Utilize este identificador para referenciar este registo: http://hdl.handle.net/1822/54565

TítuloLazy classification using an optimized instance-based learner
Autor(es)Barbosa, Rui Pedro
Belo, Orlando
Palavras-chaveData mining
supervised learning
classification
Data2009
EditoraSpringer-Verlag Berlin
RevistaLecture Notes in Computer Science
Resumo(s)Classification is a machine learning technique whose objective is the prediction of the class membership of data instances. There are numerous models Currently available for performing classification. among which decision trees and artificial neural networks. In this article we describe the implementation of a new lazy classification model called similarity classifier. Given an out-of-sample instance, this model predicts its class by finding the training instances that are similar to it, and returning the most frequent class among these instances. The classifier was implemented using Weka's data mining API, and is available for download. Its performance. according to accuracy and speed metrics, compares relatively well with that of well-established classifiers such as nearest neighbor models or support vector machines. For this reason, the similarity classifier can become a useful instrument in a data mining practitioner's tool set.
TipoconferencePaper
URIhttp://hdl.handle.net/1822/54565
ISBN9783642043932
DOI10.1007/978-3-642-04394-9_9
ISSN0302-9743
Arbitragem científicayes
AcessorestrictedAccess
Aparece nas coleções:CAlg - Artigos em livros de atas/Papers in proceedings

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2009-CI-IDEAL-Barbosa&Belo-CRP.pdf410,93 kBAdobe PDFVer/Abrir  Solicitar cópia ao autor!

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu Currículo DeGóis