Utilize este identificador para referenciar este registo: http://hdl.handle.net/1822/55212

TítuloPartitioning and bucketing in hive-based big data warehouses
Autor(es)Costa, Eduarda
Costa, Carlos A.
Santos, Maribel Yasmina
Palavras-chaveBig data
Big data warehouse
RevistaAdvances in Intelligent Systems and Computing
Resumo(s)Hive is a tool that allows the implementation of Data Warehouses for Big Data contexts, organizing data into tables, partitions and buckets. Some studies have been conducted to understand ways of optimizing the performance of data storage and processing techniques/technologies for Big Data Warehouses. However, few of these studies explore whether the way data is structured has any influence on how Hive responds to queries. Thus, this work investigates the impact of creating partitions and buckets in the processing times of Hive-based Big Data Warehouses. The results obtained with the application of different modelling and organization strategies in Hive reinforces the advantages associated to the implementation of Big Data Warehouses based on denormalized models and, also, the potential benefit of adequate partitioning that, once aligned with the filters frequently applied on data, can significantly decrease the processing times. In contrast, the use of bucketing techniques has no evidence of significant advantages.
Arbitragem científicayes
Aparece nas coleções:CAlg - Artigos em livros de atas/Papers in proceedings

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Costa et al. - 2018 - Partitioning and Bucketing in Hive-Based Big Data .pdf484,15 kBAdobe PDFVer/Abrir  Solicitar cópia ao autor!

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu Currículo DeGóis