Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/55913

TitleBehavioural modelling for ambient assisted living
Author(s)Abdalla, Samih Eisa Suliman
Advisor(s)Moreira, Adriano
Issue date6-Apr-2018
Abstract(s)A mudança incomum na rotina diária ao nível da mobilidade de um idoso em sua casa, pode ser um sinal ou sintoma precoce para a possibilidade de vir a desenvolver um problema de saúde. O recurso a diferentes sensores pode ser um meio para complementar os sistemas de cuidados de saúde tradicionais, de forma a obter uma visão mais detalhada da mobilidade diária do individuo em sua casa, enquanto realiza as suas tarefas diárias. Acreditamos, que os dados recolhidos a partir de sensores de baixo custo, como sensores de presença e ocupação, podem ser utilizados para fornecer evidências sobre os hábitos diários de mobilidade dos idosos que vivem sozinhos em casa e detetar desta forma mudanças nas suas rotinas. Neste trabalho, validamos esta hipótese, desenvolvendo um sistema que aprende automaticamente as transições diárias entre divisões da habitação e hábitos de estadia em cada uma dessas divisões em cada momento do dia e consequentemente gera alarmes sempre que os desvios são detetados. Apresentamos neste trabalho um algoritmo que processa os fluxos de dados dos diferentes sensores e identifica características que descrevem a rotina diária de mobilidade de um idoso que vive sozinho em casa. Para isso foi definido um conjunto de dimensões baseadas nos dados extraídos dos sensores, como parte do nosso Behaviour Monitoring System (BMS). Fomos capazes de detetar com um atraso mínimo os comportamentos incomuns e ao mesmo tempo, durações de confirmação da deteção elevadas, de tal modo suficientes para um conjunto comum de situações anormais. Apresentamos e avaliamos o BMS com dados sintetizados, produzidos por um gerador de dados desenvolvido para este efeito e projetado para simular diferentes perfis de mobilidade de indivíduos em casa, e também com dados reais obtidos de trabalhos de investigação anteriores. Os resultados indicam que o BMS deteta várias mudanças de mobilidade que podem ser sintomas para problemas de saúde comuns. O sistema proposto é uma abordagem útil para a aprendizagem dos hábitos de mobilidade em ambientes domésticos, com potencial para detetar alterações comportamentais que ocorrem devido a problemas de saúde, e assim encorajar a monitorização dos comportamentos e dos cuidados de saúde dos idosos.
Unusual changes in the regular daily mobility routine of an elderly at home can be an indicator or early symptoms for developing a health problem. Sensor technology can be utilised to complement the traditional healthcare systems to gain a more detailed view of the daily mobility of a person at home when performing everyday tasks. We hypothesise that data collected from low-cost sensors such as presence and occupancy sensors can be analysed to provide insights on the daily mobility habits of the elderly living alone at home and to detect routine changes. We validate this hypothesis by designing a system that automatically learns the daily room-to-room transitions and stays habits in each room at each time of the day and generates alarm notifications when deviations are detected. We present an algorithm to process the sensor data streams and compute features that describe the daily mobility routine of an elderly living alone at home. This was done by defining a set of sensor-driven dimensions extracted from the sensor data as part of our Behaviour Monitoring System (BMS). We are able to achieve low detection delay with confirmation time that is high enough to convey the detection of a set of common abnormal situations. We illustrate and evaluate BMS with synthetic data, generated by a developed data generator that was designed to mimic different users’ mobility profiles at home, and also with real-life dataset collected from prior research work. Results indicate BMS detects several mobility changes that can be symptoms of common health problems. The proposed system is a useful approach for learning the mobility habits at home environments, with the potential to detect behaviour changes that occur due to health problems, and therefore, motivating progress toward behaviour monitoring and elder’s care.
TypeDoctoral thesis
DescriptionTese de doutoramento - MAP-i (University of Minho, Aveiro, and Porto)
URIhttp://hdl.handle.net/1822/55913
AccessOpen access
Appears in Collections:BUM - Teses de Doutoramento
CAlg - Teses de doutoramento/PhD theses

Files in This Item:
File Description SizeFormat 
Thesis_Samih Eisa.pdf4,13 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID