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1. Introduction

In the last decades, there has been a trend to foster interdisciplinary research, where often one field
provides the tools (e.g. methods), while the other poses interesting problems and data (the raw
material). Following this trend, we present the possibilities of cooperation between the areas of
Artificial Intelligence (Al) and Geotechnique.

In the past, simple conventional tools (e.g. linear regression, blind search optimization) were used
to address real-world problems. Yet, real-world problems are complex, often nonlinear. Under such
domains, traditional techniques become obsolete, lcading to poor results. An alternative, is to use
modern Al tools, often inspired in natural processes (e.g. human nervous system — neural networks;
natural selection — evolutionary algorithms). Data Mining (DM) is the overall process of extracting
high-level knowledge from raw data. Neural networks and support vector machines are flexible DM
models (l.c. no apriori restriction is required) that arc capable of complex, nonlinear mappings
between a given set of inputs (independent variables) and an output (the dependent variable). On the
other hand, evolutionary algorithms (c.g. genctic algorithms) are innate candidates
for numerical optimization, particularly for large scarch space domains, performing a global search
that quickly locates areas of high quality.

Most of the problems associated with the Structural Engincering involve some complexity, and
cven more when the materials have heterogencous and anisotropics properties, such as those used in
geoworks. For this rcason, and as alternative to traditional techniques of mechanical modeling,
analysis and design, several Al methods can be used. However. the potential of these methods are not
yet sufficiently divulged among the geotechnical community. Hence, this communication will try to
change this situation, by presenting the advantage of popular Al methods (c.g. neural networks and
genctic algorithms) and demonstrating the efficiency of these techniques through the presentation of a
casc study: the compaction of gcomaterials.

2. Artificial Intelligence in Geothecnics

In the past. several rescarchers have apphed AT o management of geoworks. trom roads to site
myestigation. As an example. Figure 1 shows the number of studies per geotechnical fickd using two
Al technmiques: Knowledge Based Systems (KBS) and Neural Networks.,

In particular. within the domain of the compaction, there have also been some Al applications.
Essenually. these studies were used to determine prediction models for parameters considered by the
traditional control of “finished product™. However. the experience from other countries shows benefits



using the control by procedure. The French guide for road earthworks (Guide Terrassements Routiers),
GTR (SETRA & LCPC 1992) is an example of this control philosophy.
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Figure 1. Artificial Intelligence (Al) studies on geoworks unti] 1996 (Tool 1996).
3. Knowledge Discovery on Compaction

The Knowledge Discovery from Databases (KDD) process can be viewed as a branch of the AL, where
the goal is to extract high-level knowledge from raw data (fig. 2). In rigor, the Data Mining (DM) step
is just a part of this process, aiming at pattern recognition from clean, preprocessed data. Often, the
KDD and DM terms are used as synonyms and in this work we will adopt the latter one, since it is
more widely adopted.
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Figure 2. Overview of the steps constituting the KDD process (Fayyad et al. 1996).

Under this perspective, the collection of the “Compaction Tables” (see example in Table 1) on the
GTR guide can be seen as a database, for which it is possible to apply a DM process. The data
includes qualitative variables (material, compactor type and energy level) and quantitative variables
(O/S (compacted volume/surface covered by the compactor) parameter, layer thickness (¢) and speed
(7). number of load applications (V) and theoretical compaction capacity (/L) of the compactor).

Table 1. Compaction conditions to material Al - C1AT in embankments (SETRA & LCPC 1992).



e

Low

compaction m |l wm mwtolm|lolelel el @
energy

Code 3

Medium
compaction
energy

Code 2 i 3
170 350
v 0005
(X 0.3
High
compagtion
anergy
2 25 | 3 8
Code 1 7 5 8
100 165 | 255 280
s )
e |
v | xmm)

QiL_Jim*ham)

u compactor
ot adequate

In a previous study (Marques et al. 2008), we tested different DM techniques for model adjustment.
including the traditional technique of multiple regression, non-parametric methods of decision trees
and k-nearest neighbors, and nonlinear and more flexible techniques based on neural networks and
support vector machines. In that work, the evaluation scheme was based on 20 executions (runs) of a
10-fold cross-validation.

The best models obtained in the DM process, which are valid for the case of embankment layers.
were the Q/S prediction in function of the material, compactor type and energy level, and the ¢*I”
prediction in function of the material, compactor type, energy level and (/S parameter. The models
show high correlation coefficients (Cor), particularly the neural network to predict Q/S (fig. 3a) and
the support vector machine to predict e*V (fig. 3b).
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Figure 3. Predicted values versus real values: a) O/Sand b) ¢*I,

Moreover, a sensitivity analysis procedure was applied to these models. which measured the impact
of cach independent (input) variable when predicting the output target (dependent variable). Tt was
assumed 1n a first moment that the /S parameter would be dependent. in the case of embankment
layers. mainly of three attributes: material. compactor type and energy level. For this scenario. the
sensitivity analysis showed greater dependence of QS from the energy variable. revealing the other
attributes smaller importance. On the other hand. the sensitnvity analysis on the model obtamed tor the
prediction of the ¢*17 product shows a strong relation of this variable with the Q'S parameter and a low
importance of the material and encrgy Ievel variables. The importance of the encrgy level is imphicit in
the O S value.

It should be also mentioned that the high performance achicved with the techniques based on
neural networks and support vector machines demonstrates the non-lincarity characteristics ot this
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domain. In effect, the models obtained with these techniques show a high predictive potential, and in
particular enable a faithful reproduction of the data contained in the GTR Tables of Compaction.

4. Management of compactors

The management of compactors can be seen as an optimization problem of the compaction cost that
results from multiplying the compaction time by the cost of the compactors set per time. The selection
of equipment for the compaction task can be a dilemma if the areas or volumes of the geomaterial to
compact are large, and particularly if the embankment is composed by different materials. This
problem can be viewed as a numerical optimization task. When the size of the compactors set is high,
the huge of all combinations is computationally intensive and more sophisticated optimization
techniques should be used.

In effect, the Al field has led to modern optimization methods that were inspired in the natural
evolution of biological systems, such as genetic algorithms and evolutionary strategies. These methods
are innate candidates for parameter estimation, since they implement a global multi-point search,
quickly locating areas of high quality. In this work, we applied genetic algorithms to the optimization
of compactor sets. The algorithm manages high quality solutions using few computational resources.
Thus, it is possible to select a compactors set that allows compact with quality at the lowest cost.

The optimization is made assessing successive combinations of compactors with respect to a
Jitness function basically dependent of the compaction capacity of the compactors set extended to the
different materials and of the cost of each combination (fig. 4). The fitness function also implies a
restriction on the term of the compaction work. In the right of Figure 4 is shown the evolution of the
fitness function (Time x cost/UT) allowed by the genetic algorithm along 100 generations.
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Figure 4. Optimization process of compactors by a genetic algorithm.
5. Conclusions

In this work we show the application of Artificial Intelligence (Al) tools to the compaction of
geomaterials domain. In particular. the Data Mining (DM) process allows the extraction of knowledge
from raw data. while Evolutionary Algorithms (EAs) are global optimization problems that can be
applied to distinet domams. gaming good results with a low computational cost. Regarding the former,
several DM methods were applied o model the GTR Tables of Compaction. The QS and ¢*1
dependent output varables were successtully modelled by neural networks and support vector
machines. outperforming other techniques and demonstrating the nonlincar interrelationship.

The dilemma of sclection of equipment for the compaction task can be solved using optimization
processes basced on biological processes. such as EAs. allowing a compaction combining quality and
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low cost. In the future, we hope such examples can increase the application of Al tools in the
Geotechnique domains, in particular in the railway fields.
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