Please use this identifier to cite or link to this item:

TitleNonlinear Discrete Homogenized Model for Out-of-Plane Loaded Masonry Walls
Author(s)Silva, Luis C.
Lourenço, Paulo B.
Milani, Gabriele
Discrete element model (DEM)
Analysis and computation
Issue date2017
PublisherAmerican Society of Civil Engineers (ASCE)
JournalJournal of Structural Engineering
Abstract(s)This paper presents a simple and reliable homogenization approach coupled with rigid elements and homogenized interfaces for the analysis of out-of-plane loaded masonry panels. The homogenization approach proposed is a coarse finite element discretization wherein bricks are meshed with a few elastic constant stress triangular elements and joints reduced to interfaces with elastoplastic softening behavior with friction, tension cutoff, and a cap in compression. Flexural behavior is deduced from membrane homogenized stress-strain relationships through thickness integration (Kirchhoff-Love plate hypothesis). The procedure is robust and allows obtaining homogenized bending moment/torque curvature relationships (also in presence of membrane pre-compression) to be used at a structural level within a rigid body and spring mass model (RBSM) implemented in a commercial code. The model relies on rigid quadrilateral elements interconnected by homogenized bending/torque nonlinear springs. The possibility of extending the procedure to a finite element package, with standard built-in solution procedures, allows for a robust reproduction of masonry out-of-plane behavior beyond the peak load, in the presence of global softening. The procedure is tested on a set of windowed and full masonry panels in two-way bending. Excellent agreement is found with both experimental data and previously presented numerical approaches.
AccessOpen access
Appears in Collections:ISISE - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat 
STENG.pdf3,1 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID