Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/52196

TitlePatients' admissions in intensive care units: A clustering overview
Author(s)Ribeiro, Ana
Portela, Filipe
Santos, Manuel Filipe
Machado, José Manuel
Abelha, António
Rua, Fernando
KeywordsAdmissions
Clustering
Data mining
INTCare
Intensive care
Issue date9-Sep-2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
JournalConference on Business Informatics
CitationRibeiro, A., Portela, F., Santos, M. F., Machado, J., Abelha, A., & Rua, F. (2016, August). Patients' Admissions in Intensive Care Units: A Clustering Overview. In Business Informatics (CBI), 2016 IEEE 18th Conference on (Vol. 2, pp. 38-44). IEEE
Abstract(s)Intensive Care is one of the most critical areas ofmedicine. Its multidisciplinary nature makes it a very wide area, requiring all types of healthcare professionals. Given the criticalenvironment of intensive care units, it becomes evident the need touse technology of decision support systems to improve healthcareservices and Intensive Care Units management. By discovering thecommon characteristics of the admitted patients it is possible toimprove these outcomes. In this study clustering techniques wereapplied to data collected from admitted patients in Intensive CareUnit. The best results presented a Silhouette of 1, with a distance tocentroids of 6.2e-17 and a Davies-Bouldin index of -0.652.
TypeConference paper
URIhttp://hdl.handle.net/1822/52196
ISBN9781509032310
DOI10.1109/CBI.2016.48
ISSN2378-1963
Publisher versionhttp://ieeexplore.ieee.org/document/7781494/#full-text-section
Peer-Reviewedyes
AccessRestricted access (UMinho)
Appears in Collections:CAlg - Resumos em livros de atas/Abstracts in proceedings

Files in This Item:
File Description SizeFormat 
2016 - CBI - Clusters Admission.pdf
  Restricted access
236,51 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID