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Abstract

In this paper we identify the sign pattern matrices that occur among
the N–matrices, the P–matrices and the M–matrices. We also address
to the class of inverse M–matrices and the related admissibility of sign
pattern matrices problem.

1 Introduction

In qualitative and combinatorial matrix theory, a methodology based on
the use of combinatorial information such as the signs of the elements of
a matrix is very often useful in the study of some properties of matrices.
A matrix whose entries are chosen from the set {+,−, 0} is called a sign
pattern matrix. A zero pattern is a sign pattern matrix whose entries are all
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equal to 0. Given an n×m real matrix A = (aij), we denote by sign(A) the
sign pattern matrix obtained from A by replacing each one of its positive
entries by + and each one of its negative entries by −. For an n ×m sign
pattern matrix P , we define the sign pattern class C(P ) by

C(P ) =
{
A ∈ Rn×n : sign(A) = P

}
.

A permutation pattern is simply a sign pattern matrix with exactly one
entry in each row and column equal to +, and the remaining entries equal to
0. A product of the form ST PS, where S is a square permutation pattern
and P is a sign pattern matrix of the same order as S, is called a permutation
similarity. A square sign pattern matrix whose entries lying outside the main
diagonal are equal to zero is called a diagonal pattern, and a product of the
form DPD, where D is a diagonal pattern with no zero entries in the main
diagonal and P is a sign pattern matrix of the same order as D, is called
a diagonal similarity. Note that ST PS and DPD are again sign pattern
matrices.

A sign pattern matrix P is said to require a certain property P referring
to real matrices if all real matrices in C(P ) have the property P, and is said
to allow that property P if some real matrix in C(P ) has the property P. In
the literature, one can find, in the last few years, an increasing interest in
problems that arise from the basic question of whether a certain sign pattern
matrix requires (or allows) a certain property (see, for instance, [2], [4], [5]).

In this paper, we shall consider certain classes of real matrices, namely
the class of N–matrices, the class of P–matrices, the class of M–matrices
and, finally, the class of inverse M–matrices. Our aim is to determine which
sign pattern matrices are admissible for each one of these classes of real
matrices. In other words, we shall focus on the question ‘which sign pat-
tern matrices allow the property of belonging to the class of N–matrices
(respectively, P–matrices, M–matrices, inverse M–matrices)?’.

An n× n real matrix A is called an N–matrix if all its principal minors
are negative while A is said to be a P–matrix if all its principal minors
are positive. The class of P–matrices generalizes many important classes
of matrices, such as the M–matrices and inverse M–matrices. Denote by
Zn the set of all square real matrices of order n whose off-diagonal entries
are non-positive. A matrix A is called an M–matrix if A ∈ Zn and A is

2



positive stable. Throughout this paper, M–matrices are not allowed to be
singular. A nonsingular matrix A is said to be an inverse M -matrix if A−1

is an M–matrix. As in the case for P–matrices, there are many different
equivalent conditions for a matrix to be an M–matrix. We shall use the
following: a matrix A ∈ Zn is an M–matrix if and only if A is a P–matrix
or, equivalently, A is nonsingular and A−1 ≥ 0 ([1], Chapter 2; [3]).

We say that P is a Zn–sign pattern matrix if P = sign(A) for some
A ∈ Zn.

We write A > 0 if A is entrywise positive.

Recall that an n×n matrix A is reducible if for some permutation matrix
S,

SAST =

[
B C

0 D

]
,

where B and D are square matrices, or if n = 1 and A = 0. Otherwise, A

is irreducible. We define reducible and irreducible sign pattern matrices in
a natural way: an n × n sign pattern matrix P is reducible if all matrices
A ∈ C(P ) are reducible, and irreducible otherwise.

An n×n sign pattern matrix P = (pij) is said to be transitive if for any
set of distinct vertices {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}, the following condition
holds:

pi1i2 , pi2i3 , . . . , pik−2ik−1
, pik−1ik 6= 0 ⇒ pi1ik 6= 0.

We denote by Jn×m the n ×m matrix whose components are all equal
to 1. Observe that Jk×mJm×n = mJk×n for all positive integers k, m, n.

For an n×n matrix A, the submatrix of A lying in rows α and columns β,
α, β ⊆ {1, ..., n}, is denoted by A[α|β], and the principal submatrix A[α|α]
is abbreviated to A[α]. Then, a real n × n matrix A is an N–matrix if
det A [α] < 0, for all α ⊆ {1, ..., n}, and a P–matrix if detA [α] > 0, for all
α ⊆ {1, ..., n}.

In [7], the authors show that any N–matrix is diagonally similar to an
N–matrix in Sn, where

Sn =
{
A = (aij) | sign(aij) = (−1)i+j+1, for all i, j ∈ {1, ..., n}} .
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This class has as its canonical representative An = (aij) with aij = (−1)i+j+1

for all i, j ∈ {1, . . . , n}. We say that P is an Sn–sign pattern matrix if
P = sign(An).

2 Sign pattern matrices that admit N–matrices

In the next result, which, as we will see, can be derived from the fact men-
tioned above, we characterize all of the admissible sign pattern matrices for
the class of N–matrices.

Theorem 2.1. Let P be a sign pattern matrix. There exists a matrix A in
the class C(P ) such that A is an N–matrix if and only if P is diagonally
similar to an Sn–sign pattern matrix.

Proof. Suppose that P is an n × n sign pattern matrix such that there
exists an N–matrix A in C(P ). We know that sign(A) = P and that A is
diagonally similar to an N–matrix B ∈ Sn. Therefore, we can assert that
there exists a diagonal matrix D such that B = DAD−1. Let E = sign(D).
It is obvious that sign(B) = EPE. Observe that Q = EPE is the Sn–sign
pattern matrix and that it is diagonally similar to P .

Conversely, assume that P is diagonally similar to the Sn–sign pattern
matrix Q and consider the following matrix B

B =




−1 a −a2 . . . (−1)nan−1

a −1 a . . . (−1)n−1an−2

−a2 a −1 . . . (−1)n−2an−3

...
...

...
...

(−1)nan−1 (−1)n−1an−2 (−1)n−2an−3 . . . −1




in Sn, where a > 1. It is not difficult to prove, by applying Proposition
3.2 of [7], that B is in fact an N–matrix. Note that sign(B) = Q. Let
E be a diagonal pattern such that P = EQE and let D be the diagonal
matrix whose diagonal entries are equal to 1 or −1 and sign(D) = E. Since
sign(DBD−1) = P and since the class of N–matrices is invariant under
diagonal similarity, we can conclude that A = DBD−1 is an N–matrix that
belongs to the class C(P ).
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Taking into account this result and the consequent characterization of
the admissible sign pattern matrices for the class of N–matrices, the natural
question that arises now is whether we are able to give a conclusive answer
to similar problems referring to classes of matrices defined by means of the
signs of principal minors and of the signs of the entries of the matrices.

3 Sign pattern matrices that admit P– and M–

matrices

In this section we derive a characterization of the admissible sign pattern
matrices for the class of P–matrices and also for its subclass of M–matrices.

Theorem 3.1. Let P = (pij) be an n× n sign pattern matrix. There exists
a P–matrix A in C(P ) if and only if pii = + for all i ∈ {1, . . . , n}.

Proof. Let P = (pij) be an n×n sign pattern matrix such that there exists a
P–matrix A in C(P ). We know that sign(A) = P and that all the principal
minors of A are positive. In particular, detA[{i}] > 0 for all i ∈ {1, . . . , n},
which allows us to conclude that pii = +.

Conversely, assume that P = (pij) is a square sign pattern matrix of
order n with pii = +, i = 1, . . . , n. For each ε > 0 consider the n×n matrix
Aε = (aij) given by

aij =





1 if i = j

0 if i 6= j and pij = 0
ε if i 6= j and pij = +
−ε if i 6= j and pij = −

.

It is obvious that Aε belongs to the sign pattern class C(P ). Let α ⊆
{1, . . . , n}. Note that

detAε[α] = 1 + pα(ε),

where pα(ε) is the null polynomial or a polynomial on ε with null constant
term. Since pα(ε) tends to zero as ε tends to zero, for sufficiently small
values of ε, Aε is a P–matrix belonging to the class C(P ).

From the preceding result and the previously mentioned characterization
of M–matrices, one can easily describe the admissible sign pattern matrices
for the class of M–matrices:
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Theorem 3.2. Let P = (pij) be an n× n sign pattern matrix. Then, there
is an M–matrix A in C(P ) if and only if P is a Zn–sign pattern matrix and
pii = + for all i ∈ {1, . . . , n}.

4 Sign pattern matrices that occur among inverse

M–matrices

In this section, necessary conditions for the admissibility for inverse M–
matrices are presented and some partial results related to the characteriza-
tion of the admissible sign pattern matrices are achieved for this particular
class of matrices.

We shall now focus on the class of inverse M–matrices. Note that if
a nonsingular matrix A has nonnegative entries, A−1 ∈ Zn and A−1 has
positive main diagonal entries, then A is an inverse M–matrix. Obviously,
if a sign pattern matrix allows the property of belonging to the class of
inverse M–matrices, it must be nonnegative. The following lemma will be
useful for the study of the admissible sign pattern matrices for this class of
matrices.

Lemma 4.1. Given 0 < a < 1, the following n× n matrix

A =




1 a a . . . a a

a 1 a . . . a a

a a 1 . . . a a
...

...
...

...
...

a a a . . . 1 a

a a a . . . a 1




is an inverse M–matrix.

Proof. Observe that A = (1− a)In + aJn×n. Setting B = cIn + dJn×n, it is
a simple computation to show that AB = In, and hence that B = A−1, if

and only if c = (1− a)−1 and d =
−ac

(1− a + an)
.

Given a real number a, denote by Cn,a the n × n matrix whose main
diagonal entries are equal to 1 and the remaining entries are all equal to a.
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Simple calculations yield that Cn,aJn×m = (1+(n−1)a)Jn×m, Jn×mCm,a =
(1 + (m − 1)a)Jn×m, and hence, C−1

n,aJn×m = (1 + (n − 1)a)−1Jn×m and
Jn×mC−1

m,a = (1 + (m− 1)a)−1Jn×m for all a ∈ R and n,m ∈ N.

It is well known that an irreducible matrix A ∈ Zn is an M–matrix if
and only if A−1 > 0 (see [1]). The next result follows from this fact.

Theorem 4.2. Let P = (pij) be an n×n nonnegative irreducible sign pattern
matrix. Then, there is an inverse M–matrix A in C(P ) if and only if P is
positive.

Proof. Let us assume that there exists an inverse M–matrix A in C(P ).
Since P is irreducible, A is an irreducible matrix and, consequently, so is
A−1. By the result mentioned above, A > 0 and, therefore, P is positive.

Conversely, assume P is positive. Consider 0 < a < 1 and the inverse
M–matrix A = Cn,a. This matrix belongs to C(P ).

Using the definition of a transitive sign pattern matrix, we can restate a
result due to Lewin and Neumann.

Theorem 4.3 ([6]). If A is an inverse M–matrix, sign(A) is transitive.

This particular theorem will be very useful in the upcoming results ad-
dressing the characterization of the admissible reducible sign-pattern matri-
ces for the class of inverse M–matrices.

It is well known that any matrix is permutation similar to a block trian-
gular matrix with irreducible diagonal blocks, the Frobenius normal form.
Therefore, we can reduce the general case to the case of block upper trian-
gular sign pattern matrices

P =




P11 P12 . . . P1k

0 P22 . . . P2k
...

...
...

0 0 . . . Pkk




whose diagonal blocks P11, P22, . . . , Pkk are irreducible sign pattern matrices.
These diagonal blocks are the so called irreducible components of P .
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Corollary 4.4. Let P = (pij) be an n× n sign pattern matrix of the form

P =




P11 P12 . . . P1k

0 P22 . . . P2k
...

...
...

0 0 . . . Pkk




where P11, P22, . . . , Pkk are irreducible sign pattern matrices of sizes q1 ×
q1, q2 × q2, . . ., qk × qk, respectively. If there exists an inverse M–matrix A

in C(P ), then P11, P22, . . ., Pkk are positive, and each one of the blocks Pij,
i 6= j, is either positive or the zero pattern.

Proof. Let

A =




A11 A12 . . . A1k

0 A22 . . . A2k
...

...
...

0 0 . . . Akk




be an inverse M–matrix in C(P ). Since A11, A22, . . . , Akk are also inverse
M–matrices, it follows from Theorem 4.2 that P11, P22, . . . , Pkk are positive.
By applying Lewin and Neumann’s result, we know that P is transitive.
Suppose Pij (i 6= j) is not the zero pattern. It is clear, then, that it has at
least one positive component prs. Note that the first row of Pij corresponds
to the (q1 + . . . + qi−1 + 1)–th row of P (take q0 = 0), while the last row
of Pij corresponds to the (q1 + . . . + qi−1 + qi)–th row of P . Moreover,
the first column of Pij corresponds to the (q1 + . . . + qj−1 + 1)–th column
of P and the last column of Pij corresponds to the (q1 + . . . + qj−1 + qj)–
th row of P . Hence, r ∈ {q1 + . . . + qi−1 + 1, . . . , q1 + . . . + qi−1 + qi} and
s ∈ {q1+ . . .+qj−1+1, . . . , q1+ . . .+qj−1+qj}. Let ptu be any component of
Pij different from prs. Clearly, t ∈ {q1+. . .+qi−1+1, . . . , q1+. . .+qi−1+qi},
u ∈ {q1 + . . . + qj−1 + 1, . . . , q1 + . . . + qj−1 + qj} and t 6= r or u 6= s.
Observe that ptr is an element of Pii and psu is a component of Pjj . We
have ptr = psu = + since Pii and Pjj are positive. Therefore, ptr, prs, psu 6= 0
and, by the transitivity of P , ptu 6= 0. Then, Pij is positive.

The converse of the previous result is also true for k = 2.
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Lemma 4.5. Any n× n sign pattern matrix P of the form

P =

[
P11 P12

0 P22

]
,

where P11 and P22 are positive sign pattern matrices of size q × q and (n−
q) × (n − q), respectively, and P12 is either positive or the zero pattern, is
admissible for the class of inverse M–matrices.

Proof. If P12 = 0, it is easy to prove, using Lemma 4.1 that

A =

[
Cq,a 0
0 Cn−q,a

]
,

with 0 < a < 1, is an inverse M–matrix. Note that A ∈ C(P ). If P12 is
positive, let A be the following matrix

A =

[
Cq,a aJq×(n−q)

0 Cn−q,a

]
.

Given that

A−1 =

[
C−1

q,a −aC−1
q,aJq×(n−q)C

−1
n−q,a

0 C−1
n−q,a

]
,

we only have to show that −aC−1
q,aJq×(n−q)C

−1
n−q,a ≤ 0. Recall that

C−1
q,aJq×(n−q) = (1 + (q − 1)a)−1Jq×(n−q)

and
Jq×(n−q)C

−1
n−q,a = (1 + (n− q − 1)a)−1Jq×(n−q).

Hence

−aC−1
q,aJq×(n−q)C

−1
n−q,a = − a

(1 + (q − 1)a)(1 + (n− q − 1)a)
Jq×(n−q)

and, therefore, A is an inverse M–matrix in C(P ).

Next we show that when P has more than two irreducible components
and there are no zero patterns except for those below the principal block
diagonal, P is also admissible for the class of inverse M–matrices.
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Proposition 4.6. Let P be an n× n sign pattern matrix of the form

P =




P11 P12 . . . P1k

0 P22 . . . P2k
...

...
...

0 0 . . . Pkk




where P11, P22, . . . , Pkk are sign patterns matrices of sizes q1×q1, q2×q2, . . .,
qk × qk, respectively. If Pij is positive for all j ≥ i, then there exists an
inverse M–matrix A in C(P ).

Proof. For 0 < a < 1, let

A =




A11 A12 . . . A1k

0 A22 . . . A2k
...

...
...

0 0 . . . Akk




be the matrix defined by Aii = Cqi,a (i = 1, . . . , k) and Aij = aJqi×qj (j > i).
We claim that A−1 = (Bij) with Bii = A−1

ii and, for j > i,

Bij =
−a(1− a)j−i−1

(qia + (1− a)) (qi+1a + (1− a)) . . . (qja + (1− a))
Jqi×qj .

From Lemma 4.1 it follows that each Bii has negative off-diagonal entries
and positive diagonal entries. If each Bij , j > i, is as described above, it is
obvious that A is an inverse M–matrix. The proof follows by induction on
the number k of diagonal blocks. The case k = 2 is studied in the proof of
the previous lemma. Suppose, now, that, given k > 2 the result is valid for
k − 1. Apply this to submatrices A[{1, . . . , n− qk}] and A[{q1 + 1, . . . , n}].
We only have to show, then, that B1k is of the referred form. Note that

B1k = −B11A1kA
−1
kk −B12A2kA

−1
kk −B13A3kA

−1
kk − . . .−B1k−1Ak−1kA

−1
kk .

Recall B11 = A−1
11 and

B1j =
−a(1− a)j−2

(q1a + (1− a)) (q2a + (1− a)) . . . (qja + (1− a))
Jq1×qj ,
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for all j ∈ {2, . . . , k − 1}. Hence, B1k is given by the expression

− A−1
11 A1kA

−1
kk −

−a

(q1a + (1− a)) (q2a + (1− a))
Jq1×q2

a

(qka + (1− a))
Jq2×qk

− −a(1− a)
(q1a + (1− a)) (q2a + (1− a)) (q3a + (1− a))

Jq1×q3

a

(qka + (1− a))
Jq3×qk

− . . .− −a(1− a)k−3

(q1a + (1− a)) (q2a + (1− a)) . . . (qk−1a + (1− a))
Jq1×qk−1

×

× a

(qka + (1− a))
Jqk−1×qk

.

By taking M = (q1a + (1− a)) (q2a + (1− a)) . . . (qk−1a + (1− a)) (qka + (1− a)),
we get

B1k = (−a (q2a + (1− a)) . . . (qk−1a + (1− a)) +

+a2q2 (q3a + (1− a)) . . . (qk−1a + (1− a)) +

+a2(1− a)q3 (q4a + (1− a)) . . . (qk−1a + (1− a)) + . . . +

+a2(1− a)k−3qk−1)M−1Jq1×qk
.

Let N be the real scalar which in the equality above is right hand side
multiplied by M−1Jq1×qk

. Observe that

N = −a2q2 (q3a + (1− a)) . . . (qk−1a + (1− a))−
−a(1− a) (q3a + (1− a)) . . . (qk−1a + (1− a)) +

+a2q2 (q3a + (1− a)) . . . (qk−1a + (1− a)) +

+a2(1− a)q3 (q4a + (1− a)) . . . (qk−1a + (1− a)) + . . . +

+a2(1− a)k−3qk−1

= −a(1− a) (q3a + (1− a)) . . . (qk−1a + (1− a)) +

+a2(1− a)q3 (q4a + (1− a)) . . . (qk−1a + (1− a)) + . . . +

+a2(1− a)k−3qk−1

= −a2(1− a)q3 (q4a + (1− a)) . . . (qk−1a + (1− a))−
−a(1− a)2 (q4a + (1− a)) . . . (qk−1a + (1− a)) +

+a2(1− a)q3 (q4a + (1− a)) . . . (qk−1a + (1− a)) + . . . +

+a2(1− a)k−3qk−1
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= −a(1− a)2 (q4a + (1− a)) . . . (qk−1a + (1− a)) +

+a2(1− a)2q4 (q5a + (1− a)) . . . (qk−1a + (1− a)) + . . . +

+a2(1− a)k−3qk−1

= . . .

= −a(1− a)k−2,

which concludes the proof.

We end this section with the following remark.

Remark: The irreducible sign pattern matrices that occur among the in-
verse M–matrices are described in Theorem 4.2. Since every matrix is
permutation similar to a block triangular matrix with irreducible diagonal
blocks, the general question is whether sign pattern matrices of the form

P =




P11 P12 . . . P1k

0 P22 . . . P2k
...

...
...

0 0 . . . Pkk




,

whose diagonal blocks P11, P22, . . . , Pkk are the irreducible components of
P , are admissible for the class of inverse M–matrices. Corollary 4.4 states
that Pii > 0, for all choices of i, and Pij = 0 or Pij > 0, for all j > i, is
a necessary condition for the admissibility of such sign pattern matrices P .
We strongly believe that this is also a sufficient condition. When k = 2 or
when all Pij > 0, the result follows from Lemma 4.5 and from Proposition
4.6. The question that remains with no answer is whether there exists an
inverse M–matrix in the class C(P ) where P is a sign pattern matrix as
described above, with Pii > 0, for all choices of i, Pij = 0 or Pij > 0, for
all j > i, and at least one of these latter blocks is a zero pattern. Observe
that if Pij is a zero pattern, the transitivity of P may imply that some other
blocks, above the principal block diagonal, are also zero patterns. It is,
however, apparently hard to describe all the possibilities and, consequently,
to achieve a conclusive answer. Nevertheless, it is clear that those patterns
that can be expressed as direct sums of patterns where all of the blocks
above the diagonal are positive work as well.
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