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ABSTRACT  

 

Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the main threats to 

mankind. Despite the intense research on the immune response to tuberculosis, major questions 

remain unsolved, one of which relates to the fact that the efficacy of the current vaccine, 

Mycobacterium Bovis BCG, is variable. However, no other experimental vaccines against tuberculosis 

developed in the last 100 years were proven to be better than BCG. Therefore BCG remains the only 

vaccine available to date to prevent tuberculosis. A possible explanation for the variability of BCG 

efficacy relies on the fact that the immune response triggered by BCG and M. tuberculosis is 

different. Nevertheless, M. tuberculosis-based experimental vaccines tend not to protect better than 

BCG. We therefore hypothesized that the basic protective response triggered by BCG must be 

appropriate, although it needs to be improved in order to confer higher and longer lasting protection. 

In this work, we performed a comparative study of M. tuberculosis versus BCG infection on 

dendritic cells (DCs) and macrophages to better understand how these pathogens interact with cells 

of the innate immune system and how that might translate into an effective, or not, T helper (Th) cell 

response. We found that macrophages and DCs respond differently to M. tuberculosis or BCG 

stimulation in what concerns cytokine expression. The expression of IL-12p40, TNF and IL-6 is 

significantly higher in DCs than in macrophages stimulated with either mycobacteria. Nevertheless, 

the expression of IL-12p35 and IL-10 was similar in both cell types. We also found that the same cell 

type respond differently to M. tuberculosis or BCG. M. tuberculosis-stimulated DCs induced higher 

levels of p40 and p19 monomers and of the bioactive cytokines IL-12 and IL-23, respectively. BCG-

stimulated DCs produced higher amounts of TNF. The amounts of IL-6 and IL-10 secreted upon 

stimulation of DCs with M. tuberculosis or BCG were similar. The differential expression of IL-12 and 

IL-23 might be correlated in part to a higher activation of the MAP kinase ERK1/2 in DCs in response 

to M. tuberculosis than to BCG. Although macrophages were in general poorly induced to produce 

cytokines, when compared to DCs, the threshold of ERK1/2 activation was higher in stimulated 

macrophages. A consequence of the differential activation of DCs was reflected on the distinct type of 

Th responses developed when M. tuberculosis- or BCG-infected DCs presented OVA peptide to TCR-

transgenic CD4+ T cells. M. tuberculosis-infected DCs were able to induce the development of both 

Th1 and Th17 responses, whereas BCG-infected DCs presented a shift towards Th17 responses. 

These differences are of interest considering the importance of Th1/Th17 balance during vaccination. 

Further understanding the molecular mechanisms dictating this differential Th response will be used 

for the development of new vaccines.  
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RESUMO 

 

A tuberculose é causada pelo Mycobacterium tuberculosis e constitui um grave problema a 

nível mundial. Apesar de todo o esforço dedicado ao estudo desta infecção, questões como a 

variabilidade da eficácia da corrente vacina em uso, M. bovis BCG, permanecem inexplicáveis. No 

entanto, nos últimos 100 anos, não foi experimentalmente desenhada outra vacina mais eficiente do 

que o BCG. Sendo assim, a única vacina disponível até ao momento para combater a tuberculose é o 

BCG. Uma possivel explicação para a variabilidade da vacina consiste no facto de o M. tuberculosis e 

o M. bovis BCG desencadearem uma resposta imunológica diferente.Contudo, vacinas experimentais 

baseadas no M. tuberculosis não conferem maior protecção do que o BCG. A nossa hipótese, é que 

a resposta desencadeada pelo BCG deve ser adequada, embora necessite de ser melhorada de 

modo a conferir uma protecção maior e mais prolongada.  

Neste trabalho foram comparadas as infecções por M. tuberculosis versus BCG em células 

dendríticas (DCs) e em macrófagos, com os objectivos de compreender melhor a interacção entre 

estes agentes patogénicos e o sistema imunológico inato, e como é que isso se traduz, ou não, 

numa reposta T de ajuda (Th) eficaz. Os nossos resultados mostram que as respostas induzidas 

pelos macrófagos e pelas DCs estimulados por M. tuberculosis ou por BCG, em termos de expressão 

de citocinas, são diferentes. A expressão de IL-12p40, TNF e IL-6 induzida por ambas as 

micobactérias foi significativamente maior em DCs do que em macrófagos. Contudo, a expressão de 

IL-12p35 e IL-10 foi semelhante em ambos os tipos celulares. Observamos, também, que o mesmo 

tipo celular responde de modo diferente ao M. tuberculosis ou ao BCG. As DCs estimuladas pelo M. 

tuberculosis induziram níveis elevados de p40 e p19, bem como das respectivas citocinas bioactivas 

IL-12 e IL-23. As DCs estimuladas pelo BCG produziram elevados níveis de TNF. A produção de IL-6 

e IL-10 foi semelhante quer nas DCs estimuladas pelo M. tuberculosis quer pelo BCG. A expressão 

diferencial de IL-12 e de IL-23 poderá estar correlacionada, em parte, com uma maior activação da 

MAP cinase ERK1/2 pelas DCs em resposta ao M. tuberculosis relactivamente ao BCG. Embora a 

indução de citocinas pelos macrófagos fosse menor do que pelas DCs, o threshold de activação do 

ERK1/2 induzido pelos macrófagos foi maior. A diferente activação induzida pelo M. tuberculosis ou 

BCG em DCs reflectiu-se no tipo de resposta Th diferenciada. Em DCs estimuladas com M. 

tuberculosis ou BCG, que apresentam o péptido OVA a células T CD4+  cujo TCR é transgénico, 

observamos que as DCs estimuladas com M. tuberculosis induziram o desenvolvimento de respostas 

Th1 e Th17, enquanto que DCs estimuladas com BCG induziram uma resposta Th17 superior à 

observada com M. tuberculosis. Considerando a importância do balanço Th1/Th17 durante a 
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vaccinação, as diferenças observadas são de extrema relevância, dado que a compreensão dos 

mecanismos moleculares que ditam esta resposta diferencial consiste numa estratégia para o 

desenvolvimento de novas vacinas contra a tuberculose. 
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I. INTRODUCTION 

 

1.1. EPIDEMIOLOGY  

In 1993, the World Health Organization (WHO) declared tuberculosis (TB) a global 

emergency. Since then, TB remains one of the main threats to mankind. Nowadays, TB is the 

world’s second commonest cause of mortality and morbidity from infectious diseases, despite 

the improvements in the health care services and all the efforts devoted to the understanding of 

this disease in the last decades (Corbett et al., 2003). 

The WHO has estimated that one-third of the world’s population (2 billion people) is 

infected with Mycobacterium tuberculosis, the etiologic agent of TB. Of these, 1 in 10 people will 

become sick with active TB in their lifetime. The latest estimates of the global burden of TB show 

that there were 9.27 million new cases of TB in 2007 (including 1.37 million cases among 

human immunodeficiency virus (HIV)-positive people). There were also approximately 0.5 million 

new cases of multidrugresistent-TB (MDR-TB), of which around 0.3 million were among people 

not previously treated for TB. South-East Asia and Western Pacific regions account for 55% of 

global cases and the African Region for 31%; the other three regions (the Americas, European 

and Eastern Mediterranean regions) account for small fractions of the global cases. Among the 

15 countries with the highest estimated TB incidence rates, 13 are in Africa, a phenomenon 

linked to high rates of HIV coinfection (WHO, 2009). The estimates of cases and deaths in HIV-

positive individuals in 2007, as well as in previous years are substantially higher than those 

published previously by WHO (1.32 million deaths from TB in HIV-negative people with an 

additional 0.46 million TB deaths in HIV-positive people) (WHO, 2009).  

Regarding the incidence rate of TB in Western Europe, the situation in Portugal is 

considered one of the most severe (DGS, 2006; EuroTB, 2006). Nearly 3 000 of new cases of all 

forms of TB were notified in 2007, being 20% of all TB cases in HIV-positive people, and 0.9% of 

all new cases MDR-TB (Hollo et al., 2009; WHO, 2009). 

Collectively, these statistics show that TB remains a major global health problem and that 

there is an urgent need for more effective control and prophylactic resources to fight TB 

worldwide. 

 

 

 



2 

1.2. PREVENTION AND THERAPY OF TUBERCULOSIS 

Mycobacterium bovis BCG is the only vaccine currently available against TB. BCG is an 

attenuated strain of M. bovis (the etiological agent of cattle TB), derived from a virulent strain at 

the start of the last century, after more than 13 years of continuous in vitro passage (Andersen 

and Doherty, 2005). After almost a century from its discovery and more than 3 billion 

administrations, BCG is still in use today (Fine, 1995). However, BCG vaccination did not match 

all the expectations it evoked, because although it prevents disseminated TB in newborns (Colditz 

et al., 1995; Lanckriet et al., 1995; Murhekar et al., 1995; Trunz et al., 2006; Zodpey et al., 

2005; Zodpey et al., 1998) its protection against the most common form of the disease, 

pulmonary TB in adults, can range anywhere from below zero to over 80% (Fine, 1995; 

Kaufmann, 2000; Sterne et al., 1998). This difference in protection is not well understood, 

however some aspects might account for it, such as the interference with the immune response 

to BCG vaccination by previous exposure to environmental mycobacteria (Brandt et al., 2002; 

Demangel et al., 2005; Roche et al., 1995); differences in BCG sub-strains (Behr, 2001a, b; 

Fine, 1995; Fine et al., 1994); deletion of protective antigens from BCG; failure of BCG to 

stimulate adequate immunity (Aagaard et al., 2009); differences in the route of administration 

(Skeiky and Sadoff, 2006), age of administration (Skeiky and Sadoff, 2006). Furthermore, the 

protection afforded by BCG is not life-long lasting, and it is believed that BCG is protective for only 

10-20 years, which implies that protection wanes just as the risk of getting pulmonary TB 

increases (Sterne et al., 1998). The need to develop a new vaccine against TB is urgent and 

efforts are being made to do so. The most promising strategies for the generation of vaccine 

candidates are subunit protein vaccines, attenuated live vaccines or the combination of both. 

While attenuated live vaccines provide prolonged exposure of the host immune system to newly 

synthesized antigens, the advantage of subunit vaccines is the possibility that their efficacy may 

not be compromised by exposure to environmental mycobacteria or by prior BCG vaccination 

(Andersen, 2007; Andersen and Doherty, 2005). 

Although it is clear that BCG is limited to confer protection against TB, the search for a 

better vaccine has so far failed. The efforts underlying the search of a new vaccine against TB 

should perhaps not only focus on the understanding of M. tuberculosis infection, but also on the 

understanding of BCG immunobiology, the way it activates innate immunity and further induces T 

cell responses. Additionally, the way that M. tuberculosis and BCG interfere with the host 

immunity should be a target of investigation and an issue to be taken into account in the 
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development of a new vaccine against TB. Therefore, a comprehensive analysis of the interaction 

of both M. tuberculosis and BCG with the immune system is important and pertinent. 

 

1.3. Mycobacterium tuberculosis COMPLEX - M. tuberculosis AND M. bovis BCG 

FEATURES 

TB, in humans and in animals, results from exposure to bacilli within the M. tuberculosis 

complex (i.e., Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium africanum, 

Mycobacterium pinnipedi, Mycobacterium microti, Mycobacterium caprae, or Mycobacterium 

canettii (Cousins et al., 2003). Mycobacteria from M. tuberculosis complex share more than 99% 

homology for some loci (Brosch et al., 2002; Mostowy and Behr, 2005; Smith et al., 2006). The 

Mycobacterium genus comprises several bacteria, including non-pathogenic environmental 

mycobacteria (Dormans et al., 2004; Kremer et al., 1998; Mostrom et al., 2002; van Soolingen 

et al., 1998); but also virulent mycobacteria, in addition to M. tuberculosis, such as M. leprae 

and M. ulcerans, the causative agents of leprosy and Buruli ulcer, respectively (Debacker et al., 

2004; WHO, 2000). Another pathogenic mycobacteria is M. avium, although it only causes 

disease in immunocompromised individuals, such as HIV-positive patients (Pozniak, 2002; 

Primm et al., 2004). M. tuberculosis and M. bovis cause a similar course of infection and 

pathology in humans (Cosma et al., 2003). Although M. tuberculosis has no natural reservoir 

outside humans, several TB experimental animal models exist (Boshoff and Barry, 2005; Cosma 

et al., 2003; Flynn, 2006; Kaufmann, 2003; North and Jung, 2004; Young, 2009). In contrast, 

M. bovis has a broad range of natural hosts, from humans to cattle (O'Reilly and Daborn, 1995). 

Mycobacteria share a characteristic cell wall, composed by mycolic acids, that makes up more 

than 50% of its dry weight. The lipid content of this cell wall enables the retention of basic dyes in 

the presence of acid alcohol, a hallmark characteristic of mycobacteria (Brennan, 2003; Cosma 

et al., 2003; Kaufmann, 2006). 

The genome of M. tuberculosis has been sequenced and is 4.41 Mb in size. It contains 

near 4000 protein-coding genes of which 52% have known function (Cole et al., 1998). Only 376 

putative proteins share no homology with known proteins and presumably are unique to M. 

tuberculosis (Camus et al., 2002; North and Jung, 2004).  

Whole genome DNA microarray techniques have identified 129 M. tuberculosis specific 

open reading frames (ORFs) that are absent in the genome of BCG vaccine strains (Behr et al., 

1999). These ORFs are clustered in 16 regions of deletion (RDs). A total of 61 ORFs (clustered in 
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9 RDs) are missing in all M. bovis strains, including BCG, and 29 ORFs are missing in some BCG 

strains only. There are 39 ORFs (clustered in 3 RDs) that are missing in all BCG strains. Clearly, 

the M. tuberculosis ORFs that are absent in BCG represent candidates not only for virulence 

factors, but also for protective antigens. For instance, three genomic RDs were identified to be 

present in virulent M. bovis, M. tuberculosis and BCG - RD1, RD2 and RD3 (Mahairas et al., 

1996). Among these, the RD1 region seems to be most interesting for the specific diagnosis of 

TB because the genes predicted in this genomic DNA segment are deleted from all the vaccine 

strains of BCG, while they are conserved in all of the tested virulent laboratory and clinical 

isolates of M. bovis and M. tuberculosis (Mahairas et al., 1996). The RD1 region of M. 

tuberculosis encodes two low molecular weight secretory proteins, the 10-kDa culture filtrate 

protein - CFP-10, and the 6-kDa early-secreted target antigen - ESAT-6, two-major T-cell antigens 

of M. tuberculosis (Arend et al., 2000a; Arend et al., 2000b; Mustafa et al., 1998). Not only the 

deletion of the RD1 locus attenuates the virulence of M. bovis, but also, conversely, re-

introduction of the M. tuberculosis-RD1 in the genome of M. bovis BCG increases the latter’s 

virulence and immunogenicity (Behr, 2002; Demangel et al., 2005; Pym et al., 2002). 

 

1.4. THE INNATE IMMUNE RESPONSE TO M. tuberculosis 

 

1.4.1. M. tuberculosis AND HOST PHAGOCYTE INTERPLAY 

Infection of a host with M. tuberculosis follows the inhalation of droplets (aerosols) 

containing a small number of bacilli (Kaufmann, 2001b). Since the main route of entry of the 

causative agent is the respiratory route, the resident macrophages of the lung (alveolar 

macrophages) are the primary cell type involved in the initial uptake of mycobacteria (Orme and 

Cooper, 1999). After inhalation of tubercle bacilli, alveolar macrophages ingest the bacilli through 

phagocytosis and often destroy them. Phagocytosis of mycobacteria was shown to be an active 

process, mediated by an array of different receptors expressed on the surface of phagocytes 

(Brightbill et al., 1999; Cambi et al., 2005; DesJardin et al., 2002; Ernst, 1998; Greenberg, 

1999; Kang et al., 2005; Swanson and Hoppe, 2004).  

Both in natural and experimental infections mycobacteria are found and proliferate 

essentially inside macrophages and dendritic cells (DCs), even though neutrophils and 

eosinophils have also been shown to phagocytose mycobacteria (Castro et al., 1991; Kisich et 



  5 

al., 2002). Macrophages and DCs are the main cells harbouring mycobacteria, functioning 

simultaneously as host and effector cells. 

Following phagocytosis, mycobacteria are contained inside phagosomes, membrane-bound 

intracellular vesicles in which microorganisms can be killed and digested. The phagosome-

containing ingested bacterium is then fused to lysosomes that contain numerous hydrolytic 

enzymes and are very acidic organelles. Phagosome-lysosome fusion is a highly regulated event 

and constitutes a significant antimicrobial mechanism of phagocytes (Flynn and Chan, 2001). 

Mechanisms involved in killing of M. tuberculosis within the phagolysosomes of activated 

macrophages include the production of reactive oxygen intermediates (ROI) and nitrogen oxides 

(Flynn and Chan, 2001). Hydrogen peroxide (H2O2), one of the ROI generated by macrophages 

via the oxidative burst, was the first identified effector molecule that mediated mycobactericidal 

effects of mononuclear phagocytes (Walker L, 1981). The ability of ROI to kill M. tuberculosis, 

although well demonstrated in mice, remains to be confirmed in humans. Several studies have 

demonstrated that M. tuberculosis infection induces the accumulation of macrophages in the 

lung, accompanied by H2O2 production (North and Medina, 1998). Moreover, different strains of 

M. tuberculosis induce the production of different amounts of ROI, which was suggested to be 

associated with the virulence of the strains (Firmani and Riley, 2002; Laochumroonvorapong et 

al., 1997). 

Upon activation, phagocytes also generate nitric oxide (NO) and related reactive nitrogen 

intermediates (RNI) via inducible nitric oxide synthase (iNOS) using L-arginine as substrate. The 

role of RNI in defence against mycobacteria has been demonstrated following the observation 

that in genetically altered NOS gene knock-out mice, M. tuberculosis replicates much faster than 

in wild type animals (MacMicking et al., 1997). High levels of NOS2 expression have been 

detected in macrophages from broncho alveolar lavage of patients with active pulmonary TB 

(Nicholson et al., 1996). 

Following M. tuberculosis infection, programmed cell death also constitutes an effector 

mechanism of the macrophage (Lee et al., 2009b). Apoptosis contributes to host defence by 

eliminating a protected intracellular environment favourable to bacterial replication, forcing the 

infecting pathogen to re-establish residence in a naive host cell, and by packaging M. tuberculosis 

bacilli and specific molecules in apoptotic bodies. The subsequent engulfment of these apoptotic 

bodies by newly recruited macrophages and DCs promotes the control of infection and the 

induction of the adaptive immune response (Lee et al., 2009b). Phagocytosis of apoptotic bodies 
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derived from M. tuberculosis-infected macrophages by DCs could lead to the presentation of 

mycobacterial lipid and peptide antigens and subsequent activation of specific T-cells (Schaible et 

al., 2003), a process defined as “crosspriming” (Guermonprez and Amigorena, 2005). 

Remarkably, apoptotic bodies containing mycobacterial antigens have the capacity to protect 

mice from challenge by virulent M. tuberculosis (Winau et al., 2006). The importance of 

apoptosis in the host's innate immune response was underlined by a report showing that 

apoptotic cell death reduced mycobacterial viability, whereas necrotic cell death had no effect on 

bacterial viability (Fratazzi et al., 1997; Keane et al., 2002; Molloy et al., 1994). In line with these 

findings is a report demonstrating that the susceptibility of different mouse strains to 

mycobacterial infections could be linked to the capacity of infected macrophages to either 

undergo necrotic or apoptotic cell death upon infection, with the former imparting a susceptible 

phenotype and the latter a resistant phenotype (Pan et al., 2005). 

In order to survive in its host, M. tuberculosis has evolved several mechanisms to 

overcome the host macrophage defence mechanisms (Flynn and Chan, 2001; North and Jung, 

2004). These immune evasion strategies allow M. tuberculosis to survive inside the host cells, 

thus contributing to the virulence of this pathogen. M. tuberculosis interferes with host trafficking 

pathways by modulating events based mainly on the arrest of phagosome maturation (Houben et 

al., 2006). The non-fusogenicity of mycobacterial phagosomes is believed to be a major factor in 

the capacity of pathogenic mycobacteria to survive within the potentially hostile environment of 

the macrophages (Nguyen and Pieters, 2005; Vergne et al., 2004). By blocking its delivery to 

lysosomes, M. tuberculosis is able to avoid the acidic proteases of the lysosomes, avoid exposure 

to the bactericidal mechanisms that operate within lysosomes, prevent degradation and hence 

processing and presentation of mycobacterial antigens to the adaptative immune system 

(Pancholi et al., 1993; Pieters, 2001). Another strategy apparently used by mycobacteria to 

modulate host immune responses in order to avoid the bactericidal activity of phagocytes (Chan 

J., 1994) is the production of superoxide dismutase and catalase that detoxify ROI (Andersen et 

al., 1991). In addition, mycobacterial components such as sulphatides, lipoarabinonannan (LAM) 

and phenolic-glycolipid I (PGLI) are potent oxygen radical scavengers (Chan et al., 1991; Chan et 

al., 1989).  

M. tuberculosis was also shown to inhibit host cell apoptosis (Balcewicz-Sablinska et al., 

1998; Fratazzi et al., 1999; Sly et al., 2003; Spira et al., 2003). Upon infection, M. tuberculosis 

was demonstrated to induce the up-regulation of anti-apoptotic genes that encode for Bcl-2-like 
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proteins (Spira et al., 2003). Other studies have shown that the expression of anti-apoptotic 

proteins is upregulated in cells infected with virulent strain of M. tuberculosis H37Rv, but not with 

the avirulent strain M. tuberculosis H37Ra (Spira et al., 2003), while pro-apoptotic proteins are 

inactivated following M. tuberculosis-H37Rv infection (Maiti et al., 2001). In order to inhibit tumor 

necrosis factor (TNF)-induced apoptosis, M. tuberculosis-infected macrophages have been 

reported to exhibit increased secretion of soluble TNFR2 (sTNFR2). The sTNFR2 binds to TNF in 

the extracellular milieu and thus inhibits its binding to the TNFR1 (Balcewicz-Sablinska et al., 

1998; Fratazzi et al., 1999). 

The interaction of DCs with the infectious agents plays a vital role in the initiation of the 

immune response against the pathogens (Lopez-Bravo and Ardavin, 2008). Although M. 

tuberculosis is able to grow equally well within DCs and macrophages, and activated DCs and 

macrophages were equivalent in their ability to inhibit replication of M. tuberculosis in an NOS2-

dependent manner (Bodnar et al., 2001), DCs interact with live M. tuberculosis bacilli in a 

manner different from that of macrophages. DCs are considered to be the professional antigen 

presenting cells (APC), due to their ability to endocytose antigens and express abundant 

quantities of MHC class II, co-stimulatory molecules, and cytokines (Giacomini et al., 2001), that 

all together drive T helper (Th) cell differentiation. Previous studies have revealed that human and 

murine DCs can ingest M. tuberculosis, and that DCs exposed to M. tuberculosis in vitro undergo 

a typical maturation program and upregulate their antigen-presenting activities (Bodnar et al., 

2001; Demangel et al., 1999; Demangel and Britton, 2000; Giacomini et al., 2001; Gonzalez-

Juarrero and Orme, 2001; Tascon et al., 2000). In addition, it was shown that DCs, but not 

macrophages, infected with M. tuberculosis are capable of driving Th1 polarization of naive CD4+ 

T cells (Hickman et al., 2002). Therefore, it is likely that DCs play an important role in initiating 

the acquired immune response to M. tuberculosis. An additional property of DCs that contributes 

to their effectiveness in initiating immune responses in vivo is their ability to migrate from 

peripheral tissues to secondary lymphoid tissues after acquiring antigens and in the presence of 

proinflammatory stimuli (Alvarez et al., 2008). Infection of DCs by M. tuberculosis results in the 

expression of CCR7 and subsequent migration of these cells to the lymph node (Bhatt et al., 

2004). Maturation and migration of DCs from the lung to the draining lymph nodes is a key step 

for the initiation of naive T cell activation (Bhatt et al., 2004; Chackerian et al., 2002; Demangel 

et al., 2002; Humphreys et al., 2006; Khader et al., 2006; Skold and Behar, 2008; Winslow et 

al., 2008; Wolf et al., 2008). 
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In summary, upon infection of the host, alveolar macrophages become activated and 

initiate several effector mechanisms that aim at eliminating M. tuberculosis. Soon after, DCs 

become exposed to M. tuberculosis in the lung, maturate and migrate to the draining lymph 

nodes where the initiation of the T cell response takes place. The understanding of the interaction 

of the pathogen with both macrophages and DCs is therefore important to provide clues on 

possible ways to modulate both the innate and the acquired immune responses. These steps of 

pathogen recognition, phagocytosis by macrophages and presentation by DCs are of particular 

importance for the understanding of the immune response to M. tuberculosis versus BCG.  

 

1.4.2. ROLE OF TLR SIGNALLING FOR M. tuberculosis RECOGNITION 

Early recognition of M. tuberculosis or mycobacterial products is a crucial step for the 

initiation of an effective host response. Recognition of infectious agents depends on a variety of 

pattern recognition receptors (PRRs) (Akira et al., 2006; Bhatt and Salgame, 2007; Geijtenbeek 

et al., 2003; Rothfuchs et al., 2007). Several PRRs have been involved in the recognition of M. 

tuberculosis by macrophages and DCs. This is the case of toll-like receptors (TLRs) 2, 4 and 9 

(Bafica et al., 2005; Pai et al., 2004; Quesniaux et al., 2004); dectin-1 (Lee et al., 2009a; 

Rothfuchs et al., 2007; Yadav and Schorey, 2006); the mannose receptor (Desjardins et al., 

1994; Kang et al., 2005); DC-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin 

(DC-SIGN) (Maeda et al., 2003; Tailleux et al., 2003) and nucleotide-binding oligomerization 

domain (NODs) (Ferwerda et al., 2005). Of these, the better characterised interaction is the one 

mediated by TLRs. Accumulating data indicate that M. tuberculosis expresses a large repertoire 

of TLR2 ligands. The 19-kDa lipoprotein (LpqH), a secreted antigen of M. tuberculosis, was the 

first M. tuberculosis ligand shown to interact specifically with TLR2 and to induce TNF and nitric 

oxide production from both murine and human macrophages (Brightbill et al., 1999). In addition, 

the 19-kDa lipoprotein is a major inducer of IL-12 production in human monocytes (Brightbill et 

al., 1999). Abel et al. demonstrated that phosphatidylinositol mannoside (PIM) structures can 

also elicit cellular activation via TLR4 (Abel et al., 2002), with the induction of nuclear factor-kB 

(NF-kB) activation in a dose dependent manner. Interestingly, mannose-capped 

lipoarabinomannan (ManLam) derived from virulent M. tuberculosis fails to activate either TLR2- 

or TLR4-transfected cells (Means et al., 1999). In contrast, arabinosylated lipoarabinomannan 

(AraLAM) purified from fast-growing mycobacteria is capable of TLR2-mediated cellular activation 

(Means et al., 1999). 

http://en.wikipedia.org/w/index.php?title=Nucleotide-binding_oligomerization_domain&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Nucleotide-binding_oligomerization_domain&action=edit&redlink=1
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Binding of TLR ligands to TLRs activate downstream signalling cascades through the 

adaptor protein myeloid differentiation protein 88 (MyD88), which links to IL-1R-associated kinase 

(IRAK), a serine kinase that activates transcription factors like NF-kB to signal the production of 

inflammatory cytokines and chemokines (O'Neill and Bowie, 2007), needed to promote the 

attraction of innate immune cells and the initiation and polarization of adaptive immune 

responses (Akira et al., 2006). The mitogen-activated protein kinases (MAPK) family, composed 

of the ERK1/2, p38 and SAPK/JNK pathways, has have been implicated in the mediation of 

TLRs signalling and activation of cytokine gene transcription (Liu et al., 2007). Several reports 

have shown that mycobacteria in general activate the MAPK pathway (Chan et al., 2001; Cobb, 

1999; Jones et al., 2001a; Jones et al., 2001b). For instance, Jones and colleagues 

demonstrated that AraLAM, isolated from avirulent mycobacteria, and PIM, isolated from M. 

tuberculosis, stimulated ERK1/2 phosphorylation and activated the transcription factors NF-kB 

and AP-1 in a murine macrophage cell line, in a TLR2-dependent manner (Jones et al., 2001a; 

Jones et al., 2001b). In addition, Chan and colleagues shown that, although ERK1/2 and p38 

were phosphorylated, activation of ERK1/2 was sufficient for the induction of the NOS2 gene 

following the stimulation of a macrophage cell line with both ManLAM and interferon (IFN)- 

(Chan et al., 2001). Mycobacteria are able to modulate MAPK signalling to promote their survival 

in the host cell. Several studies show that virulent strains of mycobacteria caused greater 

inhibition of MAPK, particularly the ERK1/2 pathway, as compared to avirulent strain (Florido et 

al., 1999; Hasan et al., 2003; Roach and Schorey, 2002). 

The relevance of TLR signalling for the development of the immune response to M. 

tuberculosis has been addressed in several studies in vitro and in vivo. MyD88 was found to be 

essential for M. tuberculosis-induced macrophage activation (Fremond et al., 2004; Scanga et 

al., 2004; Shi et al., 2003). In addition, M. tuberculosis-infected MyD88-deficient mice have 

increased numbers of bacteria in the lung in comparison to wild type controls (100 to 1000-fold) 

(Fremond et al., 2004; Scanga et al., 2004; Sugawara et al., 2003b). As for TLR2, its role in the 

infection by M. tuberculosis remains controversial. In a model of low-dose aerosol infection, TLR2 

deficiency did not affect host defence against M. tuberculosis infection (Reiling et al., 2002; 

Sugawara et al., 2003a). However, with high-dose aerosol infection, a role for TLR2 in host 

resistance was revealed (Reiling et al., 2002; Sugawara et al., 2003a). TLR2-deficient mice were 

not compromised in their ability to induce Th1 immunity, but on the contrary, exhibited 

exaggerated immunopathology (Reiling et al., 2002). In vitro studies have shown that 
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engagement of TLR2 with M. tuberculosis ligands induces inhibition of macrophage MHC class II 

antigen presentation (Noss et al., 2001) and also blocks macrophage responsiveness to IFN-γ 

(Banaiee et al., 2006; Fortune et al., 2004). Together with the in vivo studies, these in vitro 

findings suggest that TLR2 signalling negatively modulates macrophage functions. Recent data 

indicate that TLR9 cooperates with TLR2 to recognize M. tuberculosis in macrophages as well as 

splenic DCs (Bafica et al., 2005). When murine TLR9_/_ splenic DCs were stimulated with live M. 

tuberculosis, there was a partial reduction in IL-12p40 (Bafica et al., 2005). However, in TLR2/9 

double deficient cells, there was further inhibition of cytokine production to background levels, 

suggesting that the majority of TLRs-mediated mycobacterial signalling is through these two 

receptors (Bafica et al., 2005). Moreover, TLR2/9 double deficient mice displayed markedly 

enhanced susceptibility to infection (Bafica et al., 2005). Interestingly, TLR2/4 double deficient 

mice have been found to display unimpaired resistance to M. tuberculosis (Shi et al., 2005) as 

well as to BCG infection (Nicolle et al., 2004). In what regards BCG infection, in some studies 

TLR2, TLR4 and TLR6 were shown to be redundant for the control of infection (Fremond et al., 

2003; Heldwein et al., 2003; Nicolle et al., 2004). However, in another study TLR2 appears to be 

necessary for the expansion of effector T cells and for the induction of IFN- secretion by these 

cells, while, TLR4 was shown to be necessary for the development of a normal Th1 response 

against BCG, however only when larger bacterial numbers are encountered by the host (Heldwein 

et al., 2003). 

 

1.5. ROLE OF CD4+ T CELLS AND CYTOKINES IN THE INFECTION BY M. 

tuberculosis 

The protective response against TB requires cell-mediated immunity (Boom, 1996; 

Cooper, 2009a; Flynn and Chan, 2001; Kaufmann, 2001a). Among T lymphocytes, the CD4+ T-

cell subset is of primary importance in the protection against M. tuberculosis (Saunders et al., 

2002). Studies in mouse models deficient in CD4+ T cells clearly demonstrated that these cells 

are required for the control of infection (Saunders et al., 2002). In addition, other studies 

demonstrated that adoptive transfer of CD4+ T cells enhanced protection against TB (Orme and 

Collins, 1984). Moreover, the high numbers of individuals co-infected with HIV and M. 

tuberculosis strongly suggest that the loss of CD4+ T cells greatly increases the susceptibility of 

human hosts to both acute TB and to reactivation of TB (Jones et al., 1993; Lawn et al., 2002).  
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Upon aerosol infection with M. tuberculosis, the acquired cellular response is show to be 

induced in the lung, and dissemination of the mycobacteria from the lung to the draining lymph 

node has been suggested to be required for the activation of antigen-specific T cells and the 

induction of effector function (Bhatt et al., 2004; Chackerian et al., 2002; Demangel et al., 2002; 

Humphreys et al., 2006; Khader et al., 2006; Skold and Behar, 2008; Winslow et al., 2008; Wolf 

et al., 2008). This migration of DCs to the lymph nodes during mycobacterial infection appears to 

be promoted by IL-12p40 homodimers (Khader et al., 2006) and limited by IL-10 (Demangel et 

al., 2002). Following infection by mycobacteria, two subsets of CD4+ Th cells have been shown to 

differentiate in the lymph node and to subsequently migrate to the infected tissue to exert their 

effector activities. These subsets are Th1 (Cooper et al., 1995; Flynn et al., 1995) and Th17 

(Khader et al., 2005) cells. The differentiation of Th1 cells is determined mainly by the presence 

of IL-12, and results in the production of high levels of IFN-γ (O'Garra and Robinson, 2004). In 

the presence of transforming growth factor (TGF)- and IL-6, naive T cells differentiate into a 

Th17 phenotype that produces high levels of IL-17 and requires IL-23 for survival (Veldhoen and 

Stockinger, 2006). 

The expression of IL-12, IL-6 and IL-23 is mainly associated with cells of the innate 

immune response. IL-12 is a heterodimeric cytokine consisting of the two subunits IL-12p40 

(p40) and IL-12p35 which are covalently linked (Trinchieri, 2003). IL-12 expression is induced 

following phagocytosis of M. tuberculosis bacilli in macrophages and DC (Henderson et al., 1997; 

Ladel et al., 1997). Two studies comparing murine macrophages and DC demonstrated that DC 

release significantly higher amounts of IL-12 than did macrophages in response to live M. 

tuberculosis (Giacomini et al., 2001; Hickman et al., 2002). In vitro, M. tuberculosis-infected DC 

also primed naive T cells toward Th1 development, while macrophages did not (Verreck et al., 

2004). IL-23 is another cytokine of the IL-12 family (Hunter, 2005) and, as IL-12, is a 

heterodimeric cytokine composed by the p40 subunit covalently linked to a p19 subunit . IL-23 

secretion in response to TLRs activation appears to be more pronounced in DC than in 

macrophages (Gerosa et al., 2008; Jang et al., 2008; Lyakh et al., 2008). Interestingly, secretion 

of IL-12 and IL-23 by M. tuberculosis stimulation of DC can, in addition to TLRs, be also 

dependent on signals mediated by Dectin-1 (Gerosa et al., 2008; Rothfuchs et al., 2007; Zenaro 

et al., 2009). 

Several studies highlight the role of IL-12, IL-23, IL-6 and of IFN- and IL-17 during the 

course of infection. A role for IL-12 and cytokines of the Th1 axis, predominantly IFN-, is 
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established in protection against mycobacterial infections in both mouse models (Cooper, 2009a; 

Flynn et al., 1993) and human disease (Casanova and Abel, 2002; Flynn and Chan, 2001) 

(Cooper, 2009b). In particular, IFN- that in addition to Th1 cells can also be produced by natural 

killer (NK) cells (Scharton and Scott, 1993) and CD8+ T cells (Barnes et al., 1993; Lalvani et al., 

1998; Orme et al., 1992) is also the hallmark molecule for protection against TB (Chackerian et 

al., 2002; Cooper et al., 1993; Ellner et al., 2000; Flynn et al., 1993; Ottenhoff et al., 1998). The 

role of IL-23 and Th17 responses in the infection by M. tuberculosis is yet not fully understood. 

Studies performed in mice lacking p40, p35, p19 or combinations of these genes, showed that 

IL-23 is less critical than IL-12 for protection against M. tuberculosis, and only provides a 

moderate level of protection to the host in the absence of biologically active IL-12 (Khader et al., 

2005). IL-17, secreted not only by CD4+ Th17 cells (Khader et al., 2007), but also by  T cells 

(Lockhart et al., 2006), has been shown to have a limited role in host defense against M. 

tuberculosis during primary infection (Aujla et al., 2007). However, vaccination has been shown 

to trigger an IL-17-dependent accelerated IFN- response by CD4 T cells in the lung during 

subsequent M. tuberculosis infection (Khader et al., 2007). Importantly, IL-17 promotes 

neutrophil recruitment to the site of infection (Fossiez et al., 1996; Jones and Chan, 2002; Ye et 

al., 2001), but this ability of IL-17 to induce chemokine production and cell recruitment to the 

infected tissue can in certain situations be associated with the development of immune pathology 

(Cooper, 2009a) (Cruz et al, umpublished data). 

Another important cytokine with a key role in the immune response to M. tuberculosis is 

TNF. M. tuberculosis induces TNF secretion by macrophages, DC and T cells (Barnes et al., 

1993; Henderson et al., 1997; Ladel et al., 1997; Serbina and Flynn, 1999). The requirement 

for TNF for the control of M. tuberculosis infection is complex, but it clearly is an important 

component for macrophage activation, as TNF, in synergy with IFN-, induces NOS2 expression 

(Chan et al., 1992; Liew et al., 1990). The importance of this cytokine in granuloma formation in 

TB and other mycobacterial diseases has been significantly documented (Flynn and Chan, 2001; 

Miller and Ernst, 2008).  

The proinflammatory response which is initiated by M. tuberculosis is antagonized by anti-

inflammatory cytokines that contribute to the control of the magnitude of the inflammatory 

responses. TGF- was found to be present in granulomatous lesions of TB patients and is 

produced by human monocytes after stimulation with M. tuberculosis (Toossi et al., 1995) or M. 

tuberculosis lipoarabinomannan (Lam) (Dahl et al., 1996). TGF- has important anti-

http://www.copewithcytokines.de/cope.cgi?key=inflammation
http://www.copewithcytokines.de/cope.cgi?key=inflammation
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inflammatory effects, including deactivation of macrophage production of ROI and RNI (Ding et 

al., 1990), inhibition of T cell proliferation (Toossi and Ellner, 1998), interference with NK and 

CTL function and downregulation of IFN- (Ruscetti et al., 1993), TNF and IL-1 release (Ruscetti 

et al., 1993). TGF-β is also an important mediator of immune-suppression by regulatory T cells 

(Gorelik and Flavell, 2002). However, together in the presence of IL-6, TGF- induces Th17 

differentiation (Veldhoen et al., 2006).  

The anti-inflammatory cytokine IL-10 is also expressed during M. tuberculosis infection 

(Barnes et al., 1993; Boussiotis et al., 2000; Gerosa et al., 1999; Shaw et al., 2000). IL-10 is 

needed to limit tissue damage by controlling the immune response (Moore et al., 2001). 

However, an excess of IL-10 most likely prevents pathogen clearance. Indeed, transgenic mice 

constitutively expressing IL-10 were less capable of clearing a BCG infection, although T cell 

responses including IFN- production were unimpaired (Murray et al., 1997), thus suggesting 

that IL-10 may counter the macrophage activating properties of IFN- . Interestingly, IL-10-/- mice 

were not more resistant to acute M. tuberculosis, compared to wild type mice (North, 1998). 

However, lack of IL-10 was recently link to a decreased control over the inflammatory response 

that eventually resulted in progression of disease, bacterial multiplication and morbidity (Higgins 

et al., 2009). 

An appropriate immune response to M. tuberculosis is the result of a balance between 

inflammation and regulation. In what extent does the vaccination with BCG change the 

parameters of this response is still not fully known. This knowledge is however important in order 

to improve the efficacy of BCG vaccination or to develop new vaccination strategies. 
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II. AIMS 

 

BCG is the only approved vaccine used for TB prevention. Although BCG is used 

worldwide, the cellular and molecular mechanisms by which this vaccine acts are still poorly 

understood. Although BCG is protective against tuberculous meningitis, it shows great variability 

in the prevention of pulmonary disease. 

Several experimental vaccines are being developed against TB. Some are able to induce 

the same level of protection as BCG, although none were demonstrated to induce better 

protection than BCG. Therefore it is fundamental to understand how BCG modulates the innate 

and cellular immunity and where it fails, in order to improve vaccination strategies to TB. 

 

The main goal of this work was to perform a comparative study of BCG versus M. 

tuberculosis infection on DCs and macrophages to better understand how these pathogens 

interact with cells of the innate immune system, what molecular pathways are triggered, and how 

that interaction translates into an effective, or not, Th cell responses  

 

Specifically, the following aims were addressed: 

 

1. Investigation of the magnitude of macrophage and DCs responses to M. tuberculosis 

or BCG, in terms of cytokine production by these phagocytes; 

2. Elucidation of the molecular events that might explain differences in the cytokine 

response of macrophages and DCs to M. tuberculosis or BCG; 

3. Understanding the type of Th cell responses developed in the presence of M. 

tuberculosis- or BCG- infected DCs; 

4. Clarification of the effector activity of macrophages in what regards the control of M. 

tuberculosis or BCG growth. 

 

Dissecting the cellular and molecular events that occur upon mycobacterial challenge will 

help to reveal possible weak points of both the host and the bacteria that can be targeted and will 

subsequently provide clues for the design of new and better vaccines.  
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III.  MATERIAL & METHODS 

 

3.1. Animals 

Eight-week-old female C57BL/6 and Balb/c mice were obtainned from Charles River 

Laboratory (Barcelona, Spain). Mice transgenic for the DO11.10 / TCR were backcrossed on 

a RAG-deficient (RAG 2/2) BALB/c background and were kindly provided by Dr. Anne O’Garra 

(NMIR, London, England). 

 

3.2. Bacteria 

The H37Rv strain of M. tuberculosis and M. bovis BCG Pasteur were grown in Proskauer 

Beck medium containing 0.05% Tween 80 to mid-log phase and frozen in 1-ml aliquots at -80ºC. 

Bacterial viability was determined by counting the number of CFU (colony forming units) on 

Middlebrook 7H11 agar plates. M. bovis BCG Pasteur were obtained from Trudeu Institute 

Mycobacterium Collection (TMC 1011). 

 

3.3. Culture of Bone Marrow Derived Macrophages 

Primary mouse bone marrow derived macrophages were generated from WT C57BL/6 

animals as described elsewhere(Saraiva et al., 2009). Petri dishses were initially seeded with 

1x105 cells in complete medium with 20% of L-929 conditioned medium (LCCM) and incubated 

at 37ºC in 5% CO2 humidified air chamber. On day 4, the medium was renewed and cultures 

were used at day 7. Macrophages were stimulated with M. tuberculosis or BCG at a multiplicity of 

infection (MOI) 2:1 (bacteria/macrophage) for different periods of time. Some cultures received 

100 U/ml of mouse IFN- (R&D Systems). 

 

3.4. Culture of Bone Marrow Derived Dendritic Cells  

Primary mouse bone marrow derived dendritic cells (DCs) were differentiated from WT 

C57BL/6 mice as described previously (Saraiva et al., 2009). Cells were culture in 6-well plates, 

containing 5x106 cells in complete medium with 20% of granulocyte-macrophage colony-

stimulating factor (GM-CSF) and incubated at 37ºC in 5% CO2 humidified air chamber. On day 2, 

4 and 6, the medium was renewed and cultures were used at day 7. DCs were exposed to live M. 

tuberculosis  or BCG at a MOI of 2 for different periods of time.  
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3.5. Quantitative Real Time-PCR (RT-PCR) Analysis  

Total RNA from cultured macrophages was extracted with TRIzol® Reagent (Invitrogen, 

San Diego, CA) according to the manufacturer’s instructions. Reverse transcription was done with 

whole RNA in a final volume of 20 μl using SuperScript II (Invitrogen) and Oligo(dT) (Roche) 

according to the manufacturer’s instructions. The cDNA was then subjected to real-time PCR for 

quantification of IL-12p40, IL-12p35, IL23p19, TNF, IL-6, IL-10 and Ubiquitin (used as house-

keeping gene) in 10 µl with SYBR Green Supermix (Bio-Rad) in an CFX 96 Real-Time (Bio-Rad) 

system. The specific conditions of each PCR are listed in the table 1. All reaction were performed 

using the following cycling parameters: 1 cycle of 95ºC for 15 min, followed by 30 cycles of 95ºC 

for 15 min, 58ºC for 20 min and 72ºC for 15 min, and 2 amplification cycles of 65ºC for 1.3 min 

and 95ºC for 15min; and 1 cooling cycle of 35ºC for 1.3 min. Relative mRNA expression was 

calculated accordingly with the following equation: 1.8 ^ (ubiquitin mRNA expression – specific 

cytokine gene mRNA expression) x 100000. 

 

Table 1 - Sequence of the primers specific for genes and conditions used in RT-PCR 

reaction. 

 

 

 

 

 

 

 

 

 

 

3.6. ELISA Assay 

Supernatants from M. tuberculosis- or BCG-infected DCs were collected at 24h post-

infection and screened for IL-12p70, IL-12p40, IL-23p19, TNF, IL-6 or IL-10 Ready Set-Go ELISA 

kit (eBioscience) by sandwich ELISA. 

 

 

Gene Primer                                Probe Sequence 

Ubiquitin 
Sense 

Anti-sense 

5’- TGG CTA TTA ATT ATT CGG TCT GCA -3’ 

5’- GCA AGT GGC TAG AGT GCA GAG TAA -3’ 

IL-12p40 
Sense 

Anti-sense 

5’- CAA ATT ACT CCG GAC GGT TCA -3’ 

5’- AGA GAC GCC ATT CCA CAT GTC -3’ 

IL-12p35 
Sense 

Anti-sense 

5’- TGC TGG TGG CCA TCG AT -3’ 

5’- GCA GAG TCT CGC CAT TAT GAT TC-3’ 

IL-12p19 
Sense 

Anti-sense 

5’- CGT ATC CAG TGT GAA GAT GGT TGT -3’ 

5’- GCT CCC CTT TGA AGA TGT CAG A-3’ 

TNF 
Sense 

Anti-sense 

5’- GCC ACC ACG CTC TTC TGT CT -3’ 

5’- TGA GGG TCT GGG CCA TAG AAC -3’ 

IL-6 
Sense 

Anti-sense 

5’- ACA CAT GTT CTC TGG GAA ATC GT -3’ 

5’- AAG TGC ATC ATC GTT GTT CAT ACA -3’ 

IL-10 
Sense 

Anti-sense 

5’- TTT GAA TTC CCT GGG TGA GAA -3’ 

5’- GCT CCA CTG CCT TGC TCT TAT T -3’ 
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3.7. Protein Analysis 

Macrophages and DCs were cultured in medium containing 1% FBS overnight before 

stimulation with M.tuberculosis or BCG and washed in PBS before lysis (1% NP-40, 0.1% SDS, 

0.5% deoxycholate acid, 50 mM Tris HCl, pH 8.0, 50 mM NaCl, 2 mM EDTA, 2 mM sodium-

pyrophosphate, 50 mM sodium fluoride, 100 mM vanadate [all from Sigma-Aldrich], and 

complete EDTA-free protease inhibitor cocktail (Roche). Immunoblotting of proteins was 

performed as previously described (Saraiva et al., 2005) and visualized with ECL (GE Healthcare) 

or SuperSignal West Femto Substrate (Thermo Fisher Scientific). Using specific antibodies that 

exclusively recognize the bi-phosphorylated forms (activated) of ERK1/2 or the total form of the 

same enzyme, the ratio between the Western Blot signals obtained for the phosphorylated versus 

the total form, allow the quantification of the amount of ERK1/ERK2 activated within the cells 

upon M. tuberculosis or BCG stimulation. Antibodies used: rabbit (polyclonal) anti-ERK1/2 

[pTpY185/187) phosphospecific (Biosource), rabbit (polyclonal anti-ERK1/2 pan (Biosource). 

 

3.8. In vitro CD4 T Cell Activation 

Naive CD4+ T cells were generated from OVA-TCR transgenic DO.11.10 mice as described 

(Cruz et al., 2006) and cultured (1x106 cells/ml) with M. tuberculosis- or BCG- infected DCs 

(1x106 cells/ml) for 72h at 37°C in 5% CO2, and  in 10 ng/ml IL-2 and 5 M OVA323–339 peptide. 

Stimulated T cells were washed and counted, and the frequency of IFN-- and IL-17-producing 

CD4+ T cells determined by ELISPOT. 

 

3.9. In vivo Infection 

C57BL/6 animals were infected by the intravenous route with M. tuberculosis strain 

H37Rv or with BCG (1x106 CFU) and at different time points the animals were sacrificed and the 

spleens removed. The ability of the splenocytes to produce IFN- or IL-17 in response to Antigen 

85 was assessed by ELISPOT. 

 

3.10. ELISPOT Assay 

ELISPOT was performed as described previously (Cruz et al., 2006). Briefly, a total of 

1x105 cells was added to Ab-coated wells, 2-fold dilutions were made, and irradiated splenocytes 

from Balb/6 or C57/BL6 mice were added at 1x106 cells per well. A peptide representing an I-Ab-

restricted epitope of antigen85A (Cole et al., 1998) were used to stimulate cells from infected 
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mice, whereas Ova323–339 stimulated DO.11.10 T cells (Camus et al., 2002); all wells contained 10 

ng/ml IL-2. After 24 h, plates were washed and the number of IFN-- or IL-17-producing CD4+T 

cells determined as described (Cruz et al., 2006). Cells from mice infected with M. tuberculosis 

or BCG, but cultured in the absence of antigen, did not produce spots. 

 

3.11. Bacterial Load Determination 

To determined the number of viable bacteria, macrophage monolayers were lysed with 

0.1% (final concentration) saponin and the bacterial suspensions were serially diluted and plated 

onto Middlebrook 7H11 agar medium. Bacterial colony formation was counted after 3 weaks of 

incubation at 37°C. 

 

3.12. Nitrites Quantification 

Nitrite production by macrophage monolayers was determined by the colorimetric Griess 

assay as described elsewhere (Turner et al., 2001). Briefly, supernatants from macrophage 

cultures were placed into 96-well enzyme-linked immunosorbent assay plate in duplicates, and 

equal volume of Griess reagent (1% sulfanilamine, 0.1% nathylethylenediamine, 2,5% H3PO4) was 

added. The absorbance was measured at 550nm on a spectrophotometer, and the 

concentrationof nitrite was calculated by comparing optimal density values to a standard curve of 

NaNO2. 

 

3.13. Immunofluorescence 

Macrophages were cultivated as described above except that lamellae were placed on the 

bottom of the wells of the 24-wells incubation plaques. At specific time points after infection, the 

lamellae were collect and fixed in 2% PFA. Next, the lamellae were incubated with the primary 

antibody affinity-purified rabbit anti-human/mouse caspase 3 active (R&B Systems) and was 

detected with goat anti-rabbit IgG (H+L) Alexa Fluor 568 (Molecular Probes A11011). DAPI was 

used to counter stained and to detect nuclei. Pictures were observed with Olympus BX61 

microscope and images were recorded with Olympus DP70 camera.  

 

3.14. Stastistical Analysis 

The results are given as means ± SE of the mean. Statistical significance was performed 

by using Studant’s t test. Values of p < 0.05 were considered significant.  
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IV. RESULTS 

 

4.1. DC responses to M. tuberculosis and to BCG are stronger than macrophage 

responses, and M. tuberculosis is a stronger stimulus than BCG to DCs 

To understand the early steps of the immune response to M. tuberculosis and BCG and 

since DCs and macrophages are the central sensory components of the immune system, being 

within the first cells to recognize the presence of pathogens and to respond to it, we decided to 

compare the response of both cells types to either M. tuberculosis or BCG in a systematic and 

extensive fashion.  

The first point to be addressed in our comparison was the response of macrophages and 

DCs to M. tuberculosis or BCG in terms of cytokine production. To do this, we prepared primary 

cultures of macrophages and DCs derived from mouse bone marrow and stimulated with live M. 

tuberculosis or BCG at a MOI of 2. At different time points post-infection, we extracted RNA from 

the stimulated cells, prepared cDNA and measured the expression of several cytokines by RT-

PCR. We were particularly interested in studying whether the expression of cytokines with a role 

in T cell differentiation induced by M. tuberculosis or BCG was different. Since IL-12p70 and IL-

23 are important for Th1 and Th17 responses, respectively, we started by measuring the 

transcription of the monomers that compose IL-12 and IL-23 (p40-p35 and p40-p19, 

respectively). We also measured the expression of other immune mediator cytokines such as 

TNF, which contributes to the initial control of the infection, for example by activating the infected 

macrophages in an autocrine way (Chan et al., 1992; Liew et al., 1990); IL-6 described to be 

required for the development of Th17 cells (Veldhoen and Stockinger, 2006); and IL-10, an anti-

inflammatory cytokine known to inhibit macrophage and DCs functions (Demangel et al., 2002; 

Madura Larsen et al., 2007). 

As shown in Fig.1, we observed that both macrophages and DCs express various cytokines 

in response to M. tuberculosis or BCG. Both cell types showed similar patterns of expression for 

p35, TNF, IL-6 and IL-10 in response to either mycobacterium. However, major differences were 

identified in terms of the IL-12 subunits p40 and p19. Indeed, whereas macrophages stimulated 

with M. tuberculosis or with BCG did not express detectable amounts of IL-12p19 monomer, DCs 

did express this molecule, but the levels obtained in response to M. tuberculosis stimulation were 

higher than those obtained with BCG stimulation. In what regards the expression of IL-12p40, the 

pattern was similar to the one observed for p19. Again, maximum p40 expression was induced 
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by M. tuberculosis in DCs. BCG induced only modest amounts of p40 in DCs and the expression 

of this molecule by macrophages was low, but detectable. Interestingly, M. tuberculosis-

stimulated DCs, always expressed higher levels of the tested cytokines, suggesting that M. 

tuberculosis is stronger than BCG as a stimulus to DCs. As for macrophages, the two agents 

yielded similar responses, thus suggesting that different regulatory pathways are in place in 

macrophages versus DCs. Overall, our data show a differential cytokine expression by 

macrophages and DCs when stimulated with M. tuberculosis or BCG. 
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Figure 1 - M. tuberculosis and BCG are stronger stimuli to DCs than to macrophages, and M. tuberculosis is a stronger stimulus than BCG to DCs.
Macrophages and DCs were generated from BL/6 mice and exposed to M. tuberculosis or BCG at an MOI of 2. At different time points post infection, total RNA was extracted. The
expression of IL-12p40, IL-12p35, IL-23p19, TNF, IL-6 and IL-10 was assessed by RT-PCR and normalised to the expression of ubiquitin. Points of the graphs represent pools of
cells in each time point (n=3). Results are representative of three independent experiments with similar results. Mtb (M. tuberculosis); ND (not detected).

Macrophages MacrophagesDCs DCs
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4.2. M. tuberculosis-stimulated DCs are stronger producers of IL-12 and IL-23 than 

BCG-stimulated DCs. 

From our mRNA analysis, we concluded that the transcription of p40 and p19 by DCs was 

only induced in relevant levels by M. tuberculosis stimulation. Taking into consideration the role 

of IL-12 (p40-p35) and IL-23 (p40-p19) molecules in Th cell differentiation, we decided to assess 

the secretion of IL-12p70 and IL-23 by M. tuberculosis or BCG stimulated DCs. For that, we 

collected DCs culture supernatants 24 hours post-stimulation and measured by immunoassay 

the amounts of cytokines secreted. Consistently with the observed gene expression pattern, the 

analysis of supernatants from stimulated DCs showed that both IL-12p70 and IL-12p40 release 

was higher in DCs stimulated with M. tuberculosis comparing to stimulation with BCG (Fig. 2). IL-

23 production was only detectable in M. tuberculosis-stimulated DCs. We also measured the 

secretion of TNF, IL-6 and IL-10. We found that IL-6 and IL-10 production was similar in both M. 

tuberculosis- and BCG-stimulated DCs, but TNF production was higher in DCs stimulated with 

BCG (Fig.2). Thus our data suggest that, in terms of protein expression, M. tuberculosis-

stimulated DCs are potent producers of IL-12 and IL-23 whereas BCG-stimulated DCs are not. 

Importantly, our data also show that, despite the difference observed for IL-12 and IL-23, BCG is 

able to induce the production of certain cytokines by DC, thus suggesting that activation signals 

can be generated by BCG. We are currently performing the ELISA assays for macrophages 

supernatants to further validate the results obtained by PCR. 
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Figure 2 - M. tuberculosis infected DCs produce higher amounts of IL-12 and IL-23 than 

BCG-infected DCs. DCs were differentiated from WT mice and exposed to M. tuberculosis or BCG at an 

MOI of 2. DCs culture supernatants were harvested 24 hours post stimulation and analyzed by ELISA for 

IL-12p70, IL-12p40, IL-23, TNF, IL-6 and IL-10 concentration. Each time point represents the mean of 

three wells. Results are representative of three independent experiments with similar results and show 

mean ± SD; *, **, p<0.05 and 0.01, respectively. Mtb (M. tuberculosis). ND (not detected) 

 

4.3. M. tuberculosis induces earlier and stronger activation of ERK 

phosphorylation in macrophages as compared to DCs 

From the results shown in the previous sections, macrophages and DCs respond 

differently to M. tuberculosis or BCG stimulation in terms of cytokine expression, particularly in 

what regards the expression of IL-12 and IL-23 (Fig.1 and Fig.2). We hypothesised that these 

differences might be a consequence of a differential activation of intracellular signalling cascades. 

Previous studies have suggested the activation of various signalling cascades following 

mycobacterial infection, such as the MAPK pathway (Cobb, 1999) that includes three main 
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cellular kinases: ERK, p38 and JNK. We have started by addressing the activation of the MAPK 

cascade induced by M. tuberculosis or BCG by monitoring the ERK pathway. Phosphorylation of 

the two isoforms, ERK1 and ERK2, induces their translocation to the nucleus, followed by 

activation of several targets and culminating with the expression of cytokine genes. Thus, to 

further investigate if ERK activation is differently induced by M. tuberculosis and BCG in 

macrophages and DCs, we measured the phosphorylation of this MAPK by Western Blot, using 

specific antibodies that exclusively recognize the bi-phosphorylated forms (activated) of 

ERK1/ERK2 or the total form of the same enzyme. To control the amount of total protein used, 

we detected the amount of actin present in each condition, in parallel to phosphor-ERK1/2 or 

total-ERK1/2. The ratio between the Western Blot signals obtained for the phosphorylated versus 

the total form, allowed the quantification of the amount of ERK1/ERK2 activated within the cells 

upon M. tuberculosis or BCG stimulation. As shown in Fig.3, M. tuberculosis stimulation of 

macrophages induced an earlier and stronger ERK phosphorylation than that induced in DCs. 

Although the kinetics of ERK phosphorylation was similar for M. tuberculosis- or BCG-stimulated 

macrophages, this activation was weaker when BCG was used as stimulus. The lowest induction 

of ERK phosphorylation was observed in DCs stimulated with BCG. Therefore our results suggest 

that M. tuberculosis and BCG trigger the ERK pathway with distinct intensities in macrophages 

and DCs. Despite the higher levels of ERK phosphorylation observed for macrophages, these 

cells do not respond to M. tuberculosis in a stronger way than DCs, suggesting that tight 

regulatory mechanisms must be in place. 
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Figure 3 – M. tuberculosis-stimulated macrophages earlier and stronger activate ERK 

phosphorylation as compared to DCs. Mouse DCs and macrophages were differentiated in culture 

and stimulated with M. tuberculosis or BCG at a MOI of 2. At the indicated time points, cellular extracts 

were prepared, proteins separated by SDS-PAGE and specific phosphorylation of ERK detected by Western 

Blot. Total ERK and actin proteins were detected as loading controls. Points of the graphs represent pools 

of triplicate cell cultures in each time point and are from one experiment. 

 

4.4. Differential Th responses are induced in vitro by M. tuberculosis- or BCG-

infected DCs  

The presence of IL-12 (p40-p35) and IL-6 or TGF- and IL-23 (p40-p19) in the cytokine 

milieu dictates the differentiation of Th1 or the differentiation and survival of Th17 responses, 

respectively (Veldhoen and Stockinger, 2006). Since M. tuberculosis or BCG stimulation of DCs 

induced a differential expression pattern of IL-12 and IL-23, but similar levels of IL-6 (Fig.1 and 

Fig.2), we decided to investigate if this difference resulted in differential Th responses developed 

in the presence of M. tuberculosis or BCG. A difficulty in studying early T cell differentiation is the 

low number of antigen-specific T cells present during immune initiation. Thus, we used a well 

stabilised model, the DO11.10 TCR-transgenic mice that express a TCR specific for OVA323–339 

peptide (OVA peptide), to evaluate the impact of M. tuberculosis or BCG infection on DCs-driven T 

cell differentiation. Bone marrow DCs were infected with M. tuberculosis or BCG (MOI of 2). 

Macrophages DCs 
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Twenty four hours later, the infected DCs were recovered and co-cultured with CD4+ T cells 

isolated from the spleens of DO11.10 TCR transgenic mice in the presence of OVA peptide and 

IL-2, following a previously reported method. Three days later, the CD4+ T cells were recovered 

and their cytokine profile, in terms of IFN- or IL-17 expression, determined by ELISPOT, using 

OVA peptide as antigen.  

We observed that M. tuberculosis-infected DCs were able to induce the development of 

both Th1 and Th17 responses, whereas BCG-infected DCs induced preferentially Th17 responses 

(Fig. 4). As a control, non-infected DCs induced undetectable Th1 responses and very few IL-17-

producing CD4+ T cells (Fig.4). All together, our data strongly suggest that the differential 

activation of DCs responses by M. tuberculosis or BCG, observed in terms of signaling cascades 

activated and of differential expression of certain cytokines, does have an impact in terms of Th 

cell differentiation.  

 

Figure 4 - Differential Th responses are induced in vitro by M. tuberculosis- or BCG-infected 

DCs. Purified DO11.10 transgenic CD4+ T cells were cultured for 3 days with DCs from Balb/c mice. The 

DCs were either previously infected with M. tuberculosis or BCG (MOI of 2) or left uninfected. All cultures 

contained OVA peptide and IL-2. After 3 days the cells were washed and the ability of the differentiated 

CD4+ T cells to produce IFN-γ or IL-17 in response to OVA peptide was determined by ELISPOT. Points of 

the graph represent pools of cells for each condition. Results show mean ± SD for ELISPOT dilutions from 

one experiment. Mtb (M. tuberculosis). 

 

4.5. M. tuberculosis and BCG induce a differential kinetics of Th responses kinetics 

in vivo 

Having observed in vitro that M. tuberculosis-infected DCs were able to induce the 

development of both Th1 and Th17 responses, whereas BCG-infected DCs preferentially induced 

Th17 responses in vitro, we wanted to explore if this observation had an in vivo parallel. To 
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investigate this, we infected mice intravenously with M. tuberculosis or BCG and at certain time 

points post-infection, the animals were sacrificed and their spleens harvested. Splenocyte 

suspensions from infected animals were prepared and restimulated ex vivo for 18 hours with a 

class I-Ab-restricted epitope of the dominant mycobacterial antigen, antigen85A, present in both 

BCG and M. tuberculosis. The splenocytes ability to produce IL-17 or IFN- was determined by 

ELISPOT. As shown in Fig.5, we observed a higher number of IFN--producing CD4+ T cells in M. 

tuberculosis-infected animals than in BCG-infected ones, for the tested time points. In contrast, 

BCG infection induced a higher number of IL-17-producing CD4+ T cells as compared with the M. 

tuberculosis infection. Our in vivo data are therefore in line with the in vitro findings, thus 

suggesting that the differential Th responses observed for M. tuberculosis and BCG might be an 

interesting point to address and explore in the future in terms of vaccine development. 

 

 

 

 

 

 

 

 

 

 

Figure 5 - Differential Th responses are induced by M. tuberculosis or BCG during an in vivo 

infection. BL/6 mice were infected intravenously with 1x106 CFU of M. tuberculosis or BCG and at the 

indicated time points splenocytes were isolated and assessed for their ability to produce IL-17 or IFN-γ in 

response to antigen85 by ELISPOT. Results show mean ± SD from one experiment, *, **, ***, p<0.05, 

0.01 and 0.001, respectively. Mtb (M. tuberculosis). 

 

4.6. The growth of M. tuberculosis in infected macrophages is faster than the 

growth of BCG 

In the previous sections, we showed that the ability of BCG- or M. tuberculosis- infected 

DCs to differentiate CD4+ T cells into Th1 or Th17 cell responses was different, which was related 

to the differential response of these cells to each of the bacteria. We next questioned if the 

effector activity of macrophages in what regards the control of M. tuberculosis or BCG growth 
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was also different. To test this, macrophages were infected with these two mycobacteria (MOI of 

2) and on specific time points post-infection, the number of viable bacteria was determined. We 

observed an increase of bacterial burden on M. tuberculosis-infected macrophages, 2 days after 

infection. At this time point, macrophages infected with BCG showed significantly less bacterial 

burden. However, 4 days post-infection, the bacterial load observed for both M. tuberculosis- and 

BCG-infected macrophages was similar (Fig.6). Our results thus suggest that the effector activity 

of macrophages, able to control BCG during the initial time points of macrophage infection, might 

be compromised in infections by M. tuberculosis. 

 

 

 

 

 

 

 

 

Figure 6 – The growth of M. tuberculosis in infected macrophages is faster than the growth 

of BCG. Macrophages from BL/6 mice were differentiated and exposed to M. tuberculosis or BCG at a 

MOI of 2. At the indicated time points, cells were lysed and the number of viable bacteria assessed by 

CFU counting. Each point is the mean of 6wells. Results show mean ± SD from two experiments; ***, 

p<0.001. MTB (M. tuberculosis). 

 

4.7. The induction of NO by M. tuberculosis or BCG in infected macrophages is 

similar 

Having observed a significant increase in the bacterial burden of M. tuberculosis-infected 

macrophages, 2 days after infection, in contrast to macrophages infected with BCG, we wanted 

to determine if the bactericidal activity of macrophages was more effective against BCG than 

against M. tuberculosis at that specific time point. Since the anti-mycobacterial function of 

macrophages has been associated, among other mechanisms, to the production of NO (Flynn 

and Chan, 2001), we analysed the generation of NO by M. tuberculosis- or BCG- infected 

macrophages. Macrophages were infected with M. tuberculosis or BCG. As the microbicidal 

activity of macrophages is highly potentiated by IFN-, we performed the infections in the 

presence or absence of this cytokine. At specific time points after infection, culture supernatants 
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were harvested and mixed with Griess reagent and NO release measured by spectrophotometry, 

using dilutions of NaNO2 to obtain the standard curve. Infection by M. tuberculosis or BCG alone 

did result in detectable but very low levels of NO production. As expected, IFN- significantly 

increased the production of NO induced by both infections (Fig.7). However, the amount of NO 

released by macrophages upon infection by M. tuberculosis or BCG was similar. These results 

suggest that NO production most likely was not the effector mechanisms behind the increased 

protection observed on BCG-infected macrophages, at 2 days post-infection (Fig.6). Indeed, other 

bactericidal mechanisms of macrophages might account for the differential protection observed, 

as will be discussed later. 

 

 

 

 

 

 

 

 

Figure 7- M. tuberculosis- or BCG-infected macrophages produce similar amounts of NO 

along the first 48 hours post-infection. Macrophages were differentiated from BL/6 mice and 

infected with M. tuberculosis or BCG (MOI of 2) in the presence or absence of IFN-. On day 0 and on 

days 1 and 2 post-infection, culture supernatants were recovered and the amount of nitrites quantified by 

the Griess assay (Turner et al., 2001). Each time point represents the mean of three wells. Results show 

mean ± SD from two experiments. MTb (M. tuberculosis). 

 

4.8. M. tuberculosis induces high rates of caspase-3-mediated apoptosis at early time 

points post-infection 

As the levels of NO production by macrophages following infection with M. tuberculosis or 

BCG were similar, we decided to investigate if other bactericidal mechanism were more effective 

during BCG than M. tuberculosis infection. During mycobacterial infections, macrophage 

apoptosis is associated with protection (Lee et al., 2009b). Since caspase-3 has been identified 

as being a key mediator of apoptosis, we decided to measure caspase-3 activation on 

macrophages infected with M. tuberculosis or BCG, by immunocytochemistry. As observed in 

Fig.8, the percentage of caspase-3 positive macrophages increased with both infections during 
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the time of infection. However, 2 days post-infection, M. tuberculosis induced higher percentage 

of caspase-3 activation in macrophages. At 4 days post-infection, this percentage was similar in 

both M. tuberculosis and BCG infections. In contrast to what happened with BCG infection, where 

a significantly increase of caspase-3 positive cells was observed over-time, during M. tuberculosis 

infection the number of caspase-3 positive cells was at its maximum on day 2 post-infection. 

Therefore, despite the existence of more cells undergoing apoptosis at early time points during 

the infection by M. tuberculosis, the bacterial burden was higher for this bacterium than for BCG. 

Our data strongly suggest that apoptosis induced by M. tuberculosis early on post-infection is not 

associated with a protective response. 

 

 

 

 

 

 

 

Figure 8 –M. tuberculosis induces high rates of caspase-3-mediated apoptosis at early time 

points post-infection. Macrophages were differentiated and placed under lamellae on the bottom 

of the wells of 24-wells incubation plaques. At specific time points after infection, the lamellae 

were collect and fixed in 2% PFA. Subsequently, the lamellae were incubated with the primary 

antibody against caspase-3 and detected with anti-rabbit IgG (H+L). DAPI was used to counter 

stained and to detect nuclei by fluorescence microscopy. Results show mean ± SD from two 

experiments, **, p<0.01. MTb (M. tuberculosis). 
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V. DISCUSSION 

 

With one-third of the world’s population infected with M.tuberculosis, TB remains an 

important disease not only in terms of public health implications but also because it is a disease 

that persists in the host.  

The only vaccine currently available to prevent TB is BCG. It prevents disseminated TB in 

newborns, however fails to protect against the most common form of the disease, pulmonary TB 

in adults (Kaufmann, 2000). The reasons why the efficiency of BCG is variable are not fully 

understood, yet one possibility is that the immune responses triggered by BCG and 

M.tuberculosis might be different and so full protection is not achieved by vaccination. However, 

various experimental vaccines developed in recent years and tested in animal models proved to 

be less effective than BCG (Aagaard et al., 2009). This raises the issue that vaccine improvement 

needs to take into consideration the mechanism(s) of protection conferred by BCG and not only 

the immune response triggered by M. tuberculosis. Based on this rational, we proposed to 

compar the responses triggered by M. tuberculosis and BCG at various levels. 

We started by comparing the cytokine responses of bone marrow derived macrophages 

and DCs to live M. tuberculosis or BCG. Our data showed that M. tuberculosis is a stronger 

trigger to DCs than BCG, while the macrophage responses to these two mycobacteria were 

similar (Fig.1 and 2).  

Since cytokine production by DCs is central in the context of Th cell responses, we became 

particullary interested in the induction of cytokines that dictate Th cell differentiation and survival. 

In this this regard, we showed that DCs exposed to M. tuberculosis were induced to expressed 

high amounts of p40 and p19 monomers and of the respective bioactive molecules- IL-12 and IL-

23, whereas BCG appeared to induce a “sub-optimal” stimulation of DCs with very little 

production of these cytokines. The observation that M. tuberculosis-infected DCs produce more 

IL-12p70 than BCG-infected DCs is in agreement with a recent study performed with human DCs 

(Giacomini et al., 2009). In contrast, IL-6 production by M. tuberculosis- or BCG-stimulated DCs 

was similar, and TNF secretion by DCs was higher with the BCG stimulus. Our data therefore 

suggest that distinct molecular pathways must be activated by M. tuberculosis and BCG in DCs 

(Fig.1 and Fig.2). Furthermore, we provide experimental evidence that M. tuberculosis and BCG 

stimulate macrophages and DCs differently, with distinct outcomes. Thus, why are macrophages 

and DCs responding differently to M. tuberculosis or BCG? Macrophages and DCs respond to 
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pathogen-derived products with the induction and production of effector molecules that regulate 

innate and adaptive immune responses (Akira, 2006; Beutler, 2004; Medzhitov, 2001). TLRs are 

within the PPRs that sense mycobacteria (Akira et al., 2006), leading to cytokine production. 

Data from our laboratory suggest that the main TLR involved in the recognition of M. tuberculosis 

and BCG by macrophages and DCs is TLR2. Therefore, the differences observed in terms of 

cytokine expression by DCs and macrophages in response to these mycobacteria is most likely 

not associated to a differential TLR recognition. TLR stimulation induces activation of MAPK such 

as ERK1/2 (Akira and Takeda, 2004). The signalling cascade involving ERK1/2 activation has 

been described before to be involved in the regulation of p40 and p19 gene expression 

(Goodridge et al., 2003; Jang et al., 2009; Kaiser et al., 2009; Saito et al., 2006). Since the 

differences we observed were precisely on the expression of these molecules, we decided to 

investigate a possible difference in terms of ERK1/2 activation. We report here that a differential 

activation of ERK1/2 is in place macrophages versus DCs stimulated with M. tuberculosis or 

BCG (Fig.3). Our data show that an earlier and stronger ERK phosphorylation occurs in 

macrophages stimulated with M. tuberculosis. In macrophages stimulated with BCG, the kinetics 

of ERK phosphorylation was similar to that observed in M. tuberculosis-stimulated macrophages, 

yet this activation was weaker. Additionally, a poor induction of ERK phosphorylation in DCs 

stimulated with BCG was observed in contrast to the other conditions. These results support our 

hypothesis that BCG induces a “sub-optimal” stimulation of macrophages and DCs and suggests 

the ERK1/2 pathway to be involved in this differential activation of DCs by M. tuberculosis versus 

BCG. Furthermore, we also found that ERK1/2 activation was different in macrophages versus 

DCs, stimulated with M. tuberculosis, being this stimulus in macrophages the strongest inducer 

of this cascade. Below, we propose a model (Fig.9) where the threshold of ERK1/2 appears to be 

an important regulatory mechanism for IL-12 and IL-23 induction when macrophages and DCs 

sense M. tuberculosis or BCG, although other mechanisms certainly also exist. Recently Kaiser et 

al. reported that TLR4 and TLR9 activation of ERK1/2 positively regulates IL-10 induction in 

myeloid macrophages and myeloid DCs, in contrast to its negative effects on IL-12 and IFN- 

production (Kaiser et al., 2009). This work is in line with ours, suggesting that ERK1/2 signalling 

is interpreted differently by macrophages and DCs, and this might explain the different amounts 

of cytokine expression.  
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Figure 9 – Levels of ERK 1/2 phosphorylation induced by M. tuberculosis or BCG dictate the 

differential cytokines production by macrophages and DCs. 

 

We now intend to investigate the molecular determinants that might explain the differential 

ERK activation by M. tuberculosis and BCG. We are also interested in determining whether the 

induction of other MAPKs is also differently activated in DCs, by M. tuberculosis or by BCG, and 

whether it contributes to explain differences in terms of cytokine expression. We will also use 

specific MAPK inhibitors to target the putatively differential signalling pathways. The differences in 

p40 and p19 expression will be further investigated at the molecular level, by including studies 

on cytokine gene regulation. The expression of transcription factors involved in the regulation of 

p40 and p19 genes, as well as their nuclear localization and function, will be addressed to find 

out whether M. tuberculosis or BCG lead to differential expression and/or function of 

transcription factors that ultimately explain the differences observed in cytokine responses. One 

transcription factor that has been proposed to be involved in differential stimulation of human 

DCs by M. tuberculosis or BCG is IRF-3 (Giacomini et al., 2009). This transcription factor was 

recently described to be activated upon M. tuberculosis infection, but not upon BCG infection of 

human DCs (Giacomini et al., 2009). It will be interesting to investigate if this is also happening 

in our system. Importantly, the molecular determinants that dictate the differential response of 

DCs to M. tuberculosis or to BCG might be associated with intrinsic properties of these 

mycobacteria. Zenero and collegues, have recently proposed that M. tuberculosis interacts with 
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selected receptors to subvert DCs maturation or change the pattern of DCs cytokine secretion 

(Zenaro et al., 2009). This issue will also be addressed in future experiments. 

Since M. tuberculosis or BCG stimulation of DCs induced a differential expression pattern 

of IL-12 and IL-23 (Fig.1 and Fig.2), and taking into consideration the role of IL-12 (p40-p35) and 

IL-23 (p40-p19) molecules in Th1 differentiation and Th17 survival, respectively, our next goal 

was to determine the consequences of the differential activation of DCs by M. tuberculosis and 

BCG in CD4+ T cell differentiation. We found that this differential activation of DCs was reflected 

on the distinct balance of Th responses developed when M.tuberculosis- or BCG-infected DCs 

presented OVA peptide to TCR-transgenic CD4+ T cells (Fig.4). M.tuberculosis–infected DCs were 

able to induce the development of both Th1 and Th17 responses, which is in agreement with the 

secretion of IL-12, IL-23 and IL-6 by M. tuberculosis-stimulated DCs. On the other hand, we 

observed an unbalanced Th1/Th17 response differentiated in the presence of BCG-infected DCs. 

Indeed, BCG-infected DCs were able to induce a strong Th17 response, but only a limited Th1 

response. We propose that the fact that BCG stimulation of DCs induced an amount of IL-6 

similar to that induced by M. tuberculosis allows for the initiation of Th17 differentiation (Fig.1 

and 2). It is surprising however that the strong Th17 response induced by BCG-infected DCs was 

not accompanied by the secretion of high levels of IL-23. However we only measured the 

production of this cytokine 24 hours post-infection and it is possible that IL-23 accumulates over 

time. Thus it is in our plans to measure IL-23 in supernatants of BCG-infected DCs during an 

extended period of time. It is also possible that the initial diminished IL-12 levels observed in 

BCG-infected DC, compromise Th1 differentiation, allowing for Th17 development. To test this 

hypothesis, we will perform the same assay, but we will exogenously provide IL-12 to the BCG-

infected cultures, in order to see if the Th1/Th17 imbalance can be reverted. Additionally, several 

studies have shown that other cytokines play important roles in Th17 differentiation. This is the 

case of IL-21 (Fantini et al., 2007; Korn et al., 2007; Nurieva et al., 2007; Wei et al., 2007; Zhou 

et al., 2007) and IL-1 (Weaver et al., 2007). In vitro culture of naive CD4+ T cells in the 

presence of IL-21 and TGF- has shown to induced IL-17 production at levels similar to that 

induced by TGF- and IL-6 (Fantini et al., 2007; Korn et al., 2007; Nurieva et al., 2007; Wei et 

al., 2007; Zhou et al., 2007). Moreover, it was demonstrated that Th17 development was 

impaired in the absence of IL-21 signalling (Fantini et al., 2007; Korn et al., 2007; Nurieva et al., 

2007; Wei et al., 2007; Zhou et al., 2007), and that in IL-21-deficient splenocytes, Th17 

development in vitro and in vivo was almost completely abolished (Nurieva et al., 2007). 
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Similarly, a 2- to 3-fold reduction in IL-17 production was observed when purified CD4+ T cells 

were cultured under Th17-inducing conditions in the presence of neutralizing anti-IL-21 antibody 

(Wei et al., 2007). It was also reported that IL-1 and IL-6 in conjunction with TGF- were 

efficient inducers of Th17 differentiation from naive CD4+ T cell precursors (Weaver et al., 2007). 

Therefore, monitoring the expression of IL-21 and IL-1 induced by M. tuberculosis and BCG will 

be also addressed in our future experiments. As for TGF-, our preliminary data suggest that very 

low levels of this cytokine are being produced by DCs in response to M. tuberculosis and BCG. It 

is also important to refer that it is unlikely that suppressive effects mediated by IL-10 account for 

the differences observed, as the levels of this cytokine detected upon stimulation of DCs with M. 

tuberculosis or BCG were similar. Finally, another possible explanation for the Th17 shift 

observed in BCG-stimulated DCs relies on a differential induction of co-stimulatory molecules 

expressed by DCs. This will be addressed by measuring the presence of the main co-stimulatory 

molecules in M. tuberculosis- versus BCG-infected DC by flow cytometry. This hypothesis is in 

line with a recent study showing that BCG is less efficient in inducing human DCs maturation 

than M. tuberculosis (Giacomini et al., 2009). 

Our in vitro studies on Th cell differentiation in response to M. tuberculosis or BCG were 

further explored in vivo (Fig4. and Fig.5). We showed that, for the time points tested, a higher 

number of IFN--producing CD4+ T cells developed in M. tuberculosis-infected animals than in 

BCG-infected ones. The peak of IL-17-producing CD4+ T cells for M. tuberculosis-infected animals 

(day7) appeared to occur earlier than for BCG-infected animals. However soon after that peak, 

Th17 induced by BCG rose sharply. We are now interested in addressing weather these 

differences are maintained over the time and whether they might be related to different bacterial 

load in BCG- or M. tuberculosis-infected animals. These questions will be addressed in future 

experiments. Below, we propose a model (Fig.10) for IFN- and IL-17 -producing CD4+ T cells 

developed by M. tuberculosis and BCG infections, with possible factors that might explain the 

observed differences. 
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Figure 10 – Balance of Th cell differentiation in response to M. tuberculosis or BCG. 

 

Our findings might be important for the understanding of the development of the immune 

response to BCG as compared to that of M. tuberculosis. Our findings suggest that BCG induces 

the development of an effective Th17 response that does not appear to be fully controlled by Th1 

cells, which might be important for the protection achieved by this vaccine. This is in line with a 

previous report showing that Th17 responses are needed to achieve protection against TB, due to 

their role in recruiting Th1 cells to the site of infection (Khader et al., 2007). On the other hand, it 

has been suggested that increased Th1 responses or IFN- production are not necessarily 

needed to achieve high protection against TB (Jeevan et al., 2009). Therefore, our data is in 

agreement with the idea that the development of new vaccines to TB should consider the 

improvement of Th17 responses in an initial phase, and not only a very potent IFN- production. 
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As part of this work, we have also compared the macrophage response to M. tuberculosis 

or BCG. Although the cytokine expression pattern was similar in macrophages stimulated with M. 

tuberculosis or BCG (Fig.1), it appeared that BCG presented a delayed growth (day 2 post 

infection) in macrophages when compared to M. tuberculosis. To further clarify if the anti-

mycobacterial activity of macrophages was more effective, at this time point, against BCG than 

against M. tuberculosis, we started by measuring NO production (a fast and earlier bactericidal 

mechanism) by BCG- or M. tuberculosis-infected macrophages. Here we showed that NO 

production most likely was not the effector mechanism behind the protection observed on BCG-

infected macrophages at 2 days post-infection (Fig.6). Nonetheless, other bactericidal 

mechanisms of macrophages might account for the differential protection observed, such as 

H2O2/O- 
2, defensines, lysosomal hydrolases, chemokines, and phagosome-lysosoma fusion. The 

expression of several markers that follows phagosome maturation and phagosome-lysosome 

fusion, including tryptophan-aspartate containing coat protein (TACO), lysosomal-associated 

membrane protein (LAMP-1) and LRG-47 (Fol et al., 2006; Pieters, 2001) will be targets of 

further studies. 

We also questioned whether the observed differences could be related to a distinct 

induction a apoptosis. Apoptosis of cells infected with intracellular pathogens may benefit the 

host by eliminating a supportive environment for bacterial growth. Members of the caspase family 

are central to initiation and execution of apoptosis and caspase-3 is one of the main forms 

activated during this pathway (Lee et al., 2009b). Our results show that M. tuberculosis induced 

high rates of caspase-3-mediated apoptosis in macrophages at early time points post-infection, 

reaching its maximum 2 days post-infection, while in BCG infection a significantly increase of 

caspase-3 positive cells was observed over the time of infection. Despite the existence of more 

cells undergoing apoptosis at 2 days post infection in the infection by M. tuberculosis, the 

bacterial burden was higher for this bacterium. This might mean that at this time point, M. 

tuberculosis is already able to survive and replicate within macrophages, thus suggesting that the 

type of apoptosis induced by M. tuberculosis early on infection is not associated with a protective 

response. However, Keane et al reported that the attenuated M. tuberculosis strain H37Ra was a 

more potent inducer of apoptosis than the virulent strain H37Rv (Keane et al., 1997). These 

authors proposed that bacillary control of the host cell apoptosis is a virulence-associated 

phenotype of M. tuberculosis strains and suggested that alveolar macrophages apoptosis 

contributes to innate immunity in TB (Keane et al., 1997). In a way, our results point to the 
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opposite idea, since in our study, the avirulent strain (BCG) was a slower inducer of apoptosis. 

We nonetheless must take into account the technical differences between the two works, such as 

the type of cells (alveolar versus bone marrow-derived macrophages), the bacterial strains 

(H37Ra versus BCG)and the doses of mycobacteria used (MOI of 5 versus MOI of 2), as well as 

the assessment of apoptosis (DNA fragmentation versus caspase-3). Future studies are required 

to clarify the differences observed in terms of M. tuberculosis or BCG growth within the infected 

macrophage. 
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VI. CONCLUSIONS 

 

In this work we were able to show that macrophages and DC respond differently to M. 

tuberculosis or BCG stimulation, and this might be due in part to a differential activation of ERK 

1/2 induced by M. tuberculosis or BCG. A consequence of this differential activation of DC was 

reflected on the distinct type of Th responses developed, both in vitro and in vivo. The effector 

activity of macrophages in what regards the control of M. tuberculosis or BCG growth was also 

different, although the differences found were not due to differential NO production or apoptosis. 

 

A detailed comparative study of BCG versus M. tuberculosis infection on macrophages and 

DC might provide insights on how these mycobacteria interact with the immune system and how 

that translates into an effective, or not, Th cell response and also the mechanisms used by the 

pathogen to modulate the immune response. Furthermore, dissecting the cellular and molecular 

events that occur upon mycobacterial challenge will help to reveal possible weak points of both 

the host and the bacteria that can be targeted from a prophylactic point of view. 
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