Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/53095

TitleBrain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
Author(s)Pereira, Sergio
Pinto, Adriano
Alves, Victor
Silva, Carlos A.
KeywordsBrain tumor
brain tumor segmentation
convolutional neural networks
deep learning
glioma
magnetic resonance imaging
Issue date2016
PublisherIEEE
JournalIEEE Transactions on Medical Imaging
Abstract(s)Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 x 3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.
TypeArticle
URIhttp://hdl.handle.net/1822/53095
DOI10.1109/TMI.2016.2538465
ISSN0278-0062
Peer-Reviewedyes
AccessRestricted access (Author)
Appears in Collections:DEI - Artigos em revistas internacionais

Files in This Item:
File Description SizeFormat 
TMI-CNN.pdf
  Restricted access
1,91 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID