Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/7944

TitleThe influence of lens material and lens wear on the removal and viability of staphylococcus epidermidis
Author(s)Santos, Lívia
Rodrigues, Diana Alexandra Ferreira
Lira, Madalena
Oliveira, M. Elisabete
Oliveira, Rosário
Yebra-Pimentel Vilar, Eva
Azeredo, Joana
KeywordsBacterial detachment
Silicone hydrogel
Cell viability
Issue dateJun-2008
PublisherElsevier Ltd.
JournalContact Lens and Anterior Eye
Citation"Contact Lens & Anterior Eye". ISSN 1367-0484. 31:3 (Jun. 2008) 126-130.
Abstract(s)Purpose: The aim of this study was to evaluate the influence of lens material and lens wear on the removal capability of Staphylococcus epidermidis. Assessment of viability of remaining adhered bacteria was another goal of this work. Four silicone hydrogel materials (galyfilcon A, balafilcon A, lotrafilcon A, lotrafilcon B) and one conventional hydrogel material (etafilcon A) were assayed. Methods: Detachment studies on S. epidermidis were carried out in a parallel plate flow chamber. Contact lenses (CLs) were fitted to the bottom of the flow chamber and a bacterial suspension was perfused into the system, promoting bacterial adhesion. Afterwards, detachment was stimulated using a multipurpose solution (MPS, ReNu Multiplus®) and the percentage of removed bacteria estimated through microscopic observation and enumeration. Remaining adhered bacteria were stained with propidium iodide (PI) and enumerated in order to assess their viability. Additionally, the worn lenses were observed by confocal laser scanning microscopy (CLSM) to visualize bacterial distribution along the lens surfaces. Results: Bacterial removal was significant ( p < 0.05) for both unworn and worn galyfilcon A and etafilcon A. Galyfilcon A exhibited a detachment percentage of 59.1 and 63.5 while etafilcon A of 62.6 and 69.3, both for unworn and worn lenses, respectively. As far as bacterial viability is concerned, it was found that worn lenses exhibit a superior amount of non-viable bacteria than unworn CLs. Images obtained by CLSM revealed an irregular bacterial distribution for all lens materials. Conclusions: It appears that surface and/or bulk structure of the lens material affects removal of S. epidermidis while CL wear influences their viability.
TypeArticle
URIhttp://hdl.handle.net/1822/7944
DOI10.1016/j.clae.2008.01.003
ISSN1367-0484
Peer-Reviewedyes
AccessOpen access
Appears in Collections:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Files in This Item:
File Description SizeFormat 
Santos_CLAE[1].pdf229,72 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID