Reaproveitamento de resíduos de borracha de pneus em betões

Eng.ª F. Pacheco Torgal, Doutor em Materiais de Construção, Grupo de Construção Sustentável Unidade de Investigação C-TAC, Universidade do Minho
Eng.ª Said Jalali, Professor Catedrático, Dept. de Eng.ª Civil, Universidade do Minho

Estima-se que anualmente 1.000 milhões de pneus atingem o fim da sua vida útil e que no ano 2030 esse número atinja 5.000 milhões de pneus. Actualmente só uma pequena parte desses resíduos é reciclada, sendo que milhões de pneus são apenas amontoados, colocados em aterro ou enterrados. O presente artigo sintetiza o estado actual dos conhecimentos técnicos e científicos sobre o desempenho dos betões contendo resíduos de borracha de pneus. São objecto de análise a influência dos tratamentos dos resíduos de borracha, a dimensão das partículas da borracha e o volume de substituição de agregados por resíduos de borracha nas propriedades dos betões no estado fresco e endurecido.

Introdução

Os resíduos de pneus representam um problema ambiental de gravidade crescente. Actualmente 1.000 milhões de pneus atingem o fim da sua vida útil a cada ano que passa [1]. Elevadas quantidades de resíduos de pneus são simplesmente amontoadas (Figura 1) em depósitos clandestinos (pneus inteiros) ou depositadas em aterro (pneus triturados), representando 3.000 milhões de pneus na União Europeia e 1.000 milhões nos Estados Unidos [2]. No ano 2030 espera-se que o número de veículos com motor atinja 1.200 milhões, o que implicará a necessidade de reciclar 5.000 milhões/ano. A deposição de pneus em aterro apresenta riscos ambientais consideráveis. Por um lado porque essa opção contribui para a redução das áreas necessárias à preservação da biodiversidade e, por outro, porque estes resíduos contêm compostos tóxicos solúveis. Além disso, e embora os resíduos de pneus sejam de difícil ignição, o risco de que tal aconteça está sempre presente. E assim que os pneus começam a arder devido a causas acidentais há emissão de fumos tóxicos e as temperaturas elevadas provocam a dissolução da borracha gerando óleo que vai contaminar o solo e a água. Nos Estados Unidos (Ohio) um depósito com 25 milhões de pneus, ocupando uma área de 44 hectares, começou a arder em Agosto de 1999 tendo sido necessários 250 bombeiros durante 5 dias para combater o fogo (Figura 2). A implementação da Directiva sobre Aterros 1999/31/EC e a Directiva sobre o fim de vida dos pneus 2000/53/EC vieram proibir a deposição em aterro dos resíduos de pneus forçando a procura de soluções alternativas. Infelizmente, milhões de pneus em fim de vida continuam ainda hoje a ser enterrados em

Figura 1. Depósito de pneus na Califórnia (Fotografia tirada em Dezembro de 2009)

Figura 2. Depósito com 25 milhões de pneus no Ohio: a) Aspecto geral do depósito com indicação dos locais onde houve queima de pneus; b) Imagem da intensidade de libertação de fumos
todo o Planeta. Nalguns países a borracha proveniente dos resíduos de pneus é utilizada para efeitos de pavimentação, contudo o seu volume representa apenas uma pequena parte dos resíduos já existentes. Em Portugal a execução de betões betuminosos com borracha reciclada de pneus tem vindo a crescer desde 1999, data em que a Administração Rodoviária Portuguesa aprovou o uso de misturas com betume modificado com borracha reciclada de pneus. As referidas misturas permitem, em média, o reaproveitamento da borracha de aprox. 4.000 pneus por cada quilómetro de estrada (admitindo uma largura de via de 12m e uma espessura da camada de desgaste de 4cm), havendo registos que apontam para que desde 1999 até 2007 tenham sido reaproveitados em Portugal mais de 1.200.000 pneus para este fim. Uma outra alternativa para o reaproveitamento destes resíduos passa pela sua utilização em recifes artificiais, contudo algumas investigações [3], colocam em causa a validade desta solução. Os resíduos de pneus também podem ser usados para fins energéticos em fomos de unidades produtoras de cimento e, ainda, na produção de um subproduto de baixo valor comercial designado como “carvão negro” ou “negro de fumo”, o qual é obtido através da pirólise dos pneus. Investigações levadas a cabo relativamente à substituição parcial de agregados em betões por partículas de borracha provenientes de pneus reciclados referem que os mesmos apresentam potencial para um desempenho melhorado em termos de tenacidade. Os agregados de borracha reciclada podem ser obtidos usando duas tecnologias distintas: trituração mecânica à temperatura ambiente ou trituração criogénica a uma temperatura inferior à temperatura de transição vítrea, temperatura para a qual a borracha adquire um comportamento frágil. O primeiro processo gera resíduos com um aspecto lascado que podem substituir agregados grossos; já o segundo produz um resíduo com menor dimensão utilizado para substituição da areia. Como a procura de cimento a nível mundial se prevê que cresça dos actuais 3.000 milhões de toneladas para 6.000 milhões (Figura 3), é esperável que o consumo de betão cresça a um ritmo semelhante, o que constitui um fim muito interessante para o reaproveitamento da borracha dos resíduos de pneus.

Propriedades dos betões com resíduos de borracha no estado fresco

Trabalhabilidade

Albano et al. [5] utilizaram agregados de borracha com duas dimensões (0.29mm e 0.59mm) que substituíram por 5% e 10% de areia tendo obtido uma redução de 88% no ensaio de abaiamento. Outros autores [6] usaram agregados de borracha grossos (0.5 e 2mm) e agregados finos (0.05 e 0.7mm) para substituir respectivamente 22.2% e 33.3% dos agregados finos de um betão auto-compactável, tendo observado que a utilização dos agregados reciclados não reduz a trabalhabilidade se a quantidade de superplastificante for aumentada. Batayneh et al. [7] utilizaram agregados de borracha com dimensões (0.075 e 4.75mm) para diversas porcentagens de substituição (20%, 40%, 60% e 100%) tendo observado que o aumento do volume de agregados de borracha reciclada diminui a trabalhabilidade. Topçu & Bilir [8] estudaram o desempenho de betões auto-compactáveis contendo agregados de borracha (dimensão máxima de 4mm) tendo observado que o aumento da quantidade dos agregados de borracha até à 180kg/m³ conduz a um aumento da trabalhabilidade, facto que na opinião daqueles autores se fica a dever à utilização de agentes de viscosidade. Aiello & Leuzzi [9] utilizaram borracha reciclada com dimensões entre 10mm e 25mm (Figura 4) para substituir areia e agregados grossos, juntamente com 1% de superplastificante por massa de cimento tendo observado um aumento da trabalhabilidade com o aumento do volume daqueles. Outros autores [10] utilizaram diferentes volumes de agregados de borracha reciclada (5%, 15% e 25%) conjuntamente com diferentes volumes de superplastificante. Estes autores referem que a mistura com um volume de 25% de agregados reciclados não conseguiu cumprir o abaiamento

Figura 3. Provisão para o consumo de cimento Portland (4)

Figura 4. Agregados de borracha reciclados à saída do processo de trituração (9)
de 750mm ± 50mm mesmo com 4% de superplastificante por massa de cimento. Referem ainda que a utiliza-
cação de cinzas volantes permite reduzir a quantidade de superplastificante nas misturas com elevado volume de agregados de borracha reciclada. Embora a maioria das investigações mostrem que a utilização de agregados de borracha reciclada provocam uma redução da trabalha-
bilidade, alguns autores obtiveram resultados opostos, o que mostra que a trabalhabildade destes betões está muito dependente das características geométricas dos agregados de borracha.

Propriedades dos betões com resíduos de borracha no estado endurecido

Resistência à compressão

A resistência à compressão dos betões com agregados reciclados de borracha decresce com o seu volume, con-
tudo alguns autores [11] referem que ainda assim é pos-
vível produzir um betão com uma resistência de 40MPa e com um volume de agregados de borracha de 15%. Valadares [12] refere que a substituição de um volume de 15% conduz a uma redução da resistência de 50%. Este autor observou que a utilização de borracha de me-
nor dimensão está associada a uma menor redução da resistência e que o processo de produção de borracha (mecânico ou criogênico) não influencia a resistência à compressão. Freitas et al. [13] observaram uma redução da resistência à compressão de 48,3% para um volume de borracha reciclada de 15%. Outros autores [9] referem que a dimensão dos agregados de borracha tem uma influência elevada na resistência à compressão. Quando se utilizam agregados de borracha de maior dimensão a perda de resistência dos betões é quase o dobro relativamente à situação de se utilizarem partículas de menor dimensão. Estes resultados são diferentes dos obtidos por outras investigações [12] e podem estar relacionados com a origem da borracha utilizada em cada caso (carro, camião ou motociclo), sendo que pneus com diferentes origens tem diferentes teores de borracha e diferente composição química o que leva a diferentes níveis de aderência entre a pasta de cimento e os agregados de borracha. Vieira et al. [14] analisou três tipos de agrega-
dos de borracha e três volumes de substituição (2.5%, 5% e 7.5%) tendo observado que o betão com a melhor resistência à compressão continha apenas 2.5% de bor-
rracha reciclada com a dimensão de 2.4mm. A utilização de pré-tratamentos da borracha pode aumentar a sua
aderência à pasta de cimento, como seja por exemplo a utilização de uma solução de 10% NaOH para lavar a superfície da borracha durante 20 minutos. O hidróxido de sódio provoca a remoção do estearato de zinco da superfície da borracha, um aditivo que é responsável pela sua baixa aderência. Segre & Joekes [15] referem que os pré-tratamentos que podem ser usados para o aumento da aderência das partículas de borracha reciclada incluem imersão em meio ácido e o uso de plasma e ainda de substâncias à base de silanos. Outros autores [16] sugerem a utilização de agregados de borracha previamente cobertos com pasta de cimento (Figura 5).

Resistência à tração
Alguns autores [11] analisaram a resistência à tração de betões contendo agregados de borracha reciclada, tendo observado que o aumento do volume destes conduz à redução daquele parâmetro. Os resultados obtidos revelam que a redução da resistência à tração é menos influenciada pelo aumento do volume de agregados de borracha do que a resistência à compressão. Este comportamento parece ficar a dever-se ao facto das partículas de borracha terem um efeito de restrição de abertura das fissuras. Valadares [12] obteve os maiores valores da resistência à tração em betões com partículas de borracha de maior dimensão o que confirma resultados de outros autores. Ganjian et al. [18] referem ter observado um comportamento oposto, sendo que a resistência à tração de betões com agregados grossos de borracha é muito inferior à mesma resistência para betões com agregados de borracha de menor dimensão. No primeiro caso uma substituição de 5 a 10% conduz a uma redução da resistência entre 15 a 30%, já no segundo o mesmo volume provoca uma perda de resistência entre 15 a 30%. Este comportamento pode ter que ver com a baixa aderência entre os agregados de borracha grossos e a pasta de cimento, pelo facto de terem sido cortados com tesoura e apresentarem uma superfície pouco rugosa, um procedimento que é bastante diferente da trituração mecânica que favorece o aparecimento de partículas mais rugosas. De acordo com Aiello & Leuzzi [9] quando se utilizam partículas de borracha reciclada de baixa dimensão para substituir a areia obtém-se betões cuja resistência à tração é muito idêntica à do betão de referência. A substituição de um volume entre 50% ou 75% origina uma redução da resistência de apenas 5,8% ou 7,30%. Contudo se as mesmas percentagens forem utilizadas na substituição de agregados de borracha de maior dimensão a perda de resistência é de quase 30%.

Outros autores [5] analisaram betões contendo agregados de borracha tratados com NaOH e silanos; contudo não observaram diferenças relevantes na comparação com o desempenho de betões com agregados de borracha não tratados. Chou et al. [17] sugere o pré-tratamento dos agregados de borracha com um produto à base de enxofre orgânico referindo que o mesmo pode modificar a superfície da borracha aumentando a aderência à pasta de cimento. As investigações sobre a utilização de agregados de borracha revelam que os mesmos podem provocar a redução da resistência à compressão dos betões. Este comportamento fica a dever-se por um lado à baixa resistência à compressão dos próprios agregados mas, fundamentalmente, à baixa aderência entre estes agregados e a pasta de cimento, havendo vários pré-tratamentos que apresentam potencialidades para ultrapassar esta desvantagem.

Figura 5. Agregados de borracha com 20 mm: a) Normais; b) Cobertos com pasta de cimento [16]

Tenacidade
Os compósitos cimentícios contendo agregados de borracha reciclada apresentam uma elevada tenacidade [19] estando associados a uma capacidade de absorção de energia considerável. A norma ASTM C1018-97 define vários índices de tenacidade (15, 110 e 120), os quais são obtidos através do quociente entre a área abaixo da curva carga/deslocamento num ensaio de flexão após a ocorrência da primeira fissura e a mesma área até à ocorrência dessa fissura. Alguns autores [20] observaram um aumento de 63,2% na capacidade de redução da amplitude das vibrações (amortecimento) de betões contendo 20% de agregados de borracha reciclada. Outros autores [21,22] confirmaram o elevado potencial de amortecimento dos betões com agregados de borracha, o qual está no entanto dependente das dimensões dos agregados. Os mesmos referem que os betões com agregados finos (Figura 6a) apresentam um aumento de 75,3% na capacidade de amortecimento, subindo esse valor para 144% quando se
utilizam agregados grossos de borracha (Figura 6b).

Figura 6. Agregados de borracha reciclada:
a) Moida; b) Triturada [21]

Durabilidade
Como os betões contendo agregados de borracha reciclada apresentam menor resistência à compressão e à tração, é esperável que apresentem menor resistência quando submetidos a ensaios de degradação acelerada. Alguns autores [22] confirmam a premissa através de estudos referindo que betões com aquele tipo de agregados apresentam menor resistência à abrasão e ainda que o aumento do volume de incorporação dos mesmos se traduz numa redução dessa resistência. Freitas et al. [13] analisou a resistência à abrasão em meios imersos, de betões com agregados de borracha, referindo que estes apresentam uma resistência maior comparativamente aos betões de referência, desde que o volume de borracha utilizado não seja superior a 5% em massa. Este resultado é interessante na medida em que esta mistura apresenta uma resistência à compressão que é 30% inferior ao do betão de referência. Esta mistura apresenta no entanto uma resistência à tração obtida no ensaio de compressão diameiral que é apenas 11% inferior ao do betão sem borracha, o que ajuda a compreender a sua elevada resistência à abrasão. Os referidos autores utilizaram esta mistura em obras de reabilitação de uma estrutura de betão de uma barragem. Fioriti et al. [24] analisaram o desempenho de betões contendo entre 8% a 12% de resíduos de granulado de borracha de pneus (60% com d<1,19mm) para produção de blocos de pavê (Figura 7), verificando que os mesmos obtêm uma resistência ao impacto que é quase 300% superior ao do betão de referência.

Figura 7. Blocos de pavê em betão com resíduos de borracha [24]

Ling et al. [25] analisaram 348 blocos para calçada tendo observado que um aumento do volume de agregados de borracha provoca uma redução da resistência à abrasão, recomendando que para aquela aplicação não devem ser usadas misturas com um volume superior a 20%. Topçu & Demir [26] referem que betões com elevado volume de agregados de borracha, com dimensão entre 1 e 4mm, apresentam baixa durabilidade averida em ensaio de gelo-degelo, imersão em água do mar e em ciclos de elevada temperatura. De acordo com estes autores a utilização de betões com um volume de 10% de agregados de borracha só é indicada para regiões com condições climáticas pouco severas. Importau ter em conta que estes autores utilizaram um cimento Portland II/B 32.5 o que poderá explicar os baixos desempenhos observados. Ganjlan et al. [18] estudaram a durabilidade de betões com agregados de borracha através do ensaio de permeabilidade à água (Figura 8), revelando que os betões com uma percentagem de apenas 5% daqueles agregados apresentam um aumento da permeabilidade superiores a 36%. Ainda assim todas as misturas com 5% e 7.5% de agregados de borracha apresentam um nível de permeabilidade inferior a 30mm o que, de acordo com a norma DIN 1048, os classifica como betões de baixa permeabilidade.

Figura 8. Permeabilidade à água em betões com agregados de borracha de pneus [9]
Conclusões

Os resíduos de pneus constituem um grave problema ambiental cuja resolução assume um carácter de urgência. As investigações já realizadas sobre o reaproveitamento de borracha reciclada, proveniente de resíduos de pneus em betões na substituição parcial de agregados de origem mineral, revelam que o comportamento destes materiais é muito influenciado pelo volume e pelas características dos referidos resíduos. Importa, no entanto, ressalvar que os resultados obtidos são muito promissores, pois para além de vantagem ambiental que representa evitar a deposição destes resíduos em aterro, estes betões poderão ver algumas das suas propriedades melhoradas sendo por isso especialmente indicados para regiões sujeitas a um risco sísmico elevado e também para aplicações de materiais submetidos a cargas dinâmicas muito intensas, como aquelas a que estão sujeitas as travessas utilizadas em ferrrovias.

REFERÊNCIAS