Please use this identifier to cite or link to this item:

TitleLazy classification using an optimized instance-based learner
Author(s)Barbosa, Rui Pedro
Belo, Orlando
KeywordsData mining
supervised learning
Issue date2009
PublisherSpringer-Verlag Berlin
JournalLecture Notes in Computer Science
Abstract(s)Classification is a machine learning technique whose objective is the prediction of the class membership of data instances. There are numerous models Currently available for performing classification. among which decision trees and artificial neural networks. In this article we describe the implementation of a new lazy classification model called similarity classifier. Given an out-of-sample instance, this model predicts its class by finding the training instances that are similar to it, and returning the most frequent class among these instances. The classifier was implemented using Weka's data mining API, and is available for download. Its performance. according to accuracy and speed metrics, compares relatively well with that of well-established classifiers such as nearest neighbor models or support vector machines. For this reason, the similarity classifier can become a useful instrument in a data mining practitioner's tool set.
TypeConference paper
AccessRestricted access (UMinho)
Appears in Collections:CAlg - Artigos em livros de atas/Papers in proceedings

Files in This Item:
File Description SizeFormat 
  Restricted access
410,93 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID