogenic, in TE constructs is nowadays a recurrent
approach as researchers have concentrated on recombinant tech-
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nology to produce recombinant bioactive molecules [8,9,18],
which play a key role in tissue regeneration.

It seems that, despite all the investment in the research on stem
cell technology, as well as in the identification of key mediators in
the inflammation/immune reaction and differentiation pathways
in the field of TE, the role of scaffolds, as simple supports, in the
specific host reaction has been neglected. Natural-origin biomate-
rials have been considered for many years as a way to improve, in
comparison to synthetic polymers, in vivo biofunctionality and to
modulate/avoid a harmful host response due to their similarities
with biological molecules. Starch-based scaffolds, processed using
several methodologies aiming at a range of TE applications
[19–26], have demonstrated great potential in this field. Very
promising results for bone tissue regeneration have in particular
been obtained with a blend of starch and polycaprolactone (SPCL)
[20–23,25,27–30]. SPCL scaffolds, with adequate physicochemical
and mechanical properties for bone TE [19,22] and adequate degra-
dability rate [24,25,31], have been shown to support mesenchymal
stem cell growth and differentiation [19,20], and to be excellent
supporting structures for endothelial cells [22,23,32,33]. However,
a lacuna is still present concerning the in vivo reaction of SPCL-
based scaffolds. A systematic study was carried out using two
ll rights reserved.
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different rat implantation models, subcutaneous (SC) and intra-
muscular (IM). The aim of the study was (i) to understand the tis-
sue reaction to two SPCL-based scaffolds produced by different
methodologies, wet spinning [26] and fibre-bonding [22], for both
short- and long-term implantation periods; and (ii) to identify
eventual differences between the two models in terms of inflam-
matory/immune response elicited by the two different forms of
SPCL-based scaffolds.
2. Materials and methods

2.1. Materials

Starch-based scaffolds of SPCL were produced from a blend of
starch with b-polycaprolactone (30:70%), by two different method-
ologies described elsewhere: wet spinning (SPCL-WS) [26] and
fibre-bonding (SPCL-FB) [22]. Briefly, for the production of
SPCL-WS scaffolds, the polymer was dissolved in chloroform at a
concentration of 40% (w/v) in order to obtain a polymer solution
with proper viscosity. The polymer solution was loaded into a syr-
inge, which was placed in a syringe pump (World Precision Instru-
ments, UK) and a certain amount of polymer solution was
subsequently extruded into a methanol coagulation solution. The
fibre mesh structure was formed during the processing by the ran-
dom movement of the precipitation container. The formed scaf-
folds were then dried overnight at room temperature to allow
any remaining solvents to evaporate. For the fabrication of the
SPCL-FB scaffolds, fibre-meshes previously obtained by a melt-
spinning methodology were placed in a glass mould and heated
in an oven at 150 �C. Immediately after removing the moulds from
the oven, the fibres were slightly compressed by a Teflon cylinder
and then cooled at �15 �C. All samples were cut into discs of 5 mm
diameter and approximately 1 mm thickness and sterilized by a
standard procedure with ethylene oxide [34].
Table 1
Forward and reverse sequences of the genes detected by RT-PCR on rat samples.

Function Gene Sequences Tm

(�C)
Bp

Housekeeping gene GAPDH Sense—
GGTGATGCTGGTGCTGAGTA

59.4 81

Antisense—
GGATGCAGGGATGATGTTCT

57.3

Pro-inflammatory IL-18 Sense—
AGATGTGGAACTGGCAGAGG

59.4 220

Antisense—
CCCATTTGGGAACTTCTCCT

57.3

IL-1a Sense—
GCAAAGCCTAGTGGAACCAG

59.4 244

Antisense—
GCAGAAGGTGCACAGTGAGA

59.4

Anti-inflammatory IL-10 Sense—
GAATTCCCTGGGAGAGAAGC

59.4 219

Antisense—
CCGGGTGGTTCAATTTTTCAT

55.9
2.2. Intramuscular implantation

Six male Sprague–Dawley rats weighing between 380 and 400 g
(three for each implantation time period of 1 and 2 weeks) were
used. Each animal was anaesthetized with an IM injection of
90 mg kg�1 ketamine hydrochloride and 5 mg kg�1 xylazine hydro-
chloride. After shaving and disinfecting the back of the animals,
four paravertebral skin incisions, of approximately 2 cm, contain-
ing the subcutis and the panniculus carnosus, at the level of the left
and right scalenus dorsalis and gluteus muscles, respectively, were
performed under sterile surgical conditions. An incision of the fas-
cia of the muscles was performed and craniolateral oriented mus-
cle-pockets were created by blunt dissection. After introducing the
scaffolds (four scaffolds per animal), previously kept in a sterile
saline solution, the fascia, the panniculus carnosus and finally the
skin were carefully sutured. The animals were kept in single cages
with food and water ad libitum throughout the time of implanta-
tion. During the first week, the animals received daily 200 lg g�1

body weight of metamizole sodium in their drinking water.

IL-13 Sense—

ATCGAGGAGCTGAGCAACAT
57.3 189

Antisense—
CGAGGCCTTTTGGTTACAGA

57.3

IFN-c Sense—
GCCCTCTCTGGCTGTTACTG

61.4 221

Antisense—
CTGATGGCCTGGTTGTCTTT

57.3

MHC
class II

Sense—
TCCCAGATACACAGCAGCAG

59.4 320

Antisense—
CATGCGAAGGTTCTCCAGTT

57.3
2.3. Subcutaneous implantation

Six male Sprague–Dawley rats weighing between 350 and 380 g
(three for each implantation time period of 1 and 2 weeks), were
used. Each test animal was anaesthetized with an IM injection of
90 mg kg�1 ketamine hydrochloride and 5 mg kg�1 xylazine hydro-
chloride and two medial and rostral incisions of approximately
2 cm containing the subcutis and the panniculus carnosus were
performed in the dorsum of the rats. Craniolateral oriented pockets
(two per incision) were subcutaneously created by blunt dissec-
tion. The scaffolds (four scaffolds per animal), previously kept in
a sterile saline solution, were introduced into the pockets and
the panniculus carnosus and the skin were carefully sutured. The
animals were kept in single cages with food and water ad libitum
during all time of implantation. During the first week, the animals
received daily 200 lg g�1 of body weight of metamizole sodium in
their drinking water.

For the long-term reaction, six male Sprague–Dawley rats
(three for each implantation time period of 8 and 12 weeks),
weighing between 280 and 340 g were used for the SC implanta-
tion of the SPCL scaffolds. The surgical procedure followed was
the same as described mentioned for the IM implantation.
2.4. Post-implantation analysis

At the end point times (1, 2, 8 and 12 weeks), each animal was
IM anaesthetized as described above and killed with an intracardial
overdose of 90 mg kg�1 ketamine hydrochloride and 5 mg kg�1

xylazine hydrochloride. From each animal the four implanted scaf-
folds and surrounding tissue, as well as the axillary and inguinal
lymph nodes, were explanted. The explanted samples were either
fixed in 3.7% formalin for histological evaluation, or frozen for pos-
terior molecular biology analysis. The histological analysis of cross-
section samples was performed after haematoxylin and eosin (HE),
and Masson Goldner Trichrome (MGT) staining and immunohisto-
chemistry using a monoclonal mouse anti-human CD3 antibody
(Dako, Denmark) with cross-reactivity for rat T lymphocytes, a
monoclonal mouse anti-rat CD18 antibody (Serotec, UK) for the
integrin b2 chain of recruited leukocytes, and a monoclonal mouse
anti-human phosphoinositide 3-Kinase (Pi3K) antibody (BD, Bel-
gium) with cross-reactivity for rat activated and proliferating lym-
phocytes, following standard protocols. Reverse transcriptase
polymerase chain reaction (RT-PCR) to detect the expression of
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IL-1a, IL-18, IL-10, IL-13, IFN-c and MHC class II genes was carried
out. The detailed description of the genes is summarized in Table 1.
Image analysis of the histological sections of the 8 and 12 week
explants, considering the scaffold and the inflammation areas,
was performed with Olympus CellP software (Olympus, Belgium)
and using an Olympus BX61 microscope (Olympus, Belgium). The
methodology to create the areas of interest was followed according
to the software instructions.
2.5. Statistical analysis

Mean values and standard deviations are reported for the mea-
surements [35] of the scaffold and the surrounding inflammation
areas. Data was analysed by a single-factor ANOVA test and the sig-
nificance value was set at P < 0.05.
3. Results

3.1. Intramuscular implantation

Macroscopic signs of inflammation, infection or swelling were
absent after 1 and 2 weeks of IM implantation of the different
types of SPCL scaffolds.

The histological analysis of the explanted materials and respec-
tive surrounding tissue revealed the absence of oedema and necro-
sis both at 1 and 2 weeks of implantation (Fig. 1A, C, E and G). After
the first week of IM implantation of SPCL-FB scaffolds, the inflam-
matory infiltrate around the scaffold fibres (Fig. 1A) mainly com-
prised polymorphonuclear neutrophils (PMNs), characterized by
their multilobular nuclei. The presence of recruited leukocytes,
CD18-positive cells, was confirmed by immunohistochemistry
using the specific marker of b2 integrin (Fig. 2A). The analysis
carried out for the SPCL-WS scaffolds implanted IM seemed to indi-
cate a reduction in the amount of inflammatory infiltrate (Fig. 1C)
in comparison to what was observed for the SPCL-FB (Fig. 1A),
although PMNs were also present at the surrounding area of the
scaffold’s fibres (Fig. 2C). At this early stage of implantation it
was noticed that, for both SPCL-WS and SPCL-FB scaffolds, some
collagen network started to be deposited between the scaffold’s fi-
bres, as shown by MGT staining (Fig. 1B and D).

After the second week of implantation, the nature of the ob-
served inflammatory infiltrate in the tissue surrounding the
SPCL-FB scaffolds implanted IM was different than the observed
at the first week of implantation. Mononuclear cells (Fig. 1E),
namely T lymphocytes, as indicated by their positivity in the CD3
marker (Fig. 2E), were predominant. Similarly, T lymphocytes were
also present in the tissue surrounding the SPCL-WS fibres (Fig. 2G).
Additionally, some foreign body giant cells (FBGCs) appeared at the
fibre interfaces of both the SPCL-WS and the SPCL-FB scaffolds
(Fig. 1E and G). In comparison to the first week of implantation,
a denser network of collagen fibres was also observed 2 weeks
after the IM implantation of both types of SPCL scaffolds (Fig. 1F
and H). After 2 weeks of implantation, a significant amount of
blood vessels was also observed within the tissue surrounding
the fibres of both SPCL scaffolds (Fig. 1E–H).

In order to evaluate an eventual systemic host response to the
intramuscular implantation of the different types of SPCL scaffolds,
the axillary and inguinal lymph nodes were analysed. The general
structure of the lymph nodes, assessed after HE staining, revealed
the presence of germinal centres (lighter area), populated mainly
with activated B lymphocytes, and some plasma cells (Fig. 3A
and C) in the cortex of the nodes after 1 week of implantation of
both SPCL scaffolds. Additionally, denser areas surrounding the
germinal centres comprehending lymphocytes, which are charac-
terized by the intense blue nuclei staining (Fig. 3A and C), were ob-
served. A specific assessment of cell proliferation was carried out
by tracking the signal transduction molecule PI3K. Very few cells
were positive for PI3K after 1 week of IM implantation of both
types of SPCL scaffolds. After the second week of implantation,
the explanted lymph nodes still revealed the presence of germinal
centres, with no differences between the two different types of
scaffolds (Fig. 3E and G). The immunolabelling of PI3K showed a
low number of positive cells for the SPCL-FB scaffolds and no label-
ling for the SPCL-WS scaffolds (Fig. 3F and H).

The molecular biology analysis for specific genes of inflamma-
tion showed that, both after 1 and 2 weeks, the IM implantation
of SPCL-WS and SPCL-FB induced the expression of the inflamma-
tory cytokines IL-18 and IL-1a (Table 2), as well as the anti-inflam-
matory cytokines IL-10 (Fig. 8 and Table 2) and IFN-c (Table 2). In
the same manner, MHC class II was also expressed at both time
periods of implantation and for the different types of SPCL scaffolds
(Table 2). The other anti-inflammatory cytokine, IL-13, was ex-
pressed in all conditions tested except after 2 weeks of implanta-
tion of the SPCL-FB scaffolds (Table 2).

3.2. Subcutaneous implantation

Macroscopic signs of inflammation, infection or swelling were
absent at the end points of the subcutaneous implantation of the
SPCL-WS and SPCL-FB scaffolds. The nonexistence of oedema and
necrosis was also histologically confirmed (Fig. 4A, C, E and G)
for all conditions. A moderate inflammatory infiltrate, essentially
characterized by the presence of PMNs (Fig. 4A and C), was ob-
served 1 week after subcutaneous implantation of both SPCL-WS
and SPCL-FB scaffolds. However, the intensity of the observed
inflammation appeared to be diminished in comparison to what
was observed in the first week of IM implantation, in particular
for the SPCL-FB scaffold (Fig. 4A and C and Fig. 1A and C). CD18
immunodetection confirmed the presence of mainly recruited
PMNs, also identified by the multilobulated shape of the nuclei,
after the first week of subcutaneous implantation of both types
of SPCL scaffolds (Fig. 5A and C). Similarly to what was observed
for the IM implantation of SPCL scaffolds, after 1 week of reaction,
a collagen network had begun to be deposited between the scaf-
fold’s fibres, although at an apparent lower density (Fig. 4B and D).

Two weeks after SC implantation of the SPCL scaffolds, the nat-
ure of the inflammatory infiltrate changed in comparison to the
first week of implantation. Some mononuclear cells and FBGCs
were observed in the vicinity of the scaffold’s fibres (Fig. 4E and
G). This tendency was observed for both SPCL-WS and SPCL-FB
scaffolds, although the FBGC density seemed to be greater at the
SPCL-FB scaffold’s interface (Fig. 4G). Mononuclear cells were con-
firmed to be essentially T lymphocytes, positive for the CD3 mar-
ker, both in SPCL-WS and SPCL-FB (Fig. 5E and G). After 2 weeks,
a considerable amount of blood vessels was observed within the
tissue surrounding the fibres of the SC implanted scaffolds. As for
the IM implantation, the collagen network became more organized
(Fig. 4F and H) on the outline of the fibres 2 weeks after the SC
implantation of both types of SPCL scaffolds.

In terms of systemic reaction, the overall observation of the
lymph node structures revealed that, 1 week after SC implantation
of both SPCL-WS and SPCL-FB, germinal centres (lighter area) were
present in the cortex of the nodes (Fig. 6A and C). Compared to the
IM implantation of SPCL scaffolds, denser areas surrounding the
germinal centres of the lymph nodes containing lymphocytes
(Fig. 6A and C) were also observed. PI3K was not detected in the
lymph nodes of the animals with SPCL-WS SC implanted for 1 week
(Fig. 6D). Although positively labelled for the SPCL-FB, only few
PI3K-positive cells were observed in the first week of SC implanta-
tion (Fig. 6B). Two weeks after implantation, the explanted lymph
nodes still revealed the presence of germinal centres, with no



Fig. 1. Micrographs of the sections of the explanted fibre-bonding and wet-spinning produced starch-based scaffolds, after 1 (A–D) and 2 (E–H) weeks of IM implantation in
rats. Tissue was stained with HE (A, C, E and G) and MGT (B, D, F and G). � represents the SPCL scaffold fibres. Inflammatory cells are marked with arrowheads, collagen fibres
with arrows and blood vessels with dashed arrows.
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differences between the animals implanted with the two types of
scaffolds (Fig. 6E and G). Again, the PI3K signal was only present
in a small number of cells in the nodes of the animals with both
types of SPCL scaffolds implanted for 2 weeks (Fig. 6F and H).



Fig. 2. Micrographs of the sections of the explanted FB and WS produced starch-based scaffolds after 1 (A–D) and 2 (E–H) weeks of IM implantation in rats. Tissue was
immunohistochemically labelled for CD18 and CD3. � represents the SPCL scaffold fibres, arrows mark CD18-positive cells and dashed arrows mark CD3-positive cells.
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The evaluation of a long-term host response to the implantation
of SPCL-FB and SPCL-WS scaffolds was performed after 8 and
12 weeks of SC implantation.
The macroscopic features observed at these time points were
similar to the ones found for the short-term implantation periods.
In fact, the implantation sites did not show visible signs of inflam-



Fig. 3. Micrographs of the sections of the explanted lymph nodes, after 1 (A–D) and 2 (E–H) weeks of IM implantation in rats. Tissue was stained with HE (A, C, E and G) and
immunohistochemically labelled for Pi3K (B, D, F and G). Arrows indicate positive labelled cells for the PI3K transduction factor.
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mation, infection or swelling. At 8 weeks of implantation the histo-
logical observation revealed a similar reaction for both SPCL scaf-
folds (Fig. 7A and C). At this time point, the inflammatory
infiltrate was reduced in comparison to the short-term SC implan-



Table 2
Presence (+) or absence (�) of expression of the genes detected by RT-PCR on rat
samples.

GAPDH IL-18 IL-1a IL-10 IL-13 IFN-c MHC II

7D–SC– WS + � + � � � �
7D–SC–FB + � + � � � �
7D–IM–WS + + + + � + +
7D–IM–FB + + + + � + +
14D–SC–WS + � + � � � �

+
14D–SC–FB + � + � � � �
14D–IM–WS + + + + � + +
14D–IM–FB + + + + + + +
8W–SC–WS + � + + + + +
8W–SC–FB + + + + + + +

+ � �
12W–SC–WS + � + + + + +

�
12W–SC–FB + � + � + � �

+ +
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tation time periods (1 and 2 weeks). No significant differences
were observed between 8 and 12 weeks of implantation of the
two types of SPCL scaffolds (Fig. 7A, C, E and G).

The results obtained for the quantification of inflammation
around the two types of SPCL scaffolds were identical (data not
shown), and therefore only the results for the SPCL-WS scaffolds
are described. The SPCL-WS scaffolds occupied an area which did
not vary significantly from 8 to 12 weeks of implantation (Fig. 9).
At 8 weeks of SC implantation the area of the inflammatory infil-
trate was significantly lower than the area of the scaffolds
(Fig. 9). However, the inflammation area notably increased from
8 to 12 weeks (Fig. 9) of implantation. Additionally, the inflamma-
tion area at 12 weeks of implantation was significantly higher
compared with the area occupied by the implanted SPCL-WS scaf-
folds (Fig. 9).

Concerning the molecular expression of specific genes of
inflammation, the SC implantation of both SPCL-WS and SPCL-FB
scaffolds induced the expression of IL-1a, but not IL-18, both at 1
and 2 weeks of implantation (Table 2). Regarding the anti-inflam-
matory cytokines IL-10, IL-13, IFN-c and MHC class II, none of
the tested conditions induced their expression. An exception was
observed for the implantation of SPCL-WS for 2 weeks, which
showed MHC II expression in half of the samples (Fig. 8 and Table
2).

In the long-term host reaction, the molecular biology analysis
showed that the inflammatory marker IL-1a was expressed at both
8 and 12 weeks of subcutaneous implantation of SPCL-WS and
SPCL-FB scaffolds. Conversely IL-18 was not expressed under any
conditions, except for the SPCL-FB implanted for 8 weeks (Table
2). It was expected that a long-term implantation reaction would
result in a pro-wound healing pattern of cytokines, although this
was not observed. Thus, after 8 weeks of SC implantation, both
types of SPCL scaffolds induced the expression of IL-10, IL-13,
IFN-c and MHC II, although half of the SPCL-FB samples did not in-
duce the expression of IL-13 and IFN-c (Fig. 8 and Table 2). When
SPCL-WS was implanted for 12 weeks, all the anti-inflammatory
cytokines tested were expressed, albeit IFN-c was not expressed
in half of the samples (Table 2). For the same time of implantation,
the SPCL-FB scaffolds induced expression of IL-13 in all samples,
but IFN-c and MHC II in only half of the samples (Table 2). On
the contrary, IL-10 was not expressed after 12 weeks of SPCL-FB
implantation (Fig. 8 and Table 2).
4. Discussion

In vivo studies with scaffolds intended for TE application are
generally carried out with 3-D structures seeded, or not, with cells
and with the addition of growth factors [11], in order to assess the
role of the construct in the regeneration of a specific tissue; such
studies are not aimed at addressing the host reaction. This research
aimed to stress the influence and the relevance of the support
material over the host reaction to an implanted TE construct, by
addressing the responses elicited by the implantation of two differ-
ent types of SPCL scaffolds.

Microscopically, SC implantation, considering the first two time
periods, acute and onset of chronic inflammation, respectively,
showed a slightly lower inflammatory reaction in comparison to
IM implantation of both types of SPCL scaffolds. However, when
the SPCL scaffolds were SC implanted for longer periods, the im-
plant was perfectly integrated into the host tissue and the inflam-
matory process was resolving. In fact, the histological analysis at 8
and 12 weeks after SC implantation showed the absence of fibrotic
capsule, lower amounts of FBGCs and a total inflammation area
that was not significant in comparison to the area occupied by
the scaffolds.

The presented results indicate that IM implantation of biomate-
rials may be considered a more reactive implantation model to
evaluate biomaterial–host interaction in terms of inflammatory/
immune response, since the SC implantation showed a slightly
lower inflammatory/immune reaction to the SPCL scaffolds.

The present work showed that SPCL scaffolds induced the
expression of IL-18 when IM implanted both for 7 and 14 days. This
means that macrophages are activated at the implantation site [36].
The present results revealed a associated expression of IL-18 and
IFN-c, which is in accordance with a previous report demonstrating
that IL-18 acts in T lymphocytes to induce the production of IFN-c
[36], specifically at the second week of implantation. Conversely,
the SC implantation of the SPCL scaffolds did not induce IL-18
expression and subsequent up-regulation of IFN-c secretion by T
lymphocytes. This may indicate that the inflammatory process is
being resolved with PMN apoptosis following activation [37]. How-
ever, IL-1a is expressed at all times of implantation and in both
implantation models. It is well known that, in the early stage of
inflammation, IL-1a is expressed by macrophages and endothelial
cells, which thus stimulate activation of B and T lymphocytes, and
at latter inflammation phase is secreted by dendritic cells and B
lymphocytes [36]. These phenomena explain the detection of IL-
1a at an early stage expressed by macrophages and at a later stage
secreted by B lymphocytes and dendritic cells. Beezhold and Lause
[38] demonstrated that macrophage interaction with fibronectin
can lead to an increased release of IL-1 cytokines and increased
IL-1 mRNA expression. This may also be a reason for the constant
presence of IL-1a throughout all the implantation periods, indi-
cated that macrophages were in contact with the fibronectin depos-
ited on the SPCL scaffold surface [28,39].

In the present work, IL-10 was expressed at 7 and 14 days of IM
implantation, as well as at 8 weeks of SC implantation. Since IL-10
is secreted by TH2 lymphocytes and acts on antigen-presenting
cells (APCs) by down-regulating MHC class II expression [36], our
results showing the simultaneous expression of IL-10 and MHC
class II were not expected. A possible reason for the observed
expression patterns of the MHC class II encoding genes is the close
correlation with IFN-c expression, since it was previously reported
that the inhibition of IFN-c coincides with MCH class II inhibition
[40].

With longer implantation periods, SPCL scaffolds induced the
expression of IL-13, an important regulator of inflammation and
a pro-wound cytokine [36]. This occurred as expected [41] and
indicates that the surface chemistry of the SPCL scaffolds does
not inhibit wound healing.

After 8 weeks of SC implantation of the SPCL scaffolds, the dif-
ferences observed for the two different types of scaffolds were neg-
ligible, indicating that resolution of inflammation took place with



Fig. 4. Micrographs of the sections of the explanted FB and WS produced starch-based scaffolds, after 1 (A–D) and 2 (E–H) weeks of SC implantation in rats. Tissue was
stained with HE (A, C, E and G) and MGT (B, D, F and G). � represents the SPCL scaffold fibres. Inflammatory cells are marked with arrowheads, collagen fibres with arrows and
blood vessels with dashed arrows.
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the integration of the scaffolds in the host tissue. At week 12 after
implantation, the induced cytokine expression profile was typical
of chronic inflammatory process and normal progress of inflamma-
tion provoked by the implantation of biodegradable biomaterials,



Fig. 5. Micrographs of the sections of the explanted FB and WS produced starch-based scaffolds after 1 (A–D) and 2 (E–H) weeks of SC implantation in rats. Tissue was
immunohistochemically labelled for CD18 and CD3. � represents the SPCL scaffold fibres, arrows mark CD18-positive cells and dashed arrows mark CD3-positive cells.
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although no fibrotic capsule was histologically observed surround-
ing the fibres of the scaffolds.
The present results show that SPCL scaffolds produced by two
different methodologies, WS [26] and FB [22] do not induce a



Fig. 6. Micrographs of the sections of the explanted lymph nodes, after 1 (A–D) and 2 (E–H) weeks of SC implantation in rats. Tissue was stained with HE (A, C, E and G) and
immunohistochemically labelled for Pi3K (B, D, F and G). Arrows indicate positive labelled cells for the PI3K transduction factor.
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severe soft tissue inflammatory reaction. This could be observed by
the low host reaction detected after SC and IM implantations of
both types of SPCL scaffolds in rats for 1 and 2 weeks. Additionally,
the a long-term implantation in the SC tissue of rats for 8 and



Fig. 7. Micrographs of the sections of the explanted FB and WS produced starch-based scaffolds (A, E, C and G) and nearby lymph nodes (B, F, D and H), after 8 (A–D) and 12
(E–H) weeks of SC implantation in rats. � represents the SPCL scaffold fibres.
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Fig. 9. Areas (mean ± SD) occupied by the SPCL scaffolds and by the inflammatory
infiltrate relatively to the total area, quantified on the micrographs. *Significantly
different at P < 0.05.

Fig. 8. Representative image of the electrophoresis gels reporting the results of the
expression of the genes by RT-PCR. The gel shows the results obtained for the IL-10
gene expression after IM (1–6) and SC (7–13) SPCL scaffold implantation. Column
14 is the negative control and A is the cDNA marker.
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12 weeks showed a good integration of the SPCL scaffolds into the
host tissue and a pro-wound healing cytokine profile expression.
5. Conclusions

The present work demonstrates that SPCL-WS and SPCL-FB scaf-
folds induce a moderate inflammatory reaction after SC and IM
implantations. Nevertheless, SPCL-WS seemed to be less reactive,
particularly when the cytokine profile was evaluated, showing an
early resolution of the inflammatory process compared with the
SPCL-FB scaffolds.

Additionally, it was shown that IM implantation of the same
type of materials induces a slightly more intense inflammatory re-
sponse in comparison to the SC model, which may indicate that IM
implantation is a more sensitive model to address the inflammation
and immune host response to the implantation of a biomaterial.
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Appendix A. Figures with essential colour discrimination

Certain figures in this article, particularly Figures 1–7 are diffi-
cult to interpret in black and white. The full colour images can be
found in the on-line version, at doi:10.1016/j.actbio.2010.06.020.
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