Please use this identifier to cite or link to this item:

TitleAuto-segmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017
Author(s)Yang, Jinzhong
Veeraraghavan, Harini
Armato, Samuel G.
Farahani, Keyvan
Kirby, Justin S.
Kalpathy-Kramer, Jayashree
van Elmpt, Wouter
Dekker, Andre
Han, Xiao
Feng, Xue
Aljabar, Paul
Oliveira, Bruno
van der Heyden, Brent
Zamdborg, Leonid
Lam, Dao
Gooding, Mark
Sharp, Gregory C.
Organs at Risk
Radiotherapy Planning, Computer-Assisted
Radiotherapy, Image-Guided
Tomography, X-Ray Computed
automatic segmentation
grand challenge
lung cancer
radiation therapy
Issue dateAug-2018
JournalMedical Physics
CitationYang, J., Veeraraghavan, H., Armato III, S. G., Farahani, K., Kirby, J. S., Kalpathy‐Kramer, J., ... & Aljabar, P. (2018). Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017. Medical physics, 45(10), 4568-4581
Abstract(s)This report presents the methods and results of the Thoracic Auto-Segmentation Challenge organized at the 2017 Annual Meeting of American Association of Physicists in Medicine. The purpose of the challenge was to provide a benchmark dataset and platform for evaluating performance of autosegmentation methods of organs at risk (OARs) in thoracic CT images.
DescriptionAccepted manuscript
Publisher version
AccessEmbargoed access (2 Years)
Appears in Collections:ICVS - Artigos em Revistas Internacionais com Referee

Files in This Item:
File Description SizeFormat 
  Restricted access
2,08 MBAdobe PDFView/Open    Request a copy!

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID