Please use this identifier to cite or link to this item:

TitleEfficient deformable 3D face model fitting to monocular images
Author(s)Unzueta, Luis
Pimenta, Waldir
Goenetxea, Jon
Santos, Luís Paulo
Dornaika, Fadi
Issue date2016
PublisherBentham Science Publishers
Abstract(s)In this work, we present a robust and lightweight approach for the automatic fitting of deformable 3D face models to facial pictures. Well known fitting methods, for example those taking into account statistical models of shape and appearance, need a training stage based on a set of facial landmarks, manually tagged on facial pictures. In this manner, new pictures in which to fit the model cannot differ excessively in shape and appearance (including illumination changes, facial hair, wrinkles, and so on) from those utilized for training. By contrast, our methodology can fit a generic face model in two stages: (1) the localization of facial features based on local image gradient analysis; and (2) the backprojection of a deformable 3D face model through the optimization of its deformation parameters. The proposed methodology preserves the advantages of both learning-free and learning-based methodologies. Subsequently, we can estimate the position, orientation, shape and actions of faces, and initialize user-specific face tracking approaches, such as Online Appearance Models (OAMs), which have demonstrated to be more robust than generic user tracking methodologies. Experimental results demonstrate that our strategy outperforms other fitting methods under challenging illumination conditions and with a computational footprint that permits its execution in gadgets with reduced computational power, such as cell phones and tablets. Our proposed methodology fits well with numerous systems addressing semantic inference in face images and videos.
TypeBook part
Publisher version
AccessRestricted access (UMinho)
Appears in Collections:DI/CCTC - Livros e Capítulos de livros

Files in This Item:
File Description SizeFormat 
  Restricted access
7,13 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID