Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/52040

TitleEngineering personalized constructs for intervertebral disc regeneration
Author(s)Costa, João B.
Silva-Correia, Joana
Ribeiro, Viviana Pinto
da Silva Morais, Alain
Oliveira, J. M.
Reis, R. L.
Keywords3D printing
IVD regeneration
Issue dateDec-2017
PublisherMary Ann Liebert Inc.
JournalTissue Engineering. Part A
CitationCosta J. B., Silva-Correia J., Ribeiro V. P., da Silva Morais A., Oliveira J. M., Reis R. L. Engineering Personalized Constructs for Intervertebral Disc Regeneration, Tissue Engineering Part A, Vol. 23, Issue S1, pp. S-1-S-159, doi:https://3bs.uminho.pt/, 2017
Abstract(s)Lower Back Pain associated to intervertebral disc (IVD) degeneration is estimated to affect up to 80% of the population at some time in their lives, presenting a huge socio-economic impact in industrialized countries, since it is one of the main causes of medical visits, work absenteeism and hospitalization (1). One possible strategy addresses total IVD substitution/regeneration which should comprise personalized approaches by means of using reverse engineering, i.e. combining imaging techniques (e.g. MRI and micro-CT) and 3Dbioprinting technology. The implantation of custom-made implants closely mimicking native IVD and possessing an appropriate size, shape, mechanical performance, and biodegradability can improve recovery time after surgery and help to restore spine biofunctionality. Hydrogels have become especially attractive as matrices for developing a wide variety of tissue engineered tissues and organs (2). Nevertheless, one of the main disadvantages of processing hydrogels is the difficulty to shape them in predesigned geometries even when Rapid Prototyping technologies are used. The difficulties are mostly related with the difficulty in controlling the gelation event. In this work, a two-stage strategy is proposed. In the first stage, human IVD datasets (MRI or CT) are adequately analyzed for developing accurate 3D models that mimic the native IVD sub-compartments. In the second stage, 3D anatomical scaffolds are printed and characterized thoroughly in vitro, in terms of physico-chemical, mechanical and biological performances.
TypeAbstract
URIhttp://hdl.handle.net/1822/52040
ISSN2152-4947
Publisher versionhttps://doi.org/10.1089/ten.tea.2017.29003.abstracts
Peer-Reviewedyes
AccessRestricted access (Author)
Appears in Collections:3B’s - Resumos em livros de atas de conferências - indexados no ISI Web of Science

Files in This Item:
File Description SizeFormat 
19366-ten.tea_.2017.29003.abstracts.pdf
  Restricted access
49,7 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID