Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/58664

TitleA Bio-inspired Framework for Highly Efficient Structural Health Monitoring and Vibration Analysis
Author(s)Masciotta, Maria Giovanna
Barontini, Alberto
Ramos, Luís F.
Amado-Mendes, Paulo
Lourenço, Paulo B.
KeywordsStructural health monitoring
Vibration analysis
Bio-inspired framework
Compatibility-matrix
Optimal network topology
Issue date2018
PublisherSpringer International Publishing AG
JournalLecture Notes in Civil Engineering
CitationMasciotta M.-G., Barontini A., Ramos L.F., Amado-Mendes P., Lourenço P.B., A Bio-inspired Framework for Highly Efficient Structural Health Monitoring and Vibration Analysis. In: Experimental Vibration Analysis for Civil Structures - Testing, Sensing, Monitoring, and Control, Eds. J.P. Conte et al., ISBN: 978-3-319-67442-1, Springer, vol. 5, pp. 455-468 (2018)
Abstract(s)Civil engineering structures are continuously exposed to the risk of damage whether due to ageing effects, excessive live loads or extreme events, such as earthquakes, blasts and cyclones. If not readily identified, damage will inevitably compromise the structural integrity, leading the system to stop operating and undergo in-depth interventions. The economic and social impacts associated with such an adverse condition can be significant, therefore effective methods able to early identify structural vulnerabilities are needed for these systems to keep meeting the required life-safety standards and avoid the impairment of their normal function. In this context, vibration-based analysis approaches play a leading role as they allow to detect structural faults which lie beneath the surface of the structure by identifying and quantifying anomalous changes in the system’s inherent vibration characteristics. However, although the considerable degree of maturity attained within the fields of experimental vibration analysis (EVA) and structural health monitoring (SHM), several technical issues still need to be addressed in order to ensure the successful implementation of these powerful tools for damage identification purposes. The scope of this paper is to present a bio-inspired framework for optimal structural health monitoring and vibration analysis. After a critical overview on current methods and tools, three main sources of bio-inspiration are described along with the relative algorithms derived for SHM applications. It is shown how uncovering the general principles behind the functioning of selected biological systems can foster the development of efficient solutions to the technical conflicts of actual SHM architectures and lead to new sensing paradigms for optimal network topology and sensors location. A compatibility-matrix is proposed to help compare biological and SHM systems and discriminate desired from unwanted features. Such a framework will ultimately assist in seeking for the most suitable nature-inspired solutions for more accurate condition screening and robust vibration analysis.
TypeConference paper
URIhttp://hdl.handle.net/1822/58664
ISBN978-3-319-67442-1
DOI10.1007/978-3-319-67443-8_39
ISSN2366-2557
Publisher versionhttps://link.springer.com/chapter/10.1007/978-3-319-67443-8_39#citeas
Peer-Reviewedyes
AccessOpen access
Appears in Collections:ISISE - Capítulos/Artigos em Livros Internacionais

Files in This Item:
File Description SizeFormat 
133_Mas.pdf831,13 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID