
A
m

J
a

b

a

A
R
R
A
A

K
T
P
M
T
E

1

t
u
n
t
i
t
o
t
t
t
b
t
u
m
c
a
T
s
c

0
d

Sensors and Actuators A 161 (2010) 199–204

Contents lists available at ScienceDirect

Sensors and Actuators A: Physical

journa l homepage: www.e lsev ier .com/ locate /sna

planar thermoelectric power generator for integration in wearable
icrosystems

oão Paulo Carmoa,∗, Luis Miguel Goncalvesa, Reinoud F. Wolffenbuttelb, José Higino Correiaa

University of Minho, Dept Industrial Electronics, Campus Azurem, 4800-058 Guimaraes, Portugal
Delft University of Technology, Faculty of EEMCS, Department ME/EI, Mekelweg 4, 2628CD Delft, The Netherlands

r t i c l e i n f o

rticle history:
eceived 9 November 2009
eceived in revised form 26 March 2010
ccepted 13 May 2010
vailable online 26 May 2010

eywords:

a b s t r a c t

A technique for IC-compatible fabrication of a planar (in-plane) thermoelectric (TE) power generator
using a thermopile composed of n-type bismuth telluride (Bi2Te3) and p-type antimony telluride (Sb2Te3)
thin-films is presented. The research demonstrates that the thermal co-evaporation of bismuth/antimony
(Bi/Sb) and telluride (Te) is the most suitable deposition technique. The measurements showed TE per-
formance properties of the deposited thin-films that are comparable to those reported for the same
materials in the bulk form. The measurements showed absolute values of the Seebeck coefficient in

−1
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nergy harvesting

the range 91–248 �V K , an electrical resistivity in the 7.6–39.1 �� m range and a thermal conduction
between 1.3 and 1.8 W m−1 K−1. The best resulting figures-of-merit, ZT, at room temperatures were 0.97
and 0.56 (equivalent to power-factors, PF, of 4.87 × 10−3 and 2.8 × 10−3 W K−1 m−2) for the Bi2Te3 and
Sb2Te3 thin-films, respectively. The IC-compatibility and the dependence of the TE performance on tech-
nological details, such as photolithography and wet etching used for patterning the thin-films have also
been investigated. The converter dimensions for best performance were analysed and a prototype of a

r wa
planar TE power generato

. Introduction

Thermocouples are thermoelectric (TE) devices. Conventional
hermocouples based on metal wires are cheap, reliable and widely
sed for measuring high temperatures. This is the case of fur-
aces, which are widely used in the microelectronic industry. A
hermocouple is a simple electric circuit, formed by two dissim-
lar conductors joined at both ends (i.e. the junctions). Opening
he circuit by cutting one of the wires enables the measurement
f a voltage, which is proportional to the difference in tempera-
ure at the two junctions (the Seebeck effect). Consequently, the
hermocouple can be used to generate a voltage proportional to
emperature difference without the need of any external electrical
ias. A temperature sensor results if one of the junctions is main-
ained at a well-known temperature. The thermocouple can also be
sed as an actuator. Applying an electrical current through the ther-
ocouple allows the transportation of heat from one junction (the

old junction) to the other (the warm junction at ambient temper-

ture). As a result, the cold junction is cooled (the Peltier effect) [1].
he Seebeck effect can be used for both temperature (difference)
ensing and for realising heat engines to convert heat into electri-
al energy. The advantages of TE energy conversion is that moving
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mechanical parts are avoided, which enables high system reliabil-
ity, quiet operation and it is usually environmentally friendly. The
compact and distributed power is a very attractive feature in a wide
range of applications.

However, the TE effect is very inefficient in most materials and
the research into special materials is mandatory for practical use.
The best performance is obtained in the presence of heavily doped
semiconductors, such as the bismuth telluride or the silicon germa-
nium. When using semiconductors, the most desirable situation is
when the base materials are both n- and p-doped, since this allows
the use of essentially the same material system for fabrication of
the two TE legs between the junctions [2]. The selection of materials
and the suitable fabrication technologies are further constraint by
IC-compatibility requirements in the case of TE power generation
in a microsystem, which is the objective of the research presented
in this paper. Additional requirements imposed by the microsys-
tem application are: small size, low weight and thermal isolation
from the substrate [3].

The functional integration of efficient solid-state TE devices and
microelectronic circuits offers many benefits. One is the imple-
mentation of local cooling for thermal stabilisation of an on-chip

reference element or for reducing leakage current in a critical com-
ponent such as a photodetector. Another implementation is in TE
power generation to enable operation of a low-power circuit with-
out external electric power source, such as a battery. Despite the
huge potential of TE self-lowering in autonomous microsystems,

dx.doi.org/10.1016/j.sna.2010.05.010
http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
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nly few approaches to fabricate such microdevices have been
eported up to now [4–7].

Due to its compatibility with IC technology, polycrystalline SiGe
lloys and polycrystalline Si are commonly used in thermopile
pplications. Their use in microcoolers has been investigated; how-
ver, their performance is very low when compared to that of
ellurium compounds, which have been used for many years in
onventional large-area Peltier devices [3]. Tellurium compounds
n-type bismuth telluride, Bi2Te3 and p-type antimony telluride,
b2Te3) are well-established room temperature TE materials and
re widely employed by the industry in conventional TE generators
nd coolers. Several deposition techniques have been investigated
or their suitability for fabricating thin-films materials. The direct
vaporation of the bulk materials for the deposition of Bi2Te3 films
as demonstrated by da Silva to be non-suitable. The large dif-

erences in vapour pressure of bismuth and tellurium resulted in
compositional gradient along the thin-film thickness [8]. Other

echniques explored for the deposition of Bi2Te3 thin-films are the
hermal co-evaporation [9], the electrochemical deposition [10],
he co-sputtering [4], the flash evaporation [11] and the metal-
rganic chemical vapour deposition (MOCVD) [12]. Although all
hese approaches are in principle suitable, the co-evaporation was
sed in this work to obtain both the n-type Bi2Te3 and the p-
ype Sb2Te3 thin-films, because it allows to precisely control the
stequiometry of the deposited thin-film with the lowest costs.
nly the MOCVD is better than the co-evaporation to obtain thin-
lms with good uniformity and with the desired estequiometry.
owever, in order to do the deposition of thin-films by MOCVD, a

eactor chamber is needed. Thus, this process is too expensive and it
equires additional security procedures, when compared with the
o-evaporation [13].

In this work, both the n-type Bi2Te3 and the p-type Sb2Te3 thin-
lms were obtained by co-evaporation, yielding devices with a
E figure-of-merit, ZT, of 0.97 and 0.56, respectively. The Bi2Te3
elected samples showed a Seebeck coefficient in the range
52–248 �V K−1, resistivity of 10.6–16.6 �� m, a thermal con-
uctivity of about 1.3 W m−1 K−1 [14], a carrier concentration
6 × 1019 cm−3 and a Hall mobility from 80 to 120 cm−2 V−1 s−1.
he EDX analysis (Energy-Dispersive X-ray spectroscopy) revealed
he stoichiometric composition of the selected samples. For the
-type thin-films, the best available results (or selected samples)

nclude Seebeck coefficients in the range 91–188 �V K−1, a resistiv-
ty of 7.6–39.1 �� m, a thermal conductivity about 1.7 W m−1 K−1

14], a carrier concentration ≈4 × 1019 cm−3 and a Hall mobility
rom 120 to 170 cm−2 V−1 s−1. These values are similar to the best
alues found in the literature for bulk materials [15]. Since bulk
aterials are used in conventional macro-scale modules, a simi-

ar performance of the microconverter is feasible. The performance
f a TE device depends on the figure-of-merit, ZT, of the material,
hich is given by [3,4,15]:

T = ˛2

��
T (1)

here ˛ is the Seebeck coefficient, � the electrical resistivity, �
he thermal conductivity and T the temperature. Furthermore, the
ower-factor, PF (W K−1 m−2) gives the electric power per unit
ross-sectional area of heat flow at a given temperature gradient
etween the hot and the cold junction. The PF is given by:

F = ˛2

�
(2)
The influence of deposition parameters on the thin-film per-
ormance has been studied in detail. For obtaining data that is
tatistically significant, more than one hundred samples were fabri-
ated. One essential parameter in the fabrication of TE microdevices
s the film-to-substrate adhesion. To investigate this issue, three
Fig. 1. The fabrication steps of TE devices.

different substrate materials have been used: glass, silicon and
polyimide (kapton). However, for actual TE applications, a kap-
ton film was selected as substrate, because of the low thermal
conductivity (0.12 W m−1 K−1). Moreover, the thermal expansion
coefficient (12 × 10−6 K−1) closely matches the thermal expansion
coefficient of the telluride thin-films, thus reducing the residual
stress and increasing the adhesion. The information obtained on sil-
icon and glass is important for MEMS-based TE devices, where the
micromachining is applied for thermal definition of the microstruc-
ture. Flexible substrates enable the integration with many novel
types of devices, however, also introduce complications, such as the
uncommon mechanical properties of the composite film-substrate.

2. Fabrication

Two different approaches can be used for the on-chip integra-
tion of TE devices: the transversal (off-plane or vertical) and the
lateral (in-plane), depending on the direction in which the heat is
transported, relative to the surface of the device. In this work, the
lateral heat flow is addressed, due to its easier fabrication process
and compliance with the planar technology [16]. Fig. 1 shows the
process flow used for fabrication of the TE converters.

A thin-layer of metal (aluminium – Al) is deposited by a direct
current (DC) sputtering on a polyimide substrate. Then, the pat-
terning of the metal layer is done, and the contacts are obtained
(a). Next, the n-type Bi2Te3 thin-film is deposited by thermal co-
evaporation (b). The next step starts with the deposition of a
negative photoresist (PR) layer, followed by an expose to UV (ultra-

violet) light with a mask made of glass and nickel (to block the
UV light) placed between the PR and the UV light source. After
the exposition to the UV light, the UV-protected areas will be
removed during the PR development (c). The n-type elements are
patterned by photolithography (d). The n-type thin-film is etched
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ig. 2. For the system used in the co-evaporation. (a) A schematic of the complete sy
vaporation boats and one of the thickness monitors are visible).

n HNO3 and the p-type Sb2Te3 thin-film is deposited by thermal
o-evaporation (e). A new layer of PR is deposited, exposed to a
V light source and developed (f). The TE layer made of Sb2Te3 is
atterned by wet etching in a HNO3:HCl bath (g) and finally, the
R is removed (h). A protective layer of silicon nitride (Si3N4) can
lso be deposited by low-temperature hotwire chemical vapour
eposition (HW-CVD) and patterned if required by the applica-
ion.

.1. Deposition of thin-films

TE thin-films were fabricated by thermal co-evaporation (see
ig. 2) in a high-vacuum chamber (with a base pressure of
1.33 × 10−4 Pa). Two large molybdenum boats (baffled boxes,
ith a volume of 4 cm3) were used at the same time, one for

ach of the elementary materials required to produce the desired
ompound. The power applied to each boat is controlled indepen-
ently, using two computed proportional-integral derivative (PID)
ontrollers [17] to maintain the deposition rate at user-defined con-
tant values, during the deposition process. Two thickness monitors

quartz crystal oscillators) are carefully placed inside the chamber
n such a way that each of them receives material only from the
oat it is monitoring. A metal sheet is placed between the two boats
o ensure deposition of a material at the respective quartz crystal

ig. 3. Power-factor of Bi2Te3 (top) and Sb2Te3 (bottom) thin-films as a function of
he Te/Bi evaporation flow rate ratio, R, and respective curve fittings (solid lines).
, and (b) a photography showing the inside of the co-evaporation chamber (the two

sensor only. The substrates are heated to the temperature set point
(Tsub) in the range 150–270 ◦C.

The graphs showing the influence of the evaporation rate, R, of
each material on TE properties of the compounds are presented
in Fig. 3. The evaporation flow rate ratio, R = FrTe/FrBi,Sb, is defined
as the amount (in volume of the deposited film) of tellurium (Te)
divided by the amount of bismuth (Bi) – or antimony (Sb) – that
arrives the substrate during deposition. The highest power-factor,
PF, was obtained with a Bi (or Sb) evaporation rate of 2 Å s−1 and a Te
evaporation rate of 6–7 Å s−1, which corresponds to an evaporation
flow rate ratio in the range 3–3.5.

The best values of Tsub for Bi2Te3 and for Sb2Te3 thin-films were
about 270 and 220 ◦C, respectively. Finally, it must be noted that
all thin-films were deposited on a polyimide (kapton) foil with a
thickness of 25 �m. Fig. 4 shows two SEM cross-section and surface
images of both Bi2Te3 and Sb2Te3 thin-films, where their polycrys-
talline structure can be confirmed. Also, the former temperatures
and the optimal evaporation flow rate ratios, R, were those which
resulted in thin-films with larger grain size. This is of major con-
cern, because a crystalline structure with an increased grain size is
less resistive, whose consequence is a thin-film with an increased
TE figures-of-merit, ZT.

2.2. Patterning

TE Bi2Te3 and Sb2Te3 thin-films (1 �m thick) were deposited
on the kapton substrate. The Transene’s PKP negative photoresist
was applied on the surface, and test structures were patterned by
wet etching in the HNO3:HCl:H2O etchant (pure HNO3 and 37% HCl
diluted in water). Fig. 5 shows the influence of the etchant composi-
tion on the etch rates. It was observed that an higher per cent of HCl
(%HCl/%HNO3 > 0.5) induced cracking of the thin-film, whose con-
sequence is the occurrence of peeling. Fig. 6 shows the influence of
etchant dilution (in water) on the etch rate of Bi2Te3 and Sb2Te3
thin-films. For the case of Bi2Te3 thin-films, a dilution above 85%
causes the occurrence of peeling. For dilutions below 65%, the etch-
ing occurred in a too fast manner and the end of the process was
difficult to detect. The best results were obtained with the etchant
composition in the range of 10:0:25 to 10:5:40 HNO3:HCl:H2O.

For the case of Sb2Te3 thin-films, the cracking and peeling of the
thin-film occurred when a high percentage of HCl was presented in
the etchant (%HCl/%HNO3 > 0.5), as it was observed for the Bi2Te3
thin-films. The etch rate of the Sb2Te3 thin-films in diluted HNO3

was about 50 times smaller than the etch rate of Bi2Te3 thin-films
in the same etchant. This is important in terms of the selectivity of
the process in the presence of both materials. The best results were
obtained with the etchant of composition in the range 10:1:20 to
10:6:40 HNO3:HCl:H2O.
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Fig. 4. SEM top view (left) and cross-sectional (right) im
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using the method proposed by Völklein [14], and the values of 1.3
and 1.8 W m−1 K−1 were obtained for the Bi2Te3 and Sb2Te3 thin-
films (which were deposited as conditions to obtain the maximum
power-factor), respectively. The measurements of the Seebeck
coefficient were made by connecting one side of the thin-film to
ig. 5. Etch rate of Bi2Te3 and Sb2Te3 thin-films in (1 − x)HNO3:(x)HCl solution
diluted 70% in water, in volume).

The same solutions for tellurium compounds applied on thin-
−1
lms made of aluminium resulted in etch rates below 0.2 nm s

egardless of the etchant composition. Also, both Bi2Te3 and Sb2Te3
ere slightly etched (<2 nm s−1) by an aluminium etchant (16:1:1:2
hosphoric acid, nitric acid, acetic acid and water). Table 1 presents
ll relevant etch rates.

able 1
ummary of etch rates.

Etchant Material

Bi2Te3 Sb2Te3 Aluminium Nickel

Al-Transene type A 8 Å s−1 5 Å s−1 10–80 Å s−1 <0.1 Å s−1

3HNO3:HCl (dilution 70%
H2O)

2000 Å s−1 800 Å s−1 <2 Å s−1 <0.2 Å s−1

HNO3 (dilution 70% H2O) 2500 Å s−1 50 Å s−1 <0.1 Å s−1 <0.1 Å s−1
ages of Bi2Te3 (top) Sb2Te3 (bottom) thin-films.

Fig. 7 shows a planar TE microconverter, which was fabricated
on top of a 25 �m thickness kapton foil. This microconverter is com-
posed by eight pairs of TE elements and was fabricated with bottom
contacts.

3. Experimental results

The in-plane thin-film electrical resistance was measured using
the conventional four probe van der Pauw method, at the room
temperature. The thermal conductivity (W m−1 K−1) was measured
Fig. 6. Etch rate of Bi2Te3 and Sb2Te3 thin-films in 10:3 HNO3:HCl solution, as a
function of dilution in water (in volume).
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Fig. 7. A photography of a TE microconverter with eight pairs of TE elements, fab-
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Fig. 8. For a sample of a n-type Bi2Te3 thin-film XRD analysis. The peaks agree with
the power diffraction spectrum for Bi2Te3 (doted lines and diamonds).

T
P

T
P

icated with bottom contacts.

fixed temperature (heated metal block) and the other side to a
eat sink at room temperature.

Fig. 8 shows a X-ray diffraction (XRD) spectrum of an optimised
i2Te3 thin-film that reveals its polycrystalline structure. The peaks
gree with the diffractograms for polycrystalline Bi2Te3.

Fig. 9 shows a typical X-ray diffraction spectrum of an optimised
hin-film that also reveals its polycrystalline structure. The peaks
lso agree with the power diffraction spectra for polycrystalline
b2Te3.

Tables 2 and 3 show the results of these measurements in the
elected samples of Bi2Te3 and Sb2Te3 thin-films, as well as the
orresponding figures-of-merit, ZT. These two following tables also
ist the PF for the selected samples of Bi2Te3 and Sb2Te3.

The measurements done in the selected samples showed
n absolute value of the Seebeck coefficient in the range of
1–248 �V K−1. An in-plane electrical resistivity of 7.6–39.1 �� m
as obtained. The measurements for the Bi2Te3 and Sb2Te3

hin-films also revealed figures-of-merit, ZT, at the room temper-

tures of 0.97 and 0.56, and power-factors, PF, of 4.87 × 10−3 and
.81 × 10−3 W K−1 m−2, respectively.

Fig. 9. For a sample of a p-type Sb2Te3 thin-film XRD analysis. The peaks agree with
the powder diffraction spectrum for Sb2Te3 (doted lines and diamonds).

able 2
roperties of the selected Bi2Te3 thin-films.

TF Tsub (◦C) R = FrTe/FrBi/Sb %Te by EDX ˛ (�V K−1) � (�� m) PF (W K−2 m−1) ZT @ 300 K

#1 190 1.70 – −180 16.6 1.95 × 10−3 0.39
#2 230 2.10 62.8 −156 11.3 2.16 × 10−3 0.43
#3 3.10 62.2 −152 13.4 1.72 × 10−3 0.34
#4 240 3.20 59.1 −180 16.6 1.95 × 10−3 0.40
#5 270 3.20 62.0 −248 12.6 4.87 × 10−3 0.97
#6 3.90 – −220 10.6 4.57 × 10−3 0.91

able 3
roperties of the selected Sb2Te3 thin-films.

TF Tsub (◦C) R = FrTe/FrBi/Sb %Te by EDX ˛ (�V K−1) � (�� m) PF (W K−2 m−1) ZT @ 300 K

#1 150 1.47 54.5 91 7.6 1.09 × 10−3 0.22
#2 1.67 61.4 140 14.0 1.40 × 10−3 0.28
#3 180 2.02 59.1 158 30.3 0.82 × 10−3 0.16
#4 2.35 62.4 156 39.1 0.62 × 10−3 0.12
#5 220 2.50 67.3 156 9.2 2.66 × 10−3 0.53
#6 3.18 73.5 188 12.6 2.81 × 10−3 0.56
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. Conclusions

This paper presented an IC-compatible fabrication technology
or thermoelectric (TE) microdevices with high figure-of-merit, ZT.
he deposition of thin-film Bi2Te3 and Sb2Te3 materials was done
y co-evaporation on kapton substrates. The substrates were sub-
itted to temperatures in the 190–270 ◦C range in experiments

erformed to find the best deposition conditions for the Bi2Te3
hin-films. The substrates also were submitted to temperatures in
he range 150–220 ◦C for thin-films made of Sb2Te3. This paper
lso reported the influence of the deposition parameters on the TE
roperties of the thin-films. The thin-films were patterned by wet
tching in HNO3:HCl:H2O and the influence of the etchant com-
osition in the etch rate and pattern quality was measured. The
ptimised wet-etching results (i.e. an etch rate of 100–200 nm s−1

ith high selectivity) were obtained with 10:3:30 HNO3:HCl:H2O.
n etch rate below 0.2 nm s−1 was observed in aluminium thin-
lms, allowing a selectivity higher than 1000. The Bi2Te3 can also
e etched in the 30% HNO3 etchant, with a selectivity higher than
0 as compared to Sb2Te3 thin-films. The wet etching used is an
dvantage of the proposed fabrication technology, because of the
ost advantage when compared with the reactive ion etching (RIE).
oreover, the etching does not impose limits on substrate temper-

ture during the deposition. The kapton substrate can be bonded
o a silicon substrate in a final process step. The IC-compatibility
llows the integration with circuits and makes it an enabling tech-
ology for the realisation of self-powered wearable microsystems,
here the temperature difference between the body temperature

nd ambient temperature provides sufficient energy for scavenging
18].
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