Please use this identifier to cite or link to this item:

TitleInhibition studies with 2-bromoethanesulfonate reveal a novel syntrophic relationship in anaerobic oleate degradation
Author(s)Salvador, Andreia F.
Cavaleiro, Ana Júlia
Paulo, Ana M. S.
Silva, Sérgio Alves
Guedes, Ana P.
Pereira, M. Alcina
Stams, Alfons Johannes Maria
Sousa, Diana Zita Machado
Alves, M. M.
Keywords2-bromoethanesulfonate (BrES)
Issue date9-Jan-2019
PublisherAmerican Society for Microbiology (ASM)
JournalApplied and Environmental Microbiology
CitationSalvador, Andreia F.; Cavaleiro, Ana Júlia; Paulo, Ana M. S.; Silva, Sérgio A.; Guedes, Ana P.; Pereira, M. Alcina; Stams, A. J. M.; Sousa, Diana Z.; Alves, M. Madalena, Inhibition studies with 2-bromoethanesulfonate reveal a novel syntrophic relationship in anaerobic oleate degradation. Applied and Environmental Microbiology, 85(2), e01733-18, 2019
Abstract(s)Degradation of long-chain fatty acids (LCFAs) in methanogenic environments is a syntrophic process involving the activity of LCFA-degrading bacteria and hydrogen-utilizing methanogens. If methanogens are inhibited, other hydrogen scavengers are needed to achieve complete LCFA degradation. In this work, we developed two different oleate (C18:1 LCFA)-degrading anaerobic enrichment cultures, one methanogenic (ME) and another in which methanogenesis was inhibited (IE). Inhibition of methanogens was attained by adding a solution of 2-bromoethanesulfonate (BrES), which turned out to consist of a mixture of BrES and isethionate. Approximately 5 times faster oleate degradation was accomplished by the IE culture compared with the ME culture. A bacterium closely related to Syntrophomonas zehnderi (99\% 16S rRNA gene identity) was the main oleate degrader in both enrichments, in syntrophic relationship with hydrogenotrophic methanogens from the genera Methanobacterium and Methanoculleus (in ME culture) or with a bacterium closely related to Desulfovibrio aminophilus (in IE culture). A Desulfovibrio species was isolated, and its ability to utilize hydrogen was confirmed. This bacterium converted isethionate to acetate and sulfide, with or without hydrogen as electron donor. This bacterium also utilized BrES but only after 3 months of incubation. Our study shows that syntrophic oleate degradation can be coupled to desulfonation.IMPORTANCE In anaerobic treatment of complex wastewater containing fat, oils, and grease, high long-chain fatty acid (LCFA) concentrations may inhibit microbial communities, particularly those of methanogens. Here, we investigated if anaerobic degradation of LCFAs can proceed when methanogens are inhibited and in the absence of typical external electron acceptors, such as nitrate, iron, or sulfate. Inhibition studies were performed with the methanogenic inhibitor 2-bromoethanesulfonate (BrES). We noticed that, after autoclaving, BrES underwent partial hydrolysis and turned out to be a mixture of two sulfonates (BrES and isethionate). We found out that LCFA conversion proceeded faster in the assays where methanogenesis was inhibited, and that it was dependent on the utilization of isethionate. In this study, we report LCFA degradation coupled to desulfonation. Our results also showed that BrES can be utilized by anaerobic bacteria.
Publisher version
AccessOpen access
Appears in Collections:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Files in This Item:
File Description SizeFormat 
document_49488_1.pdf1,27 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID