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Abstract

In the last few decades an increasing focus as been
put over the field of Time Series Forecasting (TSF),
the forecast of a time ordered variable. Contributions
from the arenas of Operational Research, Statistics,
and Computer Science as lead to solid T'SF methods
(eg. FEzponential Smoothing or Regression) that re-
placed the old fashion ones, which were primary based
on intuition. Although these methods give accurate
forecasts on linear Time Series (T'S), their handicap is
with noise or nonlinear components, which is a com-
mum situation (eg. in financial daily 7'S). An alter-
native approach for TSF as recently emerged from the
field of Artificial Intelligence, where new optimization
algorithms, such as Genetic Algorithms and Artificial
Neural Networks have became popular. Following this
trend, the present work reports on a Genetic Algoritm
Neural Network system, and in its use for T'SF.

1 Introduction

Although some well established management methods
have been in place for the last decades, which were
based on the feelings and intuition of the managers,
the approach seems no more appropriate. These meth-
ods have been replaced by a new brand of decision
making techniques, whose principles emerged from dis-
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ciplines such as Operational Research, Computer Sci-
ence, Statistics and Principles of Organization Design,
among others [10].

Indeed, an important point, when making a deci-
sion, is the capacity to predict the circumstances that
surround it. Thus, it seems natural that enterprises
are interested in obtaining well grounded forecasts of
the variables that affect strongly the success (or unsuc-
cess) of such proceedings [7]. One way is to use Time
Series Forecasting (TSF), forecast of a chronologically
ordered variable. The goal in T'SF'is to learn patterns
from historical data in order to predict the behavior
of the system, and not how it works. Normally, T'SF
models are based on methods of Ezponential Smooth-
ing, Decomposition or Regression. Although this kind
of approach turns out to be efficient on well behaved
Time Series (TS), it presents drawbacks when noise or
other nonlinear relations are present, what is a com-
mon situation on financial TS on a day-to-day basis

[18].

New optimization algorithms based on processes
that mimic the natural evolution of the living species
have gained an increasing importance within the field
of Artificial Intelligence. In particular, the study of
phenomenons of the process of natural selection or the
central nervous system, has leaded to successful tools
such as Genetic Algorithms (GAs) and Artificial Neu-
ral Networks (ANNs) [17]. One promising approach
for T'SF comes from the use of the last ones. ANNs
are connectionist models that can learn patterns from
past data in order to respond to new situations, even
when noise or incomplete data is present. This is the
main reason why they have comparative advantages
over other methods, with applications ranging from
computer vision and data analysis to expert systems,
just to name a few.



The application of ANNs for TSF started on the
late eighties. The intention was to overwhelm the lim-
itations of the conventional T'SF methods, in partic-
ular when used on non-linear financial data; indeed,
encouraging results appeared over the use of feedfor-
ward ANNs on those markets [14] [5]. Other compara-
tive studies [3][20][12] have shown that ANNs can per-
form as well or even better that conventional methods,
namely the Holt-Winters [7] and the Box-Jenkins ones

2]

A problem that arises with this approximation is
the search of the best ANN topology, which can de-
mand a huge computational effort. To overcome this
problem one can use random search, hill-climbing or
GAs. The last ones are effective on problems of combi-
natorial nature, giving good results were other meth-
ods seem to fail. Thus is seems natural to combine
GAs with ANNs, in the so called GANN systems, in
order to maximize the advantages of both tools [9]. Tn
these systems, the ANN learning guides the evolution-
ary search of the best topology. Empirical studies sug-
gest that the GANNs systems outperform the GAsand
the ANNs in the search for a solution [8][19]. Other
problem with the use of ANNs is related with the best
way to feed the data into an ANN, which is called the
preprocessing stage. In this process, the use of normal-
ization techniques or data filtering may be very useful

[1].

2 The Artificial Neural Network
Architecture

Some decisions have to be made when using ANNs,
which depend on the specificity of the problem un-
der consideration or on the kind of data used. There-
fore, it was decided to use feedforward ANNs, a pop-
ular architecture that has been used by most of the
studies on this field [14][20][3]. Then, in order to re-
duce the searching space and guided by some empirical
evidence, i1t were chosen fully connected ANNs with
bias, with just one hidden layer and without shortcut
connections (Figure 1). The topology will be repre-
sented by productions in the form L; — L — Lo, for an
ANN with L; input nodes, L, hidden nodes, and L,
output nodes [15]. The Resilent BackPROPagation
(RPROP) algorithm was adopted for the ANN train-
ing [16]. The initial weights were randomly generated
within the range [=%; 2] for a node with z inputs [6].
Finally, eight activation functions were tested (Table

1) [].

There are several ways to feed a T)S into an ANN,
in order to perform TSF. In this work it was decided
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Figure 1: Structure of the ANN used

Input Layer

Table 1: Activation Functions

Name | Function f(z) | Codomain

linear x ] — 00, 00
sigmoid m_—zj [0, 1]
sigmoid1 1++p(—Z) -1 [—1,1]
sigmoid? T [—1,1]
tanh tanh(z) [—1,1]
cos sin(z mod 2) [—1,1]
sin cos(z mod 27) [—1,1]
gaussian exp(‘sz) [—1,1]

to use a sliding time window of size k, for an ANN
with &k input nodes. The goal is to have the output as
a function of k previous TS values, thus reducing the
weights to be estimated [4]. The ANN will take the
form k — Lp — 1. The training cases, created by the
time window, are given bellow:

T1,%9,..., T — T4

2, 23,..., k41 —> Tk42
%

Tp—ky ooy Tp—1  —>  Tp

for a TS of length p (21, ..., 2p).

Once some activation functions require that the
data must be bounded by a certain range (Table 1),
the training cases have to be normalized. This range
was set to [0, 1] after some empirical tests. One way
to perform the normalization is to use a simple linear
transformation. The problem with this approach is
that a TS with a trend component can present future
values above that range. In principle, a higher range
permits a better assimilation by the ANN, so it was
decided to use the range [0.2, 0.8] (value suggest in [20])
for TS with trend and the range [0, 1] otherwise.

An early stopping procedure has been adopted to
prevent overfitting; i.e. the training cases will be di-
vided into two sets: a training set (to assimilate the
data) and a validation set (to test if the ANN has a



generalization capacity) [15]. In T'SF, recent past data
affects strongly the forecast, so it was decided to use
only 10% of the available data in the validation set.

After training, one-step ahead forecast is pro-
duced by feeding the ANN with the last known values
of the TS:

Fl,p = ANN(Ip_k+1, sy l‘p)

where AN N () stands for the function modeled by the
ANN and F; ; for the forecast in the j period to ¢ peri-
ods ahead of j. Thus, a short term one-ahead forecast,
for I periods, will be given by the set:

1F1p Fipgts oo Fipyici}

As an example, one will consider the seasonal
monthly 7S given by {...,5,16,20,16,20,24}, being
the last values relative to the months between Jan-
uvary and June. Assuming that the forecasts are per-
formed by an ANN with 3 input nodes, and that the
present month is March, then the forecast for April will
be given by Fy march = ANN(5,16,20). In a similar
way, in April one will have Fy apm = ANN(16,20,16).
Thus, a short term forecast, during 3 months (I = 3),
will be given by the set {Fi march; F1,april; Fi May}-

Multi-step ahead forecasts are done by feedback
of the previous forecasts:

Fyp = ANN(2p_41;..;p)
Fap = ANN(zp_py2; - 2p; F1p)
F3p = ANN (2p_k+43; - Tp; F1p; Fap)

Fl,p = ANN(Fl_kyp; cees Fl—l,p)

A long term forecast, until [ periods ahead of p, will
then be given by the set:

{F1p3 Faps - Fip}

3 The GANN System

After some experiences with ANNs it was possible to
conclude that the forecasting is a function of four fac-
tors: L; - the number of input nodes; Ay and A0
- the RPROP parameters; f - the activation function;
and L, - the number of hidden nodes. This can be
easily explained: the first factor sets the size of the
time window, while the others affect the way how the
ANN learns.

This is where the GA enters. The GA will be
used to select the best ANN to each TS, by evolution.

The first step in one’s approach is to choose the GA
chromosome. The four parameters were coded using
the base 2 (two) gray code (Figure 2). The number
of nodes (L; and Lj) were encoded with 4 (four) bits,
within the range [3, 14]. There is some evidence that
this is the correct range [3], and a higher one would
increase exponentially the searching time. In the case
of the RPROP parameters, A,,,, was settled to 50
(fifty) (the advised value [16]) while Ay was encoded
to the discrete range of {0.1,0.2,...,0.8}, using only 3
(three) bits. The eight activation functions were also

codified with 3 (three) bits.

Li f Ao Ly
LI+ BT

Figure 2: The ANN chromosome

One crucial aspect of the GANN system is the se-
lection of the the fitness function. Normaly, when one
works with GAs the fitness function is well determined
and easy to compute, which is not the present case.
The fitness will be indirectly given by the ANN train-
ing, using the error from the validation cases (M SE,,);
i.e. a fitness value will be given by

. 1
fitness = MSEL
The GA works as an optimization procedure of
second order, so the tuning of its parameters is not
so crucial. Based on some empirical tests, intuition,
and having in mind to cut some of the searching time,
it was decided to use an GA with a population of 30
(thirty) individuals; rank-based selection and one point
crossover operators; and a mutation rate of 0.02. Fig-
ure 3 shows how the GA works. An initial set of indi-
viduals are randomly created. Then the ANNs are con-
ceived according to the chromosome information. The
evaluation occurs after the ANN training. Each indi-
vidual is ranked according to its fitness. The crossover
and mutation operators will create a new population,
which will also be evaluated. Finally, the rank-based
selection operator will select the best A NNs from both
populations, breading a new one. The process contin-
ues until a minimum of energy for the chromosomes
social setting is reached [13].

3.1 Results for the GANN system

In this work there was some care in selecting TS that
were related with real problems, from different do-
mains such as financial markets or natural processes,



BEGIN
Initialize generation (g = 0)
Create initial population (Py)
WHILE NOT (Minimum-of-Energy) DO
Evaluate population (Py)
Select individuals for crossover
Cross parents to breed new individuals (P))
Mutate new population (7))
Evaluate new population (Pj)
Select individuals from both populations for
the next one (Pyy1)
Increase current generation (¢ = g+ 1)
END WHILE
END

Figure 3: Structure of the GA

which have already been studied by other conventional
methods (Table 2) [2][7][10], where s stands for the sea-
sonal factor, when applied. The number of forecasts,
l, was set to 12 for the monthly 7S, and to 10 for the
rest.

Table 2: Characteristics of the TS

Series (S) | Period | Trend | s
1 Yearly No -
2 Monthly Yes 12
3 Monthly Yes 12
4 Daily Yes -
5 Monthly Yes 12
6 Daily Yes -
7 Daily No -
8 - No -
9 - No -

10 Monthly Yes -
11 Monthly Yes 12

Table 3 shows the best ANN for each series of
Table 2. As expected, the ANNs are distinctive, thus
Justifying the need of the GA. As expected, seasonal
series seem to require larger time windows, with an L;
between 12 (twelve) and 13 (thirteen). These series
present a seasonal factor of 12 (twelve) (small time
windows will not capture the seasonal patterns). For
the other series, the time window falls within the range
[3, 7], which indicates that the data from recent series
affects strongly the forecast. The remaining factors do
not seem to interfere on the TS make up; i.e. these
factors only affect the way the ANN learns, and not
how the cases are created.

Table 3: The best ANN for each series

S | Topology f Ao | MSFEy,
1 4—-4-1 s 0.7 22

2 | 13-11-1 linear | 0.4 227
3 13—-3-1 linear | 0.8 | 243966
4 7T—-9-1 linear | 0.2 49.7
5| 12—8—=1 | gaussian | 0.5 | 16612
6 4-3-1 cos 0.8 38.5
7| 6—14—1 | sigmoid2 | 0.3 173.6
8 T—6-—1 sin 0.8 33.3
9 6—6—1 sigmoid?2 | 0.2 2.72
10] 3—11—=1 | sigmoid2 | 0.6 5593
11| 13-7—-1 | gaussian | 0.5 2287

One shall discuss the short term results (Table 4),
using as a referential the ARIMA [2] and the Holt-
Winters [7] methods. The results from Holt-Winters
outperform those obtained with the other methods for
the seasonal series 2, 3, 5 and 11, what is not sur-
prising, since this method was conceived to this kind
of series. With series presenting a strong trend (se-
ries 4, 6 and 10), the GANN’s system gives better
results than ARIMA for the first two series. Series
10 has monthly periods, which may make it seasonal,
with Holt-Winters, which is seasonal, presenting the
best results. For the series without trend and seasonal
components (series 1, 7, 8 and 9), the system’s results
are similar to those obtained by ARIMA, being even
better for series 1 and 8.

Table 4: Comparative results for short term forecast-
ing (using MSE as the error measure)

S | GANN | ARIMA | Holt-Winters (HW)
1 139.6 154 -

2 340.3 452 271

3 834578 - 530654
4 63.9 36.3 -

5 20672 15290 11435
6 62.9 72.1 -

7 3670 2939 -

8 66.8 141.5 -

9 265 240.4 -

10 20711 24217 18446
11| 6238.7 2581.3 1885

Similar results were achieved for long term fore-
casts (Table 5), being the exception given by Holt-
Winters. In fact, these results fall when compared with
other methods, for series 2 and 11. In a surprising way,
the GANN system forecasts outperform all the others
for series 2. Tt was not possible to perform compar-
isons with ARIMA| for the series with trend; indeed,



ARIMA was not conceived for this kind of forecast.
On the other hand the GANN’s systems results were
better that the Holt-Winter’s ones. For the rest of
the series, the system’s results only outperformed the
ARIMA ones for series 7.

Table 5: Comparative results for long term forecasting
(using MSE as the error measure)

S | GANN | ARIMA HwW
1 562.1 267 -

2 370.4 521.8 621.5
3 | 3888567 - 2927255
4 214.25 - -

5 21542 20289.3 16954
6 170.4 - -

7 2867 2897 -

8 270.3 161.3 -

9 316 205.2 -

10 | 33548 - 52012
11 | 6258.5 2707.7 3046.4

4 Data Filtering

In the previous section it was shown that seasonal se-
ries require a large time window (with a size between
12 and 13). However, not all time lags have the same
influence on the forecast. Indeed, a large time window
can increase the system entropy, affecting the ANN
learning capacity and the accuracy of the forecast. On
the other hand, the results obtained with the GANN
system for this kind of series where somehow disap-
pointing. It seems therefore natural that selecting the
correct time lags to feed the ANN may improve the
forecast, in particular for seasonal TS.

The structure of the previous used floating time
window was given in the form < 1,2,..,n—1,n >,
where n stands for the size of the window (Figure 4).
With the data filtering approach one pretends to use
small time windows, with only the relevant data. For
example, ARIMA suggests the use of the windows <
1,12,13 > or < 1,2,12,13 > for seasonal monthly 75,
which will be the ones used to test this system (series
2, 3,5, 10 and 11 from Table 2).

Time Series
Xl X2

< 12 %2 %1 %

TimeLags 12 - 2 1

Figure 4: Time lags of a TS

A new functionality will be added to the GANN
system. This new system will be called GANNF

(GANN system with Filtering). Twelve sets of lags
will be used (Table 4). These sets were based on the
work of Faraday and Chatfield [4]. The type of win-
dow was encoded with 4 bits, replacing the L; factor
of the GANN system (Figure 5). Excepting this fact,
the AG behaves in a similar way to the one used in the
previous system.

Table 6: Sets of lags

Window (W) | Lags L;
T <1,12> 2
2 <1,2,12> 3
3 <1,12,13> 3
) <1,2,3,12> )
5 <1,2,12,13> 4
6 <1,2,3,4,12 > 5
7 <1,2,12,13,14> 5
8 <1,2,3,4,12,13> 6
9 <1,2,3,4,12,13,14> | 7
10 <1,2,..,12> 2
1 <1,2,..,13> 13
2 <1,2,.,14> 14

Lags f Ag Ly,

[TT T+ T+ T+ T

Figure 5: Chromosome of the GANNF system

The training cases were created according to each
time window. As an example, for the window 2, one

has:

T1,L11,212 —  T13
T2, T12,213 — T4
—

Tp—12,Tp—2,Tp—1 — Ip

As with the previous system, after training, one can
perform forecasts by feeding the A NN with the lastest
time window or with feedbacks of the previous fore-
casts. For the example depicted above, one has:

Fl,p = RNA(Ip_ll,rp—l)Ip)
F2’p = RNA(IP—IO; l‘p) Fl:p.)

Fl,p = RNA(Fl_lzp, Fl_gyp, Fl—l,p)

5 Data Filtering Results

Table 7 shows the best ANN for each series. Although
the ANNs are also distinctive, they are smaller than
the ones obtained by the GA NN system. This fact adds



up to the utility of data filtering, which led to simple
ANNs. A confrontation with the previous system (Ta-
ble 3) shows that better fitness values (M SE,,) are
attained for series 2, 5 and 11. For series 10, a worse
result is not surprising, since the better ANN obtained
with the GANN system follows a topology of 3—11—1,
with a window < 1,23 >, a solution out of range of
the GANNF’s searching space. However, the behavior
of series 3 is strange, since the solution is in the search-
ing space of the filtering system. An explication may
have to be found on the criterion Minimum-of-Energy,
referred to above.

Table 7: The best ANN for each series

S | W | Topology f Ag | MSEy,
2 3 3—-8-1 linear | 0.7 120.4
3 8 6—6—1 linear | 0.2 | 277101
5 4 4—-T7—1 | gaussian | 0.5 9911
1012 | 3-13-1 linear | 0.2 6353
111 4 4—3—1 | gausstan | 0.5 | 1213.7

For short term forecasting (Table 8), Holt-Winters
still gives better results, being the exception the series
10, where the GANNF results outperformed all the
others. A parallel with other methods shows the filter-
ing system with a performance that outperforms that
of the GANN’s system for series 3, 10 and 11, and
ARIMA for series 2 and 10.

Table 8: Comparative results for short term forecast-
ing (using MSE as the error measure)

S | GANN | GANNF | ARIMA HwW
2 340.3 368.3 452 271

3 | 834578 759581 - 530654
5 20672 25103.8 15290 11435
10 20711 12486.3 24217 18446
11| 6238.7 4500 2581.3 1885

The advantages of the filtering system are stressed
on long term forecasting (Table 9). TIn fact, the
GANNPF’s system outperforms the GANN’s one for al-
most all the series (the exception is series 5). Another
aspect that has to be stressed is the loss of superiority
from Holt-Winters, that outperforms the other meth-
ods only for series 5 and 11.

6 Conclusions

The surge of new optimization algorithms, like ANNs
and GAs, has created new exciting possibilities for new
developments in vast fields. More recently, appeared

Table 9: Comparative results for long term forecasting
(using MSE as the error measure)

S | GANN | GANNF | ARIMA HW
2 370.4 308 521.8 621.5
3 | 3888567 | 657445 - 2927255
5 21542 31279 20289.3 16954
10 | 33548 14534 - 52012
11 | 6258.5 4792 2707.7 3046.4

the possibility to combine GAs with ANNs, in the so
called GANN’s systems, in order to potentiate the ad-
vantages from both tools. Although there is a lot of
work done on this promising approach, the applica-
tions world does not follows the pattern [9]. This work
contributes to preempt it, with the application of the
GANN’s systems to TSF.

The results suggest that the ANNs can be an al-
ternative for TSF, specially for T'S with a high non-
linear degree (such as series 1). Comparative results
show that the GANN’s systems have a performance
near the one given by ARIMA, outperforming it to
some series. The data filtering facility enhances the
forecast of seasonal series, specially for long term fore-
casts. However, for this kind of series, and for short
term forecasts, Holt-Winters outperforms all the oth-
ers. Although very simple, this method continues to
be presented as the ideal one for seasonal T'SF. On the
other hand, for long term forecasts, and when an accu-
rate forecast is mandatory, the use of the GANN’s sys-
tems may be a good alternative. One positive aspect of
the presented system is that it works in a automatically
way, with a minimum of human intervention, contrary
to ARIMA, which requires the presence of experts.

In future work one intends to test the system ro-
bustness; explore the use of other topologies, like re-
current ANNs; expand the GA parameters; and using
other filters, such as the Kalman’s ones [11].
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