Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/57359

Full metadata record
DC FieldValueLanguage
dc.contributor.authorOliveira, F.por
dc.contributor.authorDencheva, Nadya Vasilevapor
dc.contributor.authorMartins, Pedro Libânio Abreupor
dc.contributor.authorLanceros-Méndez, S.por
dc.contributor.authorDenchev, Z.por
dc.date.accessioned2018-12-17T22:03:29Z-
dc.date.issued2018-
dc.identifier.issn0022-2461por
dc.identifier.urihttp://hdl.handle.net/1822/57359-
dc.description.abstractMultiscale thermoplastic laminate composites based on polyamide 6 (PA6) dually reinforced by carbon fiber woven textile structures (CFT) and different micron-sized metal particles are prepared for the first time by microencapsulation strategy. In a first step, activated anionic ring-opening polymerization (AAROP) of epsilon-caprolactam is carried out in suspension, in the presence of different metal particles, to produce shell-core PA6 microcapsules (PAMC) loaded with 13-19% metal. In a second step, the loaded PAMC are distributed between CFT plies with fiber volume fractions V (f) = 0.25 or V (f) = 0.50 and then the ply arrays are consolidated by compression molding. Separately, metal-loaded PA6 hybrid composites are prepared by direct compression molding of PAMC and used to compare their properties to the CFT-metal laminates. Light- and scanning electron microscopy are used to study the morphology and the interfaces between the fillers and the polymeric matrix. These structural results are related to the mechanical behavior in tension and the electrical properties. A notable increase of the d.c. electrical conductivity in 7 orders of magnitude is observed for the CFT-metal laminates with respect to the neat PA6. This increase is accompanied by a 2.5-3.0 times growth of the Young's modulus and of the strength at break. It is concluded that the microencapsulation strategy can be applied to produce multifunctional CFT-metal-PA6 thermoplastic composites with tailored electrical and improved mechanical properties for advanced applications.por
dc.description.sponsorshipThe authors gratefully acknowledge the financial support of the project TSSiPRO NORTE-01-0145-FEDER-000015, supported by the regional operation program NORTE2020, under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund, as well as funding from FCT-Portuguese Foundation for Science and Technology within the strategic projects UID/CTM/50025/2013, LA25/2013-2014 and UID/FIS/04650/2013. FMO acknowledges also the PhD grant PD/BD/114372/2016 of FCT-Portugal (AdvaMTech-PhD Program in Advanced Materials and Processing) and PM the FCT SFRH/BPD/96227/2013 grant. Finally, ZZD is thankful to FCT for the SFRH/BSAB/130271/2017 personal research grant. Finally, SLM acknowledges funding from the Basque Government Industry Department under the ELKARTEK program.por
dc.language.isoengpor
dc.publisherSpringerpor
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147333/PTpor
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147414/PTpor
dc.relationPD/BD/114372/2016por
dc.relationinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F96227%2F2013/PTpor
dc.relationSFRH/BSAB/130271/2017por
dc.rightsrestrictedAccesspor
dc.titleA new approach for preparation of metal-containing polyamide/carbon textile laminate composites with tunable electrical conductivitypor
dc.typearticlepor
dc.peerreviewedyespor
oaire.citationStartPage11444por
oaire.citationEndPage11459por
oaire.citationIssue16por
oaire.citationVolume53por
dc.identifier.doi10.1007/s10853-018-2435-9por
dc.description.publicationversioninfo:eu-repo/semantics/publishedVersionpor
dc.subject.wosScience & Technologypor
sdum.journalJournal of Materials Sciencepor
Appears in Collections:CDF - FCD - Artigos/Papers (with refereeing)
IPC - Artigos em revistas científicas internacionais com arbitragem

Files in This Item:
File Description SizeFormat 
12.pdf
  Restricted access
604,58 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID