Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/60755

Full metadata record
DC FieldValueLanguage
dc.contributor.authorPérez-Pérez, Martinpor
dc.contributor.authorPérez-Rodríguez, Gaelpor
dc.contributor.authorBlanco-Míguez, Aitorpor
dc.contributor.authorFdez-Riverola, Florentinopor
dc.contributor.authorValencia, Alfonsopor
dc.contributor.authorKrallinger, Martinpor
dc.contributor.authorLourenço, Análiapor
dc.date.accessioned2019-07-02T14:00:50Z-
dc.date.available2019-07-02T14:00:50Z-
dc.date.issued2019-12-
dc.identifier.citationPérez-Pérez, Martin; Pérez-Rodríguez, Gael; Blanco-Míguez, Aitor; Fdez-Riverola, Florentino; Valencia, Alfonso; Krallinger, Martin; Lourenço, Anália, Next generation community assessment of biomedical entity recognition web servers: metrics, performance, interoperability aspects of BeCalm. Journal of Cheminformatics, 11(42), 2019por
dc.identifier.issn1758-2946por
dc.identifier.urihttp://hdl.handle.net/1822/60755-
dc.description.abstractShared tasks and community challenges represent key instruments to promote research, collaboration and determine the state of the art of biomedical and chemical text mining technologies. Traditionally, such tasks relied on the comparison of automatically generated results against a so-called Gold Standard dataset of manually labelled textual data, regardless of efficiency and robustness of the underlying implementations. Due to the rapid growth of unstructured data collections, including patent databases and particularly the scientific literature, there is a pressing need to generate, assess and expose robust big data text mining solutions to semantically enrich documents in real time. To address this pressing need, a novel track called ``Technical interoperability and performance of annotation servers'' was launched under the umbrella of the BioCreative text mining evaluation effort. The aim of this track was to enable the continuous assessment of technical aspects of text annotation web servers, specifically of online biomedical named entity recognition systems of interest for medicinal chemistry applications.por
dc.description.sponsorshipThis project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 654021 (OpenMinTeD), and the Encomienda MINETAD‑CNIO as part of the Plan for the Advancement of Language Technology for funding. This work was partially supported by the Consellería de Educación, Universidades e Formación Profesional (Xunta de Galicia), under the scope of the strategic funding of ED431C2018/55‑GRC Competitive Reference Group, and the Portuguese Foundation for Science and Technology (FCT), under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI‑01‑0145‑FEDER‑006684).por
dc.language.isoengpor
dc.publisherSpringerOpenpor
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/654021/EUpor
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147337/PTpor
dc.rightsopenAccesspor
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/por
dc.subjectNamed entity recognitionpor
dc.subjectShared taskpor
dc.subjectREST-APIpor
dc.subjectTIPSpor
dc.subjectBeCalm metaserverpor
dc.subjectPatent miningpor
dc.subjectAnnotation serverpor
dc.subjectContinuous evaluationpor
dc.subjectBioCreativepor
dc.subjectText miningpor
dc.titleNext generation community assessment of biomedical entity recognition web servers: metrics, performance, interoperability aspects of BeCalmpor
dc.typearticle-
dc.peerreviewedyespor
dc.relation.publisherversionhttps://jcheminf.biomedcentral.com/por
dc.commentsCEB51783por
oaire.citationIssue1por
oaire.citationVolume11por
dc.date.updated2019-06-29T11:15:27Z-
dc.identifier.doi10.1186/s13321-019-0363-6por
dc.description.publicationversioninfo:eu-repo/semantics/publishedVersion-
dc.subject.wosScience & Technologypor
sdum.journalJournal of Cheminformaticspor
oaire.versionVoRpor
Appears in Collections:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Files in This Item:
File Description SizeFormat 
document_51783_1.pdf2,22 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID