Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/64326

TítuloAntioxidant and antigenotoxic activities of Ginkgo biloba L. leaf extract are retained after in vitro gastrointestinal digestive conditions
Autor(es)Oliveira, Daniela
Latimer, Cheryl
Parpot, Pier
Gill, Chris I. R.
Oliveira, Rui Pedro Soares de
Palavras-chaveAntioxidant
Antigenotoxic
DNA damage
Comet assay
Schizosaccharomyces pombe
Colonocytes
Data2020
EditoraSpringer
RevistaEuropean Journal of Nutrition
CitaçãoOliveira, Daniela; Latimer, Cheryl; Parpot, Pier; Gill, Chris I. R.; Oliveira, Rui, Antioxidant and antigenotoxic activities of Ginkgo biloba L. leaf extract are retained after in vitro gastrointestinal digestive conditions. European Journal of Nutrition, 59, 465-476, 2020.
Resumo(s)Purpose: The recognized biological properties of Ginkgo biloba extracts potentiate their utilization as an ingredient for functional foods. However, the digestive conditions can affect the chemical composition of the extracts and consequently their biological properties, which can lead to food safety problems. Thus, the impact of in vitro-simulated upper gastrointestinal tract digestion on the chemical composition and bioactivity of Ginkgo biloba leaf extract (GBE) was evaluated. Methods: Physicochemical conditions of human digestion were simulated in vitro, and its impact on the chemical composition of GBE was investigated by electrospray ionization-mass spectrometry. The persistence of bioactivity was investigated by subjecting GBE and the in vitro digested extract (DGBE) to the same methodology. Antioxidant properties were assessed using 2′,7′-dichlorofluorescein diacetate to measure the intracellular oxidation of Schizosaccharomyces pombe cells pre-incubated with GBE or DGBE and exposed to H2O2. Antigenotoxicity was tested by comet assay in HT-29 colon cancer cells pre-incubated with GBE or DGBE and challenged with H2O2. Results: The chemical analysis revealed a considerable change in chemical composition upon digestion. Pre-incubation with GBE or DGBE attenuated the H2O2-imposed intracellular oxidation in wild-type S. pombe cells, unlike the oxidative stress response-affected mutants sty1 and pap1, and decreased H2O2-induced DNA damage in HT-29 cells. The extracts did not induce toxicity in these eukaryotic models. Conclusion: The chemical composition of GBE was affected by in vitro digestion, but the antioxidant and antigenotoxic activities persisted. Therefore, G. biloba extract may be suitable for use as food additive and contribute to a healthy colon.
TipoArtigo
DescriçãoElectronic supplementary material The online version of this article (https://doi.org/10.1007/s00394-019-01915-8) contains supplementary material, which is available to authorized users.
URIhttps://hdl.handle.net/1822/64326
DOI10.1007/s00394-019-01915-8
ISSN1436-6207
e-ISSN1436-6215
Versão da editorahttps://www.springer.com/food+science/journal/394
Arbitragem científicayes
AcessoAcesso restrito UMinho
Aparece nas coleções:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series
CDQuim - Artigos (Papers)
DBio - Artigos/Papers

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
document_50533_1.pdf
Acesso restrito!
1,26 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID